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Abstract
This study presents the kinetic modelling for cane sugar batch crystallization. The study is based on two approaches to describe
the nucleation (homogeneous primary and secondary) and growth kinetics, and the birth and death rates of crystals: a) empirical
models with equations of type power law (TPL) and b) mechanistic approach with thermodynamic equations. Both approaches,
describing the phenomena of crystallization at the microscopic level (by solving population balance equation by method of
lines), were validated using experimental data from a pilot-scale plant. From the results of both approaches and experimental
validation, we conclude that the mechanistic approach best represents the dynamic behavior of cane sugar batch crystallization
under different operational conditions than the empirical approach (TPL).
Keywords: crystallization, modelling, kinetics, mechanistic and empirical approaches.

Resumen
Este estudio presenta el modelado cinético para la cristalización por lotes de azúcar de caña. El estudio se basa en dos enfoques
para describir las cinéticas de nucleación (primaria homogénea y secundaria), de crecimiento y las tasas de nacimiento y muerte
de cristales: a) modelos empíricos con ecuaciones de tipo ley de potencias (TLP) y b) enfoque mecanístico con ecuaciones
termodinámicas. Ambos enfoques describen los fenómenos de cristalización a nivel microscópico (con la solución del balance
de población por método de líneas) y fueron validados usando datos experimentales provenientes de una planta escala piloto.
De los resultados de ambos enfoques y la validación experimental, se concluye que el enfoque mecanístico representa mejor los
comportamientos dinámicos de la cristalización por lotes de azúcar de caña bajo diferentes condiciones operativas con respecto
al enfoque empírico (TLP).
Palabras clave: cristalización, modelado, enfoque mecanístico y empírico.

1 Introduction

Batch crystallization is a separation process where
molecules transfers from a solute dissolved within
a liquid or gas toward a solid phase in two
steps: 1) nucleation and 2) crystal growth. Process
performance is often measured in terms of crystal
properties at the end of the batch, e.g. crystal
size distribution (CSD), which comprises the crystal
average diameter (% volume D(4,3)) and the standard
deviation (% volume S(4,3)), as well as the mass of
crystals. Phenomena producing wide distributions in
CSD such as secondary nucleation are undesirable
since they generate a product with dispersed shape

characteristics, resulting in unsatisfactory transport
properties for downstream processing such as filtration
and drying (Ouiazzane et al., 2008; Nagy et al., 2013).

The development of highly detailed mathematical
models describing the nonlinear dynamic behavior
of the crystallization process is critical to determine
optimal operating conditions that produce high
quality products, e.g. narrow CSD and specific shape
(Gerstlauer et al., 2002, Motz et al., 2002). Largely,
the quality of the model depends on the assumptions
made during its development, the accuracy of the
experimental data used for estimation of unknown
kinetic parameters, and the numerical algorithm
employed to solve the model equations (Motz et al.,
2002; Mesbah et al., 2009). A commonly accepted
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approach to describe suspensions within a crystallizer
is the population balance equation (PBE), introduced
by Randolph and Larson (1988). Its application
generally leads to complex mathematical models
involving discretization schemes of a large set of
ordinary differential equations (Ramkrishna, 2000;
Ma et al., 2002, Samad et al., 2013). Moreover,
the crystallization modelling also requires a detailed
mathematical description for the nucleation and
crystal growth rates. Consequently, previous works
have reported different approaches with successful
applications for process improvement. Nagy et
al., (2003) employed empirical models on the
development of a control strategy that quantifies
uncertainty on kinetic constants for nucleation and
crystal growth for KNO3. Bolaños et al., (2014)
reported optimal agitation rate trajectories that
maximized the average crystal diameter D(4,3) from
empirical kinetic models under uncertainty for the
cane sugar batch crystallization. Bensehard et al.,
(2015) studied the sensitivity of parameter estimation
on empirical kinetic constants and evaluated how
oversimplified model assumptions mislead the
interpretation of experimental results.

