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Abstract
A new computer program BiDASys (Bivariate Data Analysis System) is presented for the application of Ordinary and Uncertainty
weighted least-squares linear regression models (OLR and UWLR) to experimental data from food chemistry. BiDASys has
the following novel aspects: the statistical capability of detecting discordant outliers in bivariate data; new simulated critical
values through Monte Carlo for the probability of no-correlation in multivariate samples (n=5-1000); and it is the only
available program that can applied the UWLR model. The use of BiDASys is illustrated through three case studies where
the relations 87Sr/86SrMust versus 87Sr/86Srsoil (from Glera-Prosecco, Italy), 87Sr/86SrGrape versus 87Sr/86SrWine,S oil (from
Quebec, Canada), and 87Sr/86SrWines versus 87Sr/86SrRocks (from Tuscany-Basilicata, Italy) confirms that this isotopic ratio can
be used to track the geographical origin of wine and one more case study from Guerrero (Mexico) concerning the influence of
breastfeeding time on levels of organochlorine pesticides in human milk.
Keywords: ordinary least-squares linear regression, uncertainty weighted least-squares linear regression, discordancy tests, food
chemistry, isotopes, applied statistics.

Resumen
Un nuevo programa BiDASys (Bivariate Data Analysis System) es presentado para la aplicación de los modelos de regresión
lineal ordinaria y ponderada con incertidumbres (OLR y UWLR) a datos experimentales de química de alimentos. BiDASys tiene
los siguientes aspectos novedosos: capacidad estadística de detectar valores discordantes en datos bivariados; nuevos valores
críticos simulados mediante Monte Carlo para la probabilidad de no-correlación en muestras multivariadas (n=5-1000); y es
el único programa disponible que aplica el modelo UWLR. El uso de BiDASys es ilustrado a través de tres estudios de caso
donde las relaciones 87Sr/86SrMust versus 87Sr/86Srsoil (de Glera-Prosecco, Italia), 87Sr/86SrGrape versus 87Sr/86SrWine,S oil (de
Quebec, Canada) y 87Sr/86SrWines versus 87Sr/86SrRocks (de Tuscania-Basilicata, Italia), confirman que esta relación isotópica
puede utilizarse para rastrear el origen geográfico del vino y un estudio de caso de Guerrero (México) sobre la influencia del
tiempo de lactancia en los niveles de pesticidas organoclorados en leche humana.
Palabras clave: regresión lineal ordinaria, regresión lineal ponderada, pruebas de discordancia, química de alimentos, isótopos,
estadística aplicada.
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1 Introduction

In order to explore the relationship between a
dependent and an independent variable, linear
regression analysis is widely used to achieve valid
inferences from experimental data in all scientific
and engineering fields (e.g., Draper and Smith, 1998;
Chatterjee and Hadi, 2015; Darlington and Hayes,
2016). Many techniques for carrying out regression
analysis have been proposed that vary from the
conventional ordinary least-squares linear regression
(OLR) to weighted least-squares linear regression
models (WLR; Barnett and Lewis, 1994; Bevington
and Robinson, 2003; Guevara et al., 2005; Verma,
2016). Recently, Nunes et al. (2015) showed that
the use of statistical methods in food science and
technology has increased considerably, which implies
the importance and need of developing accurate
statistical techniques in such applications. Nunes et
al. (2015) also stated that these statistical methods
have been implemented in computational programs
usually divided into univariate (graphic analysis
and descriptive statistics), bivariate (correlation and
linear regression analysis), and multivariate methods
(exploratory and classification methods). Strict
requirements of international scientific journals allied
to the need to correctly interpret the experimental
data from the statistical standpoint, have led to
a steep increase in the use and development of
statistical software. However, many researchers have
difficulties in understanding and interpreting crucial
statistical concepts and the use of statistical methods
for interpreting experimental data (Passari et al.,
2011; Granato and Calado, 2014; Cozzolino, 2014).
Therefore, there is a need of developing better
software that would incorporate newer well-tested
statistical procedures for handling of experimental
data.

Furthermore, in most scientific and engineering
fields, the original complete data sets are seldom
reported, and only the statistical summary data
are generally available. This is a major problem
for a correct statistical analysis of experimental
data and above all, for ascertaining if the original
data were correctly summarized from the statistical
point of view, i.e., if the central tendency and
dispersion parameters were properly obtained (Barnett
and Lewis, 1994). On the other hand, a well-
established fact of the scientific research is that
when an experiment is performed for the first time,

the results often bear too little resemblance to the
“truth" being sought (Barnett and Lewis, 1994;
Bevington and Robinson, 2003). For all experimental
data, random errors and related uncertainties
undoubtedly exist, which should be estimated and
then reduced by improved experimental techniques
and repeated measurements. These errors must always
be estimated to establish the validity of the results
and interpretation. Thus, error (such as standard
deviation) or uncertainty (confidence limits of the
mean) estimates on the individual data should actually
be reported (e.g., Pope, 1976; Chatterjee and Hadi,
1986, 2015; Barnett and Lewis, 1994; Granato et al.,
2014; Verma, 2016).

Chemometric techniques have become an
important tool in modern analytical chemistry
for designing experiments, achieving instrumental
calibrations, and ascertaining the quality (precision,
accuracy, and uncertainties) of analyses in a wide
variety of chemical matrices (Miller and Miller,
2010; Verma, 2016). In food chemistry, many authors
(e.g., Raco et al., 2015; Fernández et al., 2016;
Giordani et al., 2016; Maslak and Nimmermark, 2017;
Foereid, 2017) have used linear regression models.
Furthermore, some other publications where the OLR
model was applied are as follows: Moreno-Rivas et
al. (2016) in biosorption of cadmium from aqueous
solution by baker’s yeast; Borges et al. (2017) in
analysis of buffalo milk; Gómez-Favela et al. (2017)
in modelling of water absorption in chickpea seeds;
Chaparro et al. (2017) in selection of the process
parameters and drying protectant to granulated bio-
products based on microorganisms; Fuentes-Ortega
et al. (2017) in study of the process variables of
microencapsulation sesame oil by spray drying; Pérez-
Grijalba et al. (2017) in study of the bio-functionality
properties of blackberry juice; and Xu et al. (2017)
in seasonal and annual variations of atmospheric
Hg and Pb isotopes in Xi’an, China. Unfortunately,
in such applications most authors do not report or
partially report the original data, nor they estimate the
individual errors or uncertainties.