While empirical models have limited predictive
capabilities outside their operating range covered
by the experimental data used for parameter
estimation (Westhoff and Kramer, 2012), mechanistic
models, i.e. models developed based on balance
conservation principles, are developed based
on the system physicochemical properties and
geometric characteristics of the crystallization
unit (i.e. thermodynamic equations). According to
Bermingham et al., (2003), mechanistic models
are required to describe crystallization processes
in a wide range of operating conditions, where
secondary nucleation plays a key role. Those models
provide a complete description of the frequency
collisions of the crystals due to agitation rate.
Moreover, such modelling approach has less unknown
parameters compared with the empirical models
and can be obtained by a simple formulation of
an optimization problem. Gerstlauer et al., (2002)
presented the development of the mathematical model
proposed by Gahn, C. & Mersmann, A., (1999a)
for batch and continuous crystallization. In that
model, a constant parameter related to the degree
of primary nucleation heterogeneity is considered.
Kalbasenka et al., (2011) made use of experimental
data obtained from different batches to estimate the
kinetic parameters and dismissed the assumption of
invariability of the kinetic parameters throughout the
process. Finally, Quintana et al., (2008) presented a

first study on the analysis of two different approaches
to modelling the crystallization kinetics based of an
empirical power law type (TPL) equations and a
mechanistic framework. That work suggested that
surface-integration mechanism dominates in cane
sugar crystallization.

The aim of this study is to present an analysis
of the prediction capabilities for the crystallization
kinetics obtained from empirical and mechanistic
modelling approaches. The PBE incorporates the
proposed models and solved using the method of
lines. Experimental data collected from pilot-scale
plant considering different agitation rates were used
to validate the two modelling approaches against
different operating conditions. The results will benefit
future studies on modelling, optimization and real-
time process control, considering the advantages and
limitations of both modelling approaches for the cane
sugar batch crystallization.

The structure of the article is as follows: the next
section entitled Experimental set-up presents a brief
description of the pilot-scale plant and instrumentation
devices following by a summary of the operation
strategy for the cane sugar batch crystallization. In
addition, a general methodology that describes the
image-based algorithm used for CSD quantification is
presented in that section. The Methodology Section
presents the general mathematical framework where
the population balance equation (PBE) and their
corresponding assumptions are considered. This
section also includes the empirical and the mechanistic
approaches to modelling the crystallization kinetics.
The end of this section presents the parameter
estimation analysis. Results and discussions section
presents the simulations using both modelling
approaches, with the aim to determine the accuracy of
each approach. Experimental data validates the results
from simulation. Finally, conclusions are presented at
the end of this article.

2 Experimental set-up

2.1 Pilot-scale batch crystallizer

Figure 1 shows a schematic set-up of the pilot-scale
plant batch crystallizer used in the experimental stage.
A brief description of the experimental set-up is
presented in Table 1, which includes a stainless steel
batch crystallizer (pilot-scale plant) with a heating-
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Figure 1.  Pilot-scale batch crystallization plant 

 

 

 

 

 

 

 

 

 

  

 

 

Fig. 1. Pilot-scale batch crystallization plant.

cooling jacket, steam generator, DC motor, vacuum
pump, a direct contact condenser, a slurry trap and a
tachometer that measure the agitation rate. The studies
reported by Bolaños et al., (2008) and Bolaños et
al., (2014) provide a detailed description of all the
equipment and instrumentation devices installed in the
actual pilot-scale plant.

The start-up begins by loading the saturated
solution into the crystallizer. The solution is prepared
with 6.569 kg of high purity commercial sugar and
2.528 kg of distillated water at 70 °C (density
within 1.3594 - 1.3614 g/c m3) and is kept constant
during 30 minutes with an agitation rate of 300
rpm to ensure a solution free of crystals. Then,
the operation begins by loading 5 grams of seed
crystals (D(4,3) = 173.05 µm, S(4,3) = 18.72 µm)
through a vertically sampler into the crystallizer at the
fifth minute (this avoids dissolution of seed crystals).
During the first stage, the vacuum pressure is set to
76.20 kPa for 40 min and then increased up to 86.66

kPa, following a cooling natural profile. Sampling is
performed at every 15 minutes to obtain experimental
information about concentration (in terms of density)
measured in a digital densimeter (Anton Paar DMA
4500, see description in Table 1), CSD and mass of
crystals. A vertically sampler device introduced into
the crystallizer takes two samples of slurry (solution
and crystals) of 10 ml without affecting the vacuum
pressure. Finally, it is applied a centrifugation at 3,000
rpm to separate crystals from the solution.

2.2 Image-based approach for CSD
quantification

CSD quantification from the crystals obtained on
each sample applies an image-based approach as
an alternative technique to laser diffraction. This
approach aims to determine the CSD from the crystals
obtained on each sample.

www.rmiq.org 391



Bolaños-Reynoso et al./ Revista Mexicana de Ingeniería Química Vol. 17, No. 2 (2018) 389-407

Table 1. Devices of the experimental pilot-scale batch crystallizer

Quantity Device

1 DMA 4500 (high-resolution with 1e-05 of significant figures) density measuring module,
based on the proven oscillating U-tube principle ensuring highly accurate density values.

2 J type thermocouple, temperature of 0-760 ºC, cable length 1 m.

2 Thermowells. Stainless steel.

1 Vacuum pump Felisa FE-1400, 0.3 HP.

1 Proportional control solenoid valve, Burkert. Average temperature of 140 ºC, with digital
controller.

6 2-way solenoid valve, normally closed, steel, Parker.

6 Flow valve to allow water and steam flow through pipes.

1 Pressure regulator Norgren Mexico.

1 Vacuum transmitter. Cole-Parmer Model 07356-11. Stainless Steel.

2 Pressure transmitter, Cole-Parmer Model 68072-08.

1 Steam boiler, model MBA9 of SUSSMAN; maximum pressure, 100 Psi; work voltage, 240
VAC; control voltage, 120 VAC.

1 Hydraulic pump, QB60 Clean Water Pump, 1.5 HP.

1 Galvanized pipe system for water circulation.

1 High temperature insulation system.

1 Manometer, ASHCROFT.

1 Condenser, stainless steel surface.

1 Plastic tank 1100 L capacity.

1 Stainless steel crystallizer of 12.77 L, heating-cooling jacket of 11.10 L, four vertical wall
baffles of 17 cm (wide) by 3.5 cm (length), agitation arrow of 39 cm (length).

1 Agitator for closed tank, model NSDB of HP, direct transmission of 1750 rpm (1 phase, 60
cycles), 110 VCA totally closed, without ventilation, stainless steel 316 with bridle of 4 in.
(diameter) in stainless steel, with agitating arrow of 26 in. (length) and 1/2 in. of diameter in
stainless steel 316; velocity investor (driver) integrated with rank from 0 to 1750 rpm

1 Marine propeller type impeller.

1 Programmable tachometer. Range from 50 to 999,990 rpm.

1 Optical sensor for distances of 3 ft. Range 1 -150000 rpm.

1 Microscope trinocular 48923-30 Cole-Parmer.

1 Monochrome camera with RS-170, video lens with 0.19 mm per pixel.

1 PC, Intel Pentium IV. Operating system XP, 4 GB RAM memory, hard disc of 1 TB

4 Data acquisition card (NI PCI-6023E, NI PCI-6025E, NI PCI-6711 and NI PCI-232/2).
Analogic-digital and digital-analogic converters allow the input/output analogic and digital
signals.

2 Signal conditioning module (NI SCC-TC02).

1 Image acquisition card (NI PCI-1409).

1 Galvanized steel condenser of direct contact with 2.27 m high and 0.3 m of diameter.

392 www.rmiq.org



Bolaños-Reynoso et al./ Revista Mexicana de Ingeniería Química Vol. 17, No. 2 (2018) 389-407

This procedure involves the image acquisitions
using a microscope camera Carl Zeiss Micro Imaging
GmbH with achromatic lens of 10X and the software
Vision Assistant 2017 (National Instruments, Inc.).
The imaging system is able to capture 10 images from
the sample, which is later on processed through a
threshold technique (Solomon and Breckom, 2011) to
segment each individual’s crystals (Velazquez et al.,
2010).

Areas with high density of crystals are isolated,
manually analyzed, and counts the black pixels
areas (crystals). The imaging system compares the
black pixels areas with specific standards to identify
the crystals presented according to binary images
(background) (Hanks, 1997). CSD quantification
involves the measure of an average of 100 crystal’s
areas.

Furthermore, the approach uses a Neubauer’s
camera to count the particles and determine a
conversion factor through a calibration procedure
(Bolaños et al., 2008; Bolaños et al., 2014), i.e. the
conversion factor enables a direct relation from one
pixel (one-pixel side) to 1.074 µm (length).

3 Methodology

3.1 General mathematical framework

This section presents the mathematical models used
in this study to perform the analysis of the
empirical and mechanistic approaches for batch
crystallization kinetics of cane sugar. The vacuum
batch crystallization model involves two phases: 1)
a continuous liquid phase (distillated water and
dissolved cane sugar) and 2) a dispersed solid phase
(cane sugar crystals). The model also considers the
mass transport generated by supersaturation, which
affects the primary homogeneous nucleation (nnu) and
crystal growth (ngr) (Gestlauer et al., 2002). The
density’s number (n) describes the crystal flux number
of the dispersed solid phase in equation (1), which is
a function of the crystal’s characteristic length L and
processing time.