The feasibility of reporting errors on individual
data will certainly lead in future to a better use of
the regression models. Verma (2012) suggested that
the use of uncertainty-based weighted least-squares
linear regression (UWLR) model should be preferred
over other WLR models, because the UWLR carries
the connotation of probability or confidence limits.
Thus, the use of the UWLR that estimates the total
uncertainty for each data point should be considered as
the best suitable statistical method for a better analysis

508 www.rmiq.org



Rosales-Rivera et al./ Revista Mexicana de Ingeniería Química Vol. 17, No. 2 (2018) 507-522

of experimental data (Verma, 2016).
In this work, we present applications of linear

regression models in food chemistry. For this purpose,
we have developed an online computer program
(Bivariate Data Analysis System - BiDASys) for an
efficient application of the OLR and UWLR regression
models. The discordant outliers may also occur in
the linear regressions and should be best handled
using proper statistical techniques. BiDASys program
allows the application of recursive discordancy tests
(Verma et al., 2017b), to univariate statistical samples
constituted by the studentized residuals (Barnett and
Lewis, 1994) for discordant outlier detection and
separation. Furthermore, BiDASys can also help us to
compare the results from OLR and UWLR models as
illustrated in this work.

2 Materials and methods

2.1 Linear regressions

Different types of simple (ordinary) and weighted
models are commonly used to explore the
relationships between an independent variable (x) and
a dependent variable (y). These methods are applied
to the data set with the main purpose of obtaining the
best linear fit and providing a visual demonstration of
the relationship between the data points (Miller and
Miller, 2010; Cozzolino, 2014).

2.1.1 Ordinary least-squares Linear Regression
(OLR) model

The most common application of the OLR method
aims to create a straight line that minimizes the sum
of the squares of the errors (or residuals) generated by
the associated equation, as a result of the differences in
the observed value and the value anticipated based on
the model. Equation (1) describes this model for two
variables x and y, where a is the intercept term, b is
the slope, and sa and sb are their respective standard
errors.

y = a(±sa) + [b(±sb) ∗ x] (1)

However, for the OLR model to be statistically
valid, certain assumptions must be fulfilled (Miller
and Miller, 2010;): (a) linearity between y and x
variables; (b) x is error-free or < 1/10 of the error
in y; (c) errors in y are normally distributed; (d)
homoscedastic errors in y (constant variance across
the entire response range); and (e) errors associated

with different observations are independent. Rarely,
all assumptions are fulfilled in a given experimental
study. Therefore, the OLR models are in general
invalid and more sophisticated regression models are
required.

2.1.2 Weighted Least-squares Regression (WLR)
models

These models are required because not all assumptions
for the OLR are fulfilled (e.g. errors from experimental
studies do not present a homoscedastic behaviour).
These models assign different weights to the data
points as an inverse function of the corresponding
variances. The York (York, 1968) model, widely used
in Earth Sciences, was proposed for isotope data in
geochronology, under the assumption of correlated
errors in x and y. New York (Mahon, 1996) method
was an improvement of older York model. Equation
(2) describes the basic WLR model, where symbols
are the same as for the OLR and the subscript w refers
to the weighted regression. Equation (2) is as follows:

y = aw(±saw) + [bw(±sbw) ∗ x] (2)

2.1.3 Uncertainty Weighted least-squares Linear
Regression (UWLR) model

UWLR is a new weighted linear regression procedure
based on total uncertainty estimates, which is
considered a better alternative because the use of
uncertainty has a probability connotation, here a strict
confidence level of 99% (or equivalently, significance
level of 1%; Verma, 2016). Before the calculation
of the central tendency (e.g. mean x) and dispersion
(e.g. standard deviation s) parameters for univariate
samples, it should be mandatory to ascertain that
all replicate measurements be free from discordant
outliers (Verma et al., 2016, 2017a), which can be
easily confirmed by computer program UDASys2
(Univariate Data Analysis System 2; Verma et al.,
2017b). After this statistical procedure, the uncertainty
in the ith sample x (or y) is calculated as follows:

u = (s/
√

n) ∗ t(n−1) (3)

where t(n−1) is the Student t critical value for (n − 1)
degrees of freedom for the desired confidence level
(generally 99% or 95%, two-sided), or significance
level of 1% or 5% (α of 0.01 or 0.05). For both
samples, the chosen confidence or significance level
should be the same. In this way, we have n values of
variables x and y with their respective uncertainties
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and therefore, we can use the following equation:

y = aw(±uaw) + [bw(±ubw) ∗ x] (4)

where aw is the weighted intercept term, bw is the
weighted slope and uaw and ubw, are their respective
uncertainties (Verma, 2016).

The basic idea from this variation is to handle
all the data with uncertainties, which helps to obtain
a better interpretation of the relationship from the
independent (x) and dependent variable (y). No
computer programs seem to be yet available to
carry out the UWLR regression. For this reason, we
developed a new program BiDASys that applies both
OLR and UWLR regression models to datasets. In
addition to the regression parameters (intercept, slope,
and their respective standard errors or uncertainties)
both before and after applying discordancy tests, the
linear correlation coefficient r and probability of no-
correlation the Pc(r;n) criterion, can also be calculated
from our program BiDASys.