∂n(L, t)
∂t

= −
∂(G(t) · n(L, t))

∂L
+ nnu ± nat (1)

Initial and boundary conditions for this system are as
follows:

n(L, t = 0) = nseed(L) (2)

n(L =∞, t) = 0 (3)

In the case of seeding, Equation (2) gives the initial
condition, where nseed(L) specifies the CSD of the
seeded crystals. Equation (3) specifies that no crystals
with size L → ∞ are expected and are physically
infeasible.

Since the continuous liquid phase is a binary
mixture of distillated water and dissolved cane sugar,
the phase’s dynamic behavior is described by the
balance of the total number of moles nLiq. Equation
(4) was adapted from the equation reported by Motz
et al. (2002) for batch crystallization. This equation
assumes that solvent molecules are not adhered to each
other (i.e. a = 0).

∂nLiq

∂t
= −(1 + a) · nnu − (1 + a) · ngr − nvap (4)

The evaporation rate of water as a solvent nvap
is calculated based on the Hertz-Knudsen equation
(Marek et al., 2001):

nvap = αV

(
Mw

2πRTcr

)1/2

(pV − pl)Mw (5)

where αV is the adhesion coefficient, pV and pl are
the liquid phase pressure and vapor phase pressure,
respectively; Mw is the molar mass and R is the ideal
gas constant.

In addition, Equation (6) shows the balance of
moles number for dissolved crystals nLiq,A. Exchange
fluxes nnu and ngr occur as development of new nuclei
or crystal growth (Equations 7 and 8, respectively).
Equation (9) specifies the initial conditions of state of
the liquid phase in the batch.

∂nL,A

∂t
= −nnu − ngr (6)

nnu =
kv · ρs

Ms

L∞∫
0

L3 · δ(L− L0) · Bnu ·VliqdL (7)

ngr =
3 · kv · ρs

Ms

L∞∫
0

L2 ·G · n(L, t)dL (8)

nliq(t = 0) = nl,0;nliq,A(t = 0) = nliq,A,0 (9)

To complete the model of a batch crystallizer, the
energy balance should be considered. this model needs
to be defined in terms of the temperature inside the
crystallizer Tcr (Equation 10) and the temperature
inside the cooling jacket T j (Equation 11).

Cpcr
dTcr

dt
= −∆h∗cr · (nnu + ngr) + Jcool (10)
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Cp j
dT j

dt
= −Cp∗j · ncool(t) · (T j,in −T j)− Jcool (11)

where Cpcr is the heat capacity within crystallizer,
∆h∗cr is the molar heat due to crystallization, Jcool is
the heat exchanged with the cooling jacket. Moreover,
equation (11) defines the heat transfer inside the
cooling jacket; Cp j and Cp∗j denote the heat capacity
of the coolant and the molar heat capacity at the inlet,
respectively. Furthermore, equations (12) and (13)
specify the initial conditions for the energy balance
equations. Equation (14) describes the energy flux
Jcool included in equations (10) and (11).

Tcr(t = 0) = Tcr,0 (12)

T j(t = 0) = T j,0 (13)

Jcool = −kcool · Acool(Tcr) (14)

3.2 Mechanistic kinetic modelling
approach

The mathematical framework proposed by Gahn and
Mersmann (1999a, 1999b) is a suitable mechanistic
model for this process since it covers a wide
range operating conditions. The key assumption for
this model is that the process must be dominated
by secondary nucleation that appears in seeded
crystallizers (Kalbasenka et al., 2011). The model
describes the kinetics for nucleation, crystal growth
and attrition in terms of the physical properties of the
system. In this context, equation (15) represents the
primary homogeneous nucleation rate.

nnu = 1.5DAB(C∗NA)7/3S 7/3
√
γCL

kTcr

1
CC NA

exp

−16π
3

(
γCL

kTcr

)3 (
1

CC NA

)2 1
(lnS )2

 (15)

where C∗ is the saturation concentration at
temperature Tcr, NA is the Avogadro’s number,
k the Boltzman constant CC , the molar crystal’s
concentration and S is the supersaturation. The term
DAB is the diffusivity coefficient calculated to predict
it at different operating conditions for temperature
and concentration. A commonly expression for this
purpose is the Stokes-Einstein equation (Mersmann,
2001):

DAB =
kTcr

2πηLdm
(16)

where dm is the diameter of a molecule whereas ηL
is the dynamic viscosity. Another important parameter

that considers physical properties from the cane sugar
crystals is the surface tension γCL, defined in Equation
(17). The parameter K has a value of 0.414, calculated
experimentally by Mersmann (2001).

γCL = kTcrK(CC NA)2/3 ln
(CC

C∗

)
(17)

For the crystal growth, cane sugar batch crystallization
is dominated by surface integration (Quintana et al.,
2008), whereby, its mathematical modelling turns out
to be more complex thus requiring a model that takes
into account both diffusion and integration of limited
crystal growth. This works considers the physical
model derived by Mersmann (2001) and implemented
by Gerstlauer et al., (2002):

G
2kd(L)

=
∆C
CC︸︷︷︸

di f f usion

+
kd(L)
2krCC

−

√(
kd(L)
2krCC

)2

+
kd(L)
krCC

∆C
CC︸                                       ︷︷                                       ︸

integration
(18)

In this equation, kr is an integration rate constant.
Equation (19) calculates the mass transfer coefficient
kd(L).

kd(L) =
DAB

L

2 + 0.8

εL4

v3
L

1/5 (
v

DAB

)1/3
 (19)

The attrition of crystals due to stirrer collisions is
considered next. When a population of crystals has
a collision with a stirrer, it produces three different
particle number fluxes in the population balances. This
can be explained as follows (Gertlauer et al. 2002):

1. A particle number flux ṅ−at due to the removal
of large original crystals that collide with the
stirrer,

2. A particle number flux ṅ+
at,2 due to the formation

of an abraded original cristals with a length
somewhat smaller than the original crystals,
and,

3. A particle number flux ṅ+
at,1 due to the formation

of a distribution of attrition fragments resulting
from the crystal-stirrer collision.

Based on the above, the overall particle number
flux due to attrition n±at, which is considered in
Equation (1), can be calculated as follows:

n±at(L) = −ṅ−at(L) + ṅ+
at,2(L) + ṅ+

at,1(L) (20)

where:
ṅ−at(L) = β(L)n(L) (21)
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ṅ+
at,2(L) =

L∞∫
L

δ


L−

[
L′3 −

Vp,at(L′)
kv

]1/3

︸                   ︷︷                   ︸
Length of crystal

after attrition


β(L′)n(L′)dL′

(22)

ṅ+
at,1(L) =

L∞∫
L

N f rag(L′)× [h(L− L f rag,min)

− h(L− L f rag,max(L′))]× f f rag(L,L′)β(L′)n(L′)dL′

(23)

VP,at(L′) denotes the abraded volume that a crystal
of length L′ loses due to crystal-stirrer collision. kV
is the volumetric shape factor, having a value of
π/6 (Beckman, 2004) for a cane sugar crystal, f f rag
is the size distribution of attrition fragments, N f rag
is the number of attrition fragments, L f rag,min and
L f rag,max(L′) are the minimal and maximal fragment
length, respectively.

3.3 Empirical kinetic modelling approach

Empirical models describing the behavior of different
crystallization systems have been proposed in the
literature (Nagy et al., 2003; Quintana et al., 2004;
Ouiazzane et al., 2008). Although they are typically
robust in the spanned range, these models need
access to accurate experimental data to determine the
kinetic parameters through parameter estimation. The
simplest empirical expressions involve supersaturation
raised to a constant and pre-exponential constant (Qiu
and Rasmuson, 1994; Quintana et al., 2004). Some
variants take into account the agitation rate, the mass
of crystals (Quintana et al., 2004) and the activation
energy (Mitchell et al., 2011). Equations (24) - (26)
describes the primary nucleation, crystal growth rate
and an empirical relationship for the birth and death
rates generated by attrition and breakage of crystals,
respectively. These expressions have been used in
this work because they have been applied to simulate
a wide range of operating conditions, e.g., optimal
agitation rate under uncertainty (Bolaños et al., 2014),
compute the metastable zone width (MSZW) (Kobari
et al., 2010). In addition, these expressions have shown
good predictions under a bounded range of operating
conditions.

Bhom = KbS bM j
T N p

r (24)

G = KgS gNh
r (25)

α(L) = KaS aMk
T Nr

r FT M (26)

Bolaños (2000) and Quintana et al., (2004) developed
equation (26) to account for the birth and the death
rates of the crystals. This expression aims to measure
the general effect of the breakage and attrition of
crystals. In Equations (24) and (26), the term MT
denotes the total mass of crystals, defined as follows:

MT = ρckV

L∞∫
0

F(L, t)L3dL (27)

3.4 Physicochemical properties

Equation (28) is a well-known density relationship
proposed by Mersmann (2001), which make use of the
data reported by Swindells et al., (1958) to calculate
the viscosity of the sucrose-water solution in a range
from 20% to 75% of sucrose mass and temperatures
from 40 to 80 °C. This work uses such equation to
estimate the solution’s density in the water.