2.1.4 Monte Carlo simulation for the new Pearson
correlation coefficient critical values

Correlation between sets of data is a measure of how
well they are related. The most common measure
of correlation in statistical analysis is the Pearson
correlation (r), which is widely used as a measure of
the statistical relationship, or association between two
continuous variables (Bevington and Robinson, 2003;
Cozzolino, 2014; Darlington and Hayes, 2016). We
can calculate the Pearson correlation coefficient using
the following equation:

r =
covx,y√
s2

x ∗ s2
y

(5)

where covx,y and
√

s2
x ∗ s2

y represent the covariance
and the square root of the multiplication of the
variances of x and y, respectively.

When a linear correlation is statistically significant
(e.g. if the linear correlation coefficient, r has a
very low probability of no-correlation Pc(r;n) value;
Bevington and Robinson, 2003), this relationship can
be used to interpret the data and to infer about
natural processes. Commercial or freely available
software (e.g., SPSS®, JASP, Statistica®, PSPP,
SAS, NCSS®) are capable of reporting the r value.
However, most users are not familiar with the
statistical interpretation of this relationship.

As a part of this work, the required Pearson
correlation coefficient critical values for different

sample sizes, were newly simulated from samples
sizes nmin(1)100(5)200(50)500(100)1000, using
Monte Carlo procedure (Verma et al., 2017b). For the
construction of multivariate samples with distribution
N(µ,σ), we generated random normal variables Zi
with normal distribution N(0,1) which were used to
create the desired bivariate normal vector X as follows
(Law and Kelton, 2000):

Xi = µi +

i∑
j=1

ci jZ j (6)

We calculated the Pearson correlation values for
several significance levels, using 100,000 repetitions
and 190 independent simulation experiments (Verma
et al., 2017b). The complete table (Pearson correlation
(r) values.xlsx) containing the linear correlation
coefficient r versus the number of observations n and
the corresponding Pc(r;n) value for a large number
of significance levels along with the total uncertainty
from the Monte Carlo simulations are presented in
the supplementary information (Table S1 and S2).
Finally, the functional dependence of r corresponding
to representative values of Pc(r;n) is plotted on a
semi-logarithmic scale as a smooth variation with the
number of observations n from 3 to 1000 are presented
in Figure 1.

 

 

Fig. 1. 
 

  

Fig. 1. The linear-correlation coefficient r versus
the number of observations n and the corresponding
probability Pc(r;n) that the variables are not
correlated. The Pc(r;n) values for confidence levels
from 90% to 99.99% (equivalent to significance levels
from 0.1 to 0.0001) for samples of sizes n = 3− 1000;
the green curve corresponds to the Pc(r;n) values for
a confidence (or significance) level of 95% (or 0.05;
two-sided) whereas the red curve is for the confidence
(or significance) level of 99% (or 0.01; two-sided).
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2.2 Statistical procedure for discordant
outlier detection and separation

Under the outlier-based scheme, in univariate samples
it should be mandatory as a prior step the identification
and separation of discordant outliers before any
statistical parameter estimation. It is known that
the discordancy tests are used to detect discordant
outliers in univariate data to assess the assumption
of normality in experimental data, and to enable
us to calculate the central tendency (mean) and
dispersion (standard deviation) parameters from a
set of normally distributed observations (Verma et
al., 2017b). Discordant outliers may also occur in
bivariate samples and should be best handled using
proper statistical techniques (Barnett and Lewis, 1994;
Bevington and Robinson, 2003). The examination of
least-squares residuals for the detection of discordant
outliers is one of the most important and effective
means for the quality control. There are two types
of outliers, those in the response variable (y) which
represents model failure, and those with respect to the
predictors (x); they can seriously affect the regression
model. Graphical methods based on residuals alone
will fail to objectively detect these unusual data points
(Velleman and Welsch, 1981; Atkinson, 1981; Draper
and Smith, 1998; Chatterjee and Hadi, 1986, 2015).

The estimated residuals for the simple regression
model do not have constant variance, because the
residuals are assumed to come from a common
distribution ∼ N(0,σ2)). One possible approach to
apply the univariate discordancy tests is to examine
the appropriately weighted estimated residuals
(studentized residuals) as suggested and achieved by
several workers (e.g., Pope, 1976; Barnett and Lewis,
1994; Bevington and Robinson, 2003; Chatterjee and
Hadi, 2015).

For these reasons, in this work we calculated the
studentized residuals for both linear regression models
(OLR and UWLR) using the following equation (7)
proposed by Barnett and Lewis (1994):

sr j =

∣∣∣∣∣∣∣∣∣∣∣∣∣
r j√∑

r2
j

n−2

√(
1− 1

n

)
−

(
(x j−x)2∑
(xi−x)2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣

(7)

where r j are the residuals calculated by each linear
regression, x j and x are each individual value and the
mean from the sample x.

Afterwards, we applied 5 recursive discordancy
tests (Verma et al., 2017b) with the highest detection

power and with the lowest skewness and masking
effects, to detect possible discordant outliers in the
studentized residuals from bivariate samples, which is
another novel aspect of our software.

2.3 Computer program

For an efficient application of our statistical
methodology proposed for bivariate samples, a
computer program BiDASys (Bivariate Data Analysis
System) was written in Java Framework ZK (Figure
2). The first part of the program concerns the data
validation and activation of the possible regression
model that can be applied to an “appropriate" dataset.
The input file must have a predetermined format (see
supplementary information “Readme" for more details
about template).

If the program does not report any errors in
the input data file, the user can advance to the
next step by selecting one option of the Regression
Analysis menu, which contains the following options:
"Ordinary least-squares Linear Regression - OLR",
"Uncertainty Weighted last-squares Linear Regression
- UWLR", and "Recommended procedure". After
processing all data for OLR, UWLR or both types
of regressions ("Recommended procedure" option),
optionally, the discordant outlier detection module
calculates the studentized residuals (equation 7) for
possible discordant outliers. If no discordant outliers
were found, the program proceeds to save the results.
If any observation is detected as discordant outlier, this
is separated, and the regression process is repeated
until it does not find any more discordant outliers.
Both sets of results (e.g., intercept, slope, and their
respective uncertainties, value of r (and R2), and the
Pc(r;n) criterion) and graphics - for input data with
and without outliers - are then presented in output
files. This information can be easily downloaded by
the user. In the report generated by BiDASys, the
discordant outlier pairs detected will show an "*" (see
"Readme" for more detailed information).