ρLiq =
1 +

Mc
MLiq0

1 +

(
ρ0

Liq
ρc

)
Mc

M0
Liq

(28)

where ρ0
Liq is the density of water, ρc is the density

of crystals, M0
Liq is the mass of solvent and Mc is the

mass of crystals. Equation (29) gives the saturation
concentration of sucrose Csat, (Ouiazzane et al. 2008),
in terms of weight of dry substance (wDS ) (Equation
30).

Csat =
wDS

100−wDS
(29)

wDS = 64.47 + 0.10336Tcr + 14.20× 10−4T 2

− 70.20× 10−7T 3 (30)

Table 2 lists the physical properties of sucrose and
water. Velazquez et al., (2010) have reported the
geometric properties of the crystallizer. For further
information on physicochemical and geometrical
properties on this system, the readers are referred
to Gahn and Mersmann (1999a, 1999b), Ploβ and
Mersmann (1989) and Gerstlauer et al., (2002).

3.5 Parameter estimation

The mechanistic framework requires of physical
constants, i.e. kr and Γ, to fully specify the model.
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Table 2. System’s physical properties

Parameter Value Units References

nLA0 19.21 mol —-

nL0 132.2 mol —-

kv π/6 adim Beckman (1994)

Hv 645× 106 Pa Duncan (1989)

V 0.31 adim Leigh (1967)

E 32.3× 109 Pa Duncan (1989)

Ma 0.342 kg/mol Green & Perry (2007)

Mb 0.018 kg/mol Green & Perry (2007)

Na 6.023× 1023 1/mol Gahn & Mersmann (1999a)

Kb 1.38× 10−23 J/K Gahn & Mersmann (1999a)

R 8.3145 J/(K mol) Gahn & Mersmann (1999a)

ρs 1588 kg/m3 Green and Perry (2007)

Cpw 586.2 J/(kg K) Bolaños et al., (2014)

Cps 2468.7 J/ (kg K) Bolaños et al., (2014)

T0 70 °C Bolaños et al., (2008)

A1 0.2004 m2 Bolaños et al., (2014)

αv 0.27 adim Marek et al., (2001)

Kalbasenka et al., (2011) determined these
constants through parameter estimation by
optimization from experimental data generated under
different operating conditions. These constants are
related to attrition phenomena and crystal growth
and have a clear physical meaning: surface related
energy increase ΓS and the integration rate constant
for crystal growth kr. Gerstlauer et al., (2002) included
a constant related to primary nucleation rate Chet,
which represents the heterogeneity degree of primary
nucleation. The present study formulates a least-
squares optimization problem to determine those
constants, i.e.

min∅(Γs,kr,Chet) = w1

N∑
i=1

 Mcal
T,i −Mexp

T,i

Mexp
T,i


2

+ w2

N∑
i=1

D(4,3)cal
i −D(4,3)exp

i

D(4,3)exp
i

2

+ w3

N∑
i=1

ρcal
i − ρ

exp
i

ρ
exp
i

2

(31)

where, Mcal
T,i , D(4,3)cal

i and ρcal
i represent the mass

of crystal in kg, average diameter of crystal (µm)
in % Volume, and continuous phase density (m3/kg)
at each sampling time (i) i.e. 15 min, 30 min, 45
min, 60 min, 75 min and 90 min, respectively;
whereas wn is a weight assigned to each term in the
penalty function and used to uniformly weight each
contribution. On the other hand, the empirical model
requires eleven parameters: a, b, g, h, j, k, ka, kb,
kg, p and r, which need to be determined by the
same procedure. The initial values used in the present
analysis were taken from Quintana et al. (2008) for
seeded batch crystallization of cane sugar. To solve
problem (31), this work employed the constrained
nonlinear programming function (fmincon) available
in MATLAB. To ensure degrees of freedom in the
analysis, each experiment (100, 300 and 600 rpm) was
done three times, getting 54 measurements to estimate
11 parameters.

It is well known that the dynamic mathematical
model of a batch crystallizer is highly nonlinear
(Bolaños et al., 2014). To address that issue, problem
(19) uses the multistart built-in function available
in MATLAB with twenty randomly bounded initial
values. This was done to improve parameter estimation

396 www.rmiq.org



Bolaños-Reynoso et al./ Revista Mexicana de Ingeniería Química Vol. 17, No. 2 (2018) 389-407

from problem (31) by minimizing the error between
the data generated by the simulation and experimental
data at different agitation rates.

3.6 Population balance solution

The PBE was solved by applying a first order centered
finite difference for the L domain, from Lmin = 1 µm
to Lmin = 801 µm with a spacing of ∆L = 10 µm
where ∆L = Li − Li−1. Thus, a set of 80 ODEs for
each step in the time defines the entire L domain.
Significant differences between the mechanistic and
the empirical models exist. While the mechanistic
model accounts for variations in the crystal growth
rate as a function of the characteristic length, empirical
models assume that this rate is constant regardless
characteristic crystal length. The term α(Li) describes
the rate of appearance and disappearance of crystals
for the empirical framework. Nevertheless, secondary
nucleation through attrition replaces the α(Li) term
in the mechanistic framework. This results in the
implementation of different discretization schemes
by centered finite difference for each approach as
shown in Equations (32) and (33). The solution of
the full mathematical framework uses the ode15s
function available in MATLAB, which implements
the backward differentiation formulas (also known as
Gear’s method).

dn(Li, t)
dt

=
Gn(Li+1, t)−Gn(Li−1, t)

2∆L
+n(Li, t)+

nu+n(Li, t)±att

(32)
dn(Li, t)

dt
=

Gn(Li+1, t)−Gn(Li−1, t)
2∆L

+ n(Li, t)+
nu +α(Li)

(33)

3.7 Modelling assumptions

To simplify the mathematical model, the following
assumptions were considered:

• Negligible agglomeration crystals.

• Crystal nuclei produced have negligible size.

• The system is well mixed.

• The crystals inside the tank are well suspended,
i.e., no accumulation of crystals at the bottom of
the crystallizer.

3.8 Seed’s CSD

Equation (2) and (3) lists the initial and boundary
conditions for the PBE considered in this work.

Table 3. Seed’s characteristics
Range (m) 165−6 − 222−6

Mass (kg) 0.005
λi 7.842× 105

S (4,3)seed (m) 19.52× 10−6

D(4,3)seed(m) 195.26× 10−6

The seeded crystals were obtained from
commercial cane sugar D(4,3) = 450 − 550 µm with
high purity concentration, which was crushed and then
classified using sieves of size 150 µm, 180 µm and
212 µm (sieves No. 70, 80 & 100 according with
the American Standard Test Sieve Series (ASTM)).
Crystals retained in the sieve of 180 µm were selected.
The CSD approximates to a normal distribution
using Equation (34) (Hermanto et al., 2008). Table
3 includes the required parameters needed to solve
Equation (34).

F(L,0) = Fseed,i(L,0) =
λi

√
2πσseed

exp

− (L− µseed)2

2σ2
seed


(34)

4 Results and discussion

4.1 Temperature profile

In the first experimental test, the vacuum pressure
was set to 76.20 kPa producing a suddenly change
in temperature from 70 °C to 58 °C within the first
10 minutes. This sudden decrease in temperature is
attributed to the fast increase in vacuum pressure
from 0 kPa to 76.20 kPa (air extraction), where
the system reaches the thermodynamic equilibrium.
After 40 minutes of this process, the system reaches
a vacuum pressure of 86.66 kPa, and generates
a natural cooling profile. The trajectory described
for both cooling stages are different mainly due to
the vacuum pump. At the beginning, the vacuum
pump reaches 76.20 kPa due to the great amount
of air inside the crystallizer but after 40 minutes,
the system takes a longer time to reach 86.66 kPa
(water steam) thus producing a trajectory that follows
a natural profile. Supersaturation controls these
programmed paths to keep the concentration close
to solubility curve (Equation 28). Figure 2 shows
that the predicted profile for both approaches, i.e.
empirical (TPL) and mechanistic. As shown in this
figure, the models describe adequately the temperature
trajectory with respect to experimental data.
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Figure 2. Temperature profile validation for mechanistic and TPL approach  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Temperature profile validation for mechanistic
and TPL approach.

Note that the cooling stage (40 - 90 min) presents
minor deviations. A deep analysis of the experimental
set-up shows that the vacuum generation system has
a time delay, which was not included in the present
mathematical framework. Both modelling approaches
take into account the changes in vacuum pressure,
reflecting changes in the temperature, increasing the
prediction capabilities.