BiDASys has some advantages as compared to
the other available software. The user can choose if
they want to apply the recursive tests automatically
to the studentized residuals calculated by the linear
regression models (OLR or UWLR) or if they want
only the results for each regression model. In addition,
from our "Recommended procedure", the program
applies both models to the data and generates the
results in one output file, providing the data points to
create the graphics with their respective uncertainties
and the linear regression line.

www.rmiq.org 511



Rosales-Rivera et al./ Revista Mexicana de Ingeniería Química Vol. 17, No. 2 (2018) 507-522

 

 
Fig. 2. 

  

Fig. 2. Schematic flow diagram for the computer program BiDASys.

No other commercial or freely available software
(e.g., SPSS®, JASP, Statistica®, PSPP, SAS,
NCSS®) is capable of applying the UWLR model
and this methodology in such an automatic way.

2.4 Program availability

This program, the input data template file, document
"Readme", the complete tables of the Pearson
correlation (r) values are available from our website
http://tlaloc.ier.unam.mx/, after a previous registration
onto the server. Once log in, the user can access
BiDASys at http://tlaloc.ier.unam.mx/BiDASys,
which will be available in the "Online programs" menu
(for more details about how to get access to our server,
see Readme in the supplementary information).

3 Results

3.1 Application of BiDASys to food
chemistry cases

The use of this program is illustrated through four
examples from different food chemistry case studies.
We show the results for the application of both models
(OLR and UWLR) and the improved interpretation
obtained by using the UWLR instead of the OLR.
The results presented in this work were obtained from
our statistical procedure applied at a strict confidence
level of 99% or significance level of 0.01 (two-sided),
or equivalently, at 99.5% or 0.005% (one-sided),
respectively. In addition, the original authors only
applied the linear regression (OLR for all cases), but
did not mention the program used for this application.

512 www.rmiq.org



Rosales-Rivera et al./ Revista Mexicana de Ingeniería Química Vol. 17, No. 2 (2018) 507-522

 

   
 

Fig. 3. 
 

 

  

Fig. 3. 87Sr/86SrMusts versus 87Sr/86Srsoil for Glera vineyards, Veneto Region, Italy (Application Study A1; Petrini
et al., 2015). a) OLR and UWLR results from the original data for 87Sr/86SrMust2010 versus 87Sr/86Srsoil; and b)
OLR and UWLR results from the original data for 87Sr/86SrMust2011 versus 87Sr/86Srsoil; and, c) OLR and UWLR
results from the original data for 87Sr/86SrMust2012 versus 87Sr/86Srsoil.

Table 1. Regression parameters and equations from Sr-isotopic compositions of musts versus soil labile fraction
(Application Study A1; Petrini et al., 2015). 

Regression 

model 
n 

Regression parameters 
 Equation 

a ua b ub r R2 Pc(r;n) 
 

87Sr/86SrMust2010 versus 87Sr/86SrSoil 
 

OLRlit 10 -0.133 NR 1.188 NR NR 0.77 NR 

 

y = -0.133 + 1.188* x (8) 

OLRtw 10 -0.131 0.550 1.186 0.770 0.8776 0.7701 0.0005 y = -0.131 (± 0.550) + 1.186 (± 0.770) * x (9) 

UWLR 10 -0.181 0.163 1.256 0.230 0.8779 0.7706 0.0004 y = -0.181 (± 0.163) + 1.256 (± 0.230) * x (10) 
 

87Sr/86SrMust2011 versus 87Sr/86SrSoil 
 

OLRlit 10 -0.161 NR 1.227 NR NR 0.71 NR 

 

y = -0.161 + 1.227* x (11) 

OLRtw 10 -0.158 0.670 1.223 0.945 0.8381 0.7023 0.0013 y = -0.158 (± 0.670) + 1.223 (± 0.945) * x (12) 

UWLR 10 -0.207 0.201 1.292 0.283 0.8408 0.7069 0.0012 y = -0.207 (± 0.201) + 1.292 (± 0.283) * x (13) 
 

87Sr/86SrMust2012 versus 87Sr/86SrSoil 
 

OLRlit 10 -0.127 NR 1.18 NR NR 0.78 NR 

 

y = -0.127 + 1.18 * x (14) 

OLRtw 10 -0.120 0.541 1.170 0.763 0.8765 0.7682 0.0005 y = -0.120 (± 0.541) + 1.170 (± 0.763) * x (15) 

UWLR 10 -0.102 0.161 1.144 0.226 0.8769 0.7690 0.0005 y = -0.102 (± 0.161) + 1.144 (± 0.226) * x (16) 

The nomenclature used in this table are as follows: OLRlit – ordinary least-squares regression results from Petrini et al. (2015); OLRtw – 

ordinary least-squares regression results obtained in this work; UWLR – uncertainty weighted least-squares regression results obtained in 

this work; n – samples size; a – intercept; b – slope; u – uncertainty at a strict confidence level of 99% two-sided, equivalent to 99.5% 

one-sided; r – correlation  coefficient; R2 – correlation  coefficient; Pc(r;n) – Probability of no correlation ; NR – Not Reported.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.1 Application Study A1: Glera vineyards, Veneto
Region, Italy

The Sr-isotopic systematics was applied to soils and
musts from the 2010, 2011 and 2012 vintages in ten
distinct Prosecco vineyard farms in the Veneto Region
(Italy), which produce 100% Glera Prosecco wine.
The aim of the study by Petrini et al. (2015) was to
test the applicability of the Sr-isotopic method to the
Prosecco geographic traceability. In order to further
quantify these observations and highlight the possible
relationships between soils and the corresponding

musts, they applied a statistical approach.
In the cumulative frequency data retrieving, soils

and musts belonging to the 2010, 2011 and 2012
harvests follow a normal distribution, which was
confirmed by the original authors using statistical
tests for normality (Anderson-Darling, Kolmogorov-
Smirnoff and similar tests). A linear correlation was
modelled by Petrini et al. (2015) assuming the
87Sr/86Sr-isotope ratio of soils as the independent
variable and the must (grape) as the dependent
variable.

We used the data for Sr-isotopic compositions of

www.rmiq.org 513



Rosales-Rivera et al./ Revista Mexicana de Ingeniería Química Vol. 17, No. 2 (2018) 507-522

soil labile fractions and musts collected from 2010
to 2012 (Table 1; Petrini et al., 2015) for their
processing by BiDASys. The regression results with
the corresponding equations reported by Petrini et al.
(2015) and obtained in this work are listed in Table 1
and plotted in Figure 3.

The regression parameters and results reported by
Petrini et al. (2015) were as follows: (i) for 2010, an
intercept a = −0.133, slope b = 1.188 and R2 = 0.77
(equation (8); Table 1); (ii) for 2011, an intercept of a =

-0.161, slope b = 1.227 and R2 = 0.71 (equation (11);
Table 1); and, (iii) for 2012, they obtained an intercept
of a = -0.127, slope b = 1.180 and R2 = 0.78 (equation
(14); Table 1).

Now, we present the results obtained in this work
by using our online computer program BiDASys. In
this case study, no discordant outliers were detected.
The OLRtw results obtained for 2010 were: a =

−0.131 with a total uncertainty of ua = 0.550, b =

1.186 with a total uncertainty of ub = 0.770, the
correlation coefficient of r = 0.8776, R2 = 0.7701 and
the probability of no correlation Pc(r;n) of 0.0005
(equation (9); Table 1; Figure 3a, purple dashed line).
The UWLR results obtained were as follows: a =

−0.181, ua = 0.163, b = 1.256, ub = 0.230, r = 0.8779,
R2 = 0.7706 and Pc(r;n) = 0.0004 (equation (10);
Table 1; Figure 3a, green continuous line).

For 2011, the OLRtw results obtained were: a =

−0.158, ua = 0.670, b = 1.223, ub = 0.945, r = 0.8381,
R2 = 0.7023 and Pc(r;n) = 0.0013 (equation (12);
Table 1; Figure 3b, purple dashed line). The UWLR
results obtained were as follows: a = −0.207, ua =

0.201, b = 1.292, ub = 0.283, r = 0.8408, R2 = 0.7069
and Pc(r;n) value of 0.0012 (equation (13); Table 1;
Figure 3b, green continuous line).

Finally, for 2012, the OLRtw results obtained were:
a = −0.120, ua = 0.541, b = 1.170, ub = 0.763, r =

0.8765, R2 = 0.7682 and Pc(r;n) = 0.0005 (equation
(15); Table 1; Figure 3c, purple dashed line). The
UWLR results obtained were as follows: a = −0.102,
ua = 0.161, b = 1.144, ub = 0.226, r = 0.8769, R2 =

0.7690 and Pc(r;n) = 0.0005 (equation(16); Table 1;
Figure 3c, green continuous line).

We can now mention that the original authors did
not report the standard errors and the probability of
no-correlation from the regression results. However,
the BiDASys program provides the probability
of no-correlation for OLR (0.0005, 0.0013, and
0.0005 for 2010, 2011, and 2012, respectively)
and UWLR (0.0004, 0.0012, and 0.0005 for 2010,

2011, and 2012, respectively; Figure 4) methods. 

 
 

Fig. 4. 
  

Fig. 4. The linear-correlation coefficient r versus the
number of observations n and the corresponding
probability Pc(r;n) that the variables (87Sr/86SrMusts
versus 87Sr/86Srsoil) are correlated. For application
study A1 (Petrini et al., 2015), the square,
triangle and filled circle symbols correspond
to the Pc(r;n) values (0.00044, 0.0012, and
0.0005) obtained for 87Sr/86SrMust2010 versus
87Sr/86Srsoil, 87Sr/86SrMust2011 versus 87Sr/86Srsoil,
87Sr/86SrMust2012 versus 87Sr/86Srsoil, respectively.

Figure 4 shows the linear-correlation coefficient
r versus the number of observations n and the
corresponding probability Pc(r;n). The Sr-isotope
ratio in musts and soil labile fraction are correlated at
the 99% confidence level (Pc(r;n) of this relationship
is greater than the 99.0% critical value; Figure 4).

Another advantage of BiDASys program is that it
provides the uncertainty values at the strict confidence
level of 99% obtained for each regression method.
From the results obtained in this case study, we can
also infer that the UWLR model (shaded rows in Table
1) presents systematically lower uncertainties for the
calculated values of the intercept and slope (e.g., for
2012, ua = 0.161 and ub = 0.226) compared to the
OLR results (for 2012, ua = 0.541 and ub = 0.763).
Finally, because of the lower uncertainty and Pc(r;n)
values for the UWLR (Table 1; Figure 4), we may
also infer that the UWLR results better support the
conclusions reported by the original authors (Petrini
et al., 2015).
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Fig. 5. 

  

Fig. 5. 87Sr/86SrGrape versus 87Sr/86SrWine and 87Sr/86Srsoil for vineyards from different wine producing areas of
Quebec, Canada (Application Study A2; Vinciguerra et al., 2016). a) OLR and UWLR results from the original
data for 87Sr/86SrGrape versus 87Sr/86SrWine; b) OLRDT and UWLRDT results after the application of recursive
discordancy tests for 87Sr/86SrGrape versus 87Sr/86SrWine; c) OLR and UWLR results from the original data
for 87Sr/86SrGrape versus 87Sr/86Srsoil; and, d) OLRDT and UWLRDT results after the application of recursive
discordancy tests for 87Sr/86SrGrape versus 87Sr/86Srsoil.