4.2 Concentration profile

Phenomena such as primary and secondary nucleation
affects the solute concentration as described below.
Solution´s concentration needs to reach the metastable
zone to form embryos of critical size Lcrit (Mersmann,
2001), which grow as long as there is dissolved solute
available (Jones, 2002). On the other hand, attrition
and breakage produce smaller crystals that limit the
growth of the early formed crystals since they have to
compete for the dissolved solute. Figures 3a - 3c shows
the experimental data and the predicted concentration
profiles generated from Eq. (4) by using the empirical
(TPL) and mechanistic modelling approaches at 100,
300 and 600 rpm, respectively.

Major deviations of the mechanistic approach
from the experimental data are evident for all the
experiments. This lack of fitting can be attributed to
the to the diffusion-integration growth mechanism
that dominates the cane sugar crystallization
(Quintana et al., 2008), generating lower mass
transfer of dissolved solute to crystals faces
than the predicted for the mechanistic approach.

 

a) 

 
b) 

 
c) 

Figure 3. Concentration profile for agitation rate: a) 100 rpm, b) 300 rpm and c) 600 rpm 

 
Fig. 3. Concentration profile for agitation rate: a) 100
rpm, b) 300 rpm and c) 600 rpm
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Table 4. Concentration errors (ε)

Agitation rate Mechanistic TLP

100 rpm 7.76% 3.27%

300 rpm 4.98% 3.18%

600 rpm 4.09% 3.05%

However, empirical models (TPL) fit better than
mechanistic approach due to the use of estimated
parameters. The use of different agitation rates
produces variations in the concentration (see Figures
3a - 3c) due to the increase in mass transport of
dissolved solute to crystals faces and the effect that on
the solvent evaporation rate.

Moreover, the mechanistic approach can capture
the increase in concentration due to the evaporation
of solvent at the beginning of process (0 - 10
min). This is explained as follows: as the solvent
is evaporated, the concentration reach the metastable
zone (nucleation), then, concentration is decreased
again due to the mass transfer from the dissolved
solute towards the crystals. On the other hand, the
empirical approach (TPL) only captures the decrease
in concentration. This result is remarkable, while there
is a recent interest in the dynamic regulation for
the cooling temperature trajectory applied to a batch
system with the aim to reduce the crystals formed from
undesired nucleation rate (Seki & Su, 2015), being the
mechanistic approach the most suitable alternative to
handle this kind of control approaches.

Table 4 presents the errors by using Eq. (25)
for each modelling approach against experimental
data. Both approaches have major deviations at low
agitation rate (i.e. 100 rpm). For 300 and 600 rpm, both
approaches show acceptable errors. From this section,
the results show that the empirical approach (TPL) has
better kinetic modelling predictions to represent the
experimental concentration.

ε = 100 ·
n∑

i=1

(
Cexp −Csim

Cexp

)2

(35)

4.3 Crystallization kinetics

The constants obtained by applying the procedure
described in Section 3.5 are kr = 9.1× 10−4 (m4 / mol
s), Γs = 1.38 × 10−6 (J m / mol) and Chet = 0.8. This
is the first work that reports data estimation for the
mechanistic modelling approach for cane sugar batch
crystallization; hence, a comparison against previous

work is not available.

 
Figure 4.  Primary nucleation from mechanistic approach under 100, 300 and 600 rpm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Primary nucleation from mechanistic approach
under 100, 300 and 600 rpm.

Opposed to the mechanistic approach, there are
available experimental data reported for empirical
kinetic approach (Quintana et al., 2004, Quintana et
al., 2008, Bolaños et al., 2014). Table 5 presents the
results obtained in this work and a comparison with
data reported by Quintana et al., (2008) and Bolaños
et al., (2014). As reported in Quintana et al., (2004),
each set of operating conditions has specific kinetic
parameters, hence we expect differences between the
data reported previously and that obtained in this work,
due to both data were obtained at different vacuum
pressures and cooling temperature trajectories.

4.3.1 Primary nucleation

The primary nucleation affects the CSD due to the
increase in population of crystals with a length close
to Lcrit. Although this phenomenon can occur during
the evolution of this process, it takes place just when
the supersaturation (S r) reaches the metastable zone.
The mechanistic approach (Eq. 15) well describes
this behavior (see Figure 4) where a pulse response
denotes the primary nucleation with three agitation
rates, which only takes place early in process, i.e.
within the first 15 min of the batch. Figure 5 shows
the primary nucleation for the empirical