3.1.2 Application Study A2: Vineyards from different
wine producing areas of Quebec, Canada

Vinciguerra et al. (2016) reported new Sr-isotope
data for soils, grapes, and wine derived from 13
vineyards from different regions of Quebec (Canada),
suggested traceability of the isotope composition from
the soil, through the grapes to the wine, and provided

constraints for determining the geographic origin of
locally produced wines. The data for 87Sr/86Sr ratios
of wine, grape and labile soil fractions from Table
1 of Vinciguerra et al. (2016) were used for their
processing by BiDASys. The regression results with
the corresponding equations obtained by Vinciguerra
et al. (2016) and those obtained in this study are
included in Table 2 and plotted in Figure 5.
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Table 2. Regression parameters and equations from Sr-isotopic of grape versus wine and grape versus soil, using
OLR and UWLR models (Application Study A2; Vinciguerra et al., 2016).

Table 2. Regression parameters and equations from Sr-isotopic of grape versus wine and grape versus soil, 

using OLR and UWLR models (Application Study A2; Vinciguerra et al. 2016). 
Regression 

model 
n 

Regression parameters 
Equation 

a ua b ub r R2 Pc(r;n) 
87Sr/86SrGrape versus 87Sr/86SrWine  

OLRlit 16 -0.03 NR 1.04 NR NR 0.94 NR y = -0.03  + 1.04 * x (17) 

OLRtw 16 -0.031 0.150 1.043 0.211 0.969 0.9394 <0.00005 y = -0.031 (± 0.150) + 1.043 (± 0.211) * x (18) 

UWLR 16 -0.063 0.049 1.088 0.070 0.971 0.9428 <0.00005 y = -0.063 (± 0.049) + 1.088 (± 0.070) * x (19) 

OLRDT 15 -0.079 0.109 1.111 0.153 0.987 0.9737 <0.00005 y = -0.079 (± 0.109) + 1.111 (± 0.153) * x (20) 

UWLRDT 15 -0.0803 0.0351 1.113 0.049 0.988 0.9753 <0.00005 y = -0.0803 (± 0.0351) + 1.113 (± 0.049) * x (21) 
87Sr/86SrGrape versus 87Sr/86SrSoil  

OLRlit 9 -0.04 NR 1.06 NR NR 0.88 NR y = -0.04  + 1.06 * x (22) 

OLRtw 9 -0.036 0.360 1.05 0.51 0.9398 0.8832 0.00008 y = -0.036 (± 0.360) + 1.05 (± 0.51) * x (23) 

UWLR 9 0.023 0.105 0.968 0.148 0.9395 0.8826 0.00008 y = 0.023 (± 0.105) + 0.968 (± 0.148) * x (24) 

OLRDT 7 0.014 0.203 0.98 0.285 0.9872 0.9746 <0.00005 y = 0.014 (± 0.203) + 0.98 (± 0.285) * x (25) 

UWLRDT 7 0.046 0.052 0.935 0.072 0.9873 0.9747 <0.00005 y = 0.046 (± 0.052) + 0.935 (± 0.072) * x (26) 

See Table 1 footnote for more information. OLRDT – ordinary least-squares regression results obtained in this work after the application 

of recursive tests to studentized residuals; UWLRDT – uncertainty weighted least-squares regression results obtained in this work after the 

application of recursive tests to studentized residuals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Vinciguerra et al. (2016) report the corresponding
linear relationship 87Sr/86SrGrape versus 87Sr/86SrWine
as y = -0.03 + 1.04 * x (equation (17)) and R2 = 0.94
and for 87Sr/86SrGrape versus 87Sr/86Srsoil as y = -0.04
+ 1.06 * x (equation (22)) and R2 = 0.88 (Table 2).

Now, using our statistical procedure through
BiDASys, we present the regression results from
OLRtw and UWLR models before and after the
detection of discordant outliers. These values were
detected as follows: one discordant outlier from
the relationship 87Sr/86SrGrape versus 87Sr/86SrWine
(Figure 5a-b) and two discordant outliers from the
relationship 87Sr/86SrGrape versus 87Sr/86Srsoil (Figure
5c-d).

For the first relationship, the OLRtw results are:
y = −0.031 (± 0.150) + 1.043 (± 0.211) * x,r = 0.969,
R2 = 0.9394 and Pc(r;n) < 0.00005, consistent with
the results from the original authors; and for UWLR,
the results are: y = -0.063 (± 0.049) + 1.088 (± 0.070)
* x,r = 0.971, R2 = 0.9428 and Pc(r;n) < 0.00005
(Table 2; Figure 5a). After the detection and separation
of one discordant outlier the results for OLRDT are:
y = −0.079 (± 0.109) + 1.111 (± 0.153) * x,r = 0.987,
R2 = 0.9737 and Pc(r;n) < 0.00005, and UWLRDT
results are: y = −0.0803 (± 0.0351) + 1.113 (± 0.049)
* x,r = 0.988, R2 = 0.9753 and Pc(r;n) < 0.00005
(Table 2; Figure 5b).

For the second relationship, the OLRtw results
are: y = -0.036 (± 0.360) + 1.05 (± 0.51) * x,r =

0.9398, R2 = 0.8832 and Pc(r;n) = 0.00008, and the
results for UWLR are: y= 0.023 (± 0.105) + 0.968
(± 0.148) * x,r = 0.9395, R2 = 0.8826 and Pc(r;n) =

0.00008 (Table 2; Figure 5c). After the detection of
two discordant outliers, the results for OLRDT are:
y = 0.014 (± 0.203) + 0.98 (± 0.285) * x,r = 0.9872,
R2 = 0.9746 and Pc(r;n) < 0.00005, and UWLRDT
results are: y = 0.046 (± 0.052) + 0.935 (± 0.072)
* x,r = 0.9873, R2 = 0.9747 and Pc(r;n) < 0.00005
(Table 2; Figure 5d).

We can clearly appreciate the difference between
before and after the application of both regression
models, where the results provided by the UWLRDT
regression present higher values of correlation
coefficients (0.9753, 0.9747) compared with the values
reported by the original authors (0.94, 0.88).

In addition, we can appreciate that the UWLRDT
(shaded rows in Table 2) presents systematically lower
uncertainties (ua = 0.0351, 0.052; and ub = 0.049,
0.072) for both relationships compared to the OLRDT
(ua = 0.109, 0.203; and ub = 0.153, 0.285).

The values detected as discordant outliers are
clearly visible from the plots in the original paper but
the corresponding probability cannot be ascertained
from these plots. Our approach (use of the BiDaSys
program) can improve the conclusions presented by
Vinciguerra et al. (2016). This confirms that the
87Sr/86Sr-isotope ratios can be used to track the
geographical origin of wine.
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Fig. 6. 
 

 

  

Fig. 6. 87Sr/86SrWines versus 87Sr/86SrRocks for vineyards from Tuscany to Basilicata, Italy (Application Study A3;
Marchionni et al., 2013). a) OLR and UWLR results from the original data; and b) OLR and UWLRDT results after
the application of recursive discordancy tests to the studentized residuals.

Table 3. Regression parameters and equations from Sr-isotopic of wines versus rocks, using OLR and UWLR
models (Application Study A3; Marchionni et al., 2013).

Table 3. Regression parameters and equations from Sr-isotopic of wines versus rocks, using OLR and UWLR 

models (Application Study A3; Marchionni et al. 2013). 
Regression 

model 
n 

Regression parameters 
Equation 

a ua b ub r R2 Pc(r;n) 
 

87Sr/86SrWines versus 87Sr/86SrRocks 
 

OLRlit 6 NR NR  

OLRtw 6 0.536 0.141 0.243 0.199 0.9422 0.8877 0.00249 y = 0.536 (± 0.141) + 0.243 (± 0.199) * x (27) 

UWLR 6 0.35 0.098 0.507 0.138 0.9564 0.9148 0.00144 y = 0.350 (± 0.098) + 0.507 (± 0.138) * x (28) 

UWLRDT 4 0.3342 0.0203 0.528 0.0287 0.9971 0.9942 0.00145 y = 0.3342 (± 0.0203) + 0.528 (± 0.0287) * x (29) 

See Table 1 footnote for nomenclature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.1.3 Application Study A3: Vineyards from Tuscany
to Basilicata, Italy

The wine regions selected for Marchionni et al.
(2013) are distributed along the Italian Peninsula,
from Tuscany to Basilicata. The selected wine areas
are Tuscany, Latium, Campania, Basilicata, Chianti
Classico and Giglio Island. The wine Sr-isotope
compositions are then cross-checked with geological
and isotopic data of the rocks of the production areas
to verify the relationship, if any, between wines and
their geological isotopic characteristics. We used the
values for 87Sr/86Sr of the wines from the same
production area and those rocks of the substratum
(Table 3; Marchionni et al. 2013) for their processing
by BiDASys. The regression results obtained in this
work are presented in Table 3 and Figure 6.

The results for OLRtw are shown in equation (27),
with r = 0.9422, R2 = 0.8877 and a Pc(r;n) value
of 0.00249 (Figure 6a). For UWLR, results from
equation (28) and the values for r, R2, and Pc(r;n)
are 0.9564, 0.9148, and 0.00144, respectively. We

can appreciate that the uncertainty values and the
correlation coefficients obtained by the UWLR model
are lower in comparison with those obtained by the
ORL model. After the detection of two discordant
outliers (Figure 6b), the UWLRDT results (equation
(29)) for the linear relationship between those wines
and rocks are: r = 0.9971, R2 = 0.9942, and Pc(r;n) =

0.00145. In several cases, the 87Sr/86Sr value of wines
overlaps with the values of the rock of the substratum
of the vineyards from which the wines are produced,
which can be sustainable with the results obtained by
the UWLRDT model (Table 3; Figure 6a-b). Because
four of the six wine areas under consideration in
this study are characterized by vineyards cultivated
mainly or partially on volcanic terrains. The two
discordant outliers detected correspond to these wine
areas, Chianti Classico (sedimentary substrata) and
Giglio Island (granitic rocks), which agrees with the
conclusions reported by Marchionni et al. (2013).
However, this was not clearly obtained by the OLR
model, as shown in Table 3 and Figure 6a-b.
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Table 4. Regression parameters and equations of pp’DDE versus Days of lactation, Σ-DDT versus Days of
lactation, pp’DDE versus Weeks, and Σ-DDT versus Weeks (Application Study A4; Chávez-Almazán et al., 2015).

Table 4. Regression parameters and equations of pp’DDE versus Days of lactation, ∑-DDT versus Days of 

lactation, pp’DDE versus Weeks, and ∑-DDT versus Weeks (Application Study A4; Chávez-Almazán et al. 

2015). 
Regression 

model 
n 

Regression parameters 
Equation 

a ua b ub r R2 Pc(r;n) 
 

mg/kg lipid of pp’DDE versus Days of lactation  

OLRlit 161 NR NR NR NR -0.216 NR 0.006 NR  

OLRtw 161 1.241 0.354 -0.0139 0.0129 -0.2164 0.0468 0.00609 y = 1.241 (±0.354) - 0.0139 (±0.0129) * x (30) 

OLRDT 109 0.965 0.179 -0.0144 0.0063 -0.4996 0.2496 <0.00005 y = 0.965 (±0.179) - 0.0144 (±0.0063) * x (31) 

mg/kg lipid of ∑-DDT versus Days of lactation  

OLRlit 161 NR NR NR NR -0.222 NR 0.005 NR  

OLRtw 161 1.346 0.373 -0.0149 0.0136 -0.2215 0.0491 0.00444 y = 1.346 (±0.373) – 0.0149 (±0.0136) * x (32) 

OLRDT 102 1.163 0.174 -0.0163 0.0061 -0.5736 0.3291 <0.00005 y = 1.163 (±0.174) – 0.0163 (±0.0061) * x (33) 

See Table 1 footnote for nomenclature 

 

  

  
 

Fig. 7. 
 

Fig. 7. pp′DDE levels and Σ-DDT levels versus Days of lactation in Breast-Milk from mothers that lived in Guerrero,
Mexico (Application Study A4; Chávez-Almazán et al., 2015). a) OLR regression results for pp’DDE levels versus
days of lactation; b) OLRDT regression results after the application of recursive discordancy tests for pp’DDE levels
versus days of lactation; c) OLR regression for Σ-DDT levels versus days of lactation; d) OLRDT regression results
after the application of recursive discordancy tests for Σ-DDT levels versus days of lactation.
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3.1.4 Application Study A4: Human milk of a
population from Guerrero, Mexico

The final example is from Chávez-Almazán et al.
(2015). The aim of their study was to determine
variations in organochlorine pesticide levels in breast
milk through the grouping of donor according to
the stage of lactation in which they were in. The
quantities of organochlorine pesticides in breast milk
were expressed as milligrams per kilogram of lipid
base (mg/kg lipid). The regression results obtained by
Chávez-Almazán et al. (2015) and those obtained in
this study are summarized in Table 4.

Chavez-Almazán et al. (2015) report values for
the relationship pp’DDE versus Days of lactation of
r = −0.216 and a Pc(r;n) value of 0.006 and for
the relationship Σ-DDT versus Days of lactation of
r = −0.222 and a Pc(r;n) value of 0.005 (Table 4).
Because errors were not reported for the individual
data, we processed the original data with the OLR
model (Table 4; Figure 7).

For the relationship of pp’DDE versus Days of
lactation, the OLRtw results are: y = 1.241 (± 0.354)
- 0.0139 (± 0.0129) * x,r = −0.2164, R2 = 0.0468 and
Pc(r;n) = 0.00609, consistent with the results from
the original authors (Table 4; Figure 7a). After the
detection and separation of 52 discordant outliers the
results for OLRDT were as follows: y = 0.965 (±0.179)
- 0.0144 (±0.0063) ∗x,r = −0.4996, R2 = 0.2496 and
Pc(r;n) < 0.00005 (Table 4; Figure 7b).

For the relationship of Σ-DDT versus Days of
lactation, the OLRtw results were as follows: y =

1.346(± 0.373) - 0.0149 (± 0.0136) ∗x,r = −0.2215,
R2 = 0.0491 and Pc(r;n) = 0.00444, also consistent
with the results from the original authors (Table 4;
Figure 7c). After the detection and separation of 59
discordant outliers, the results for OLRDT are: y =

1.163(±0.174) - 0.0163 (±0.0061) ∗x,r = −0.5736, R2

= 0.3291 and Pc(r;n) < 0.00005 (Table 4; Figure 7d).

Chávez-Almazán et al. (2015) applied the
Kolmogorov-Smirnov normality test to their data,
but this test does not allow the detection of outlying
observations. It is clear from the present methodology
that the original statistical samples were not drawn
from a single normal population. Furthermore, for
this case study we encourage to the original authors
to estimate and report the individual errors of their
experimental data to apply the UWLR model, to
improve their interpretation.

4 Discussion

The four case studies selected for the illustration
of BiDASys clearly show the high potential of
this software in food chemistry. Highlighting the
comparison of the results from OLR and UWLR
regression models, the UWLR scheme is more robust,
because it systematically presents small uncertainty
values of regression parameters (intercept and slope)
and small probability of the no-correlation value,
which is equivalent to a high probability that a
linear correlation exists. This was most notable in
situations where at least one discordant outlier was
identified and separated. Through this software, we
encourage the use of UWLRDT regression method
that estimates the total uncertainty of each data
point, which is better than the conventional practice
(use of OLR), because UWLR has a probability
connotation, here a strict confidence level of 99%
was used. Our program (BiDASys) clearly showed
that the UWLRDT approach gave more consistent
results than the original authors. With regard to
experimental data compilation, we highly recommend
that the researchers start estimating and reporting
errors of individual experimental data as is customary
in isotopic studies.

Finally, BiDASys is the only computer program
capable of applying the UWLR regression model.
For the studentized residuals, the discordant outlier
detection module can be applied to sample sizes
n = 5 − 30,000. For n ≤ 1000, BiDASys applies 5
recursive tests, due to the current available critical
values (Verma et al., 2017b) and for 1000 < n ≤
30,000, applies 13 single-outlier discordancy tests. As
a future work, the critical values simulation for the
recursive tests and the Pearson correlation coefficient
(r) values will be carried out to sample sizes up to
30,000.

Conclusions

The following conclusions can be drawn from this
study:

1. Application of the proposed statistical
methodology was facilitated by the new online
computer program BiDASys. This program
should be very useful for the handling of bi-
variate data in all science and engineering fields,
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including food chemistry.

2. The UWLR regression method outlined in the
present work seems to perform better than OLR
unweighted regression model. UWLR clearly
and consistently presented smaller uncertainty
values of regression parameters (intercept and
slope) than OLR model.

3. Simulation of the new precise and accurate
critical values for the probability of no-
correlation Pc(r : n) criterion for sample sizes
up to 1000 is required for a better interpretation
of statistical significant linear correlation. These
critical values can be used for all applications.

4. Identification and separation of discordant
outliers coupled to the regression methods
clearly showed more consistent results than the
original authors.

5. The importance of estimating and reporting
errors of individual experimental data could lead
to use the best weighted regression model, such
as UWLR practiced in this work.
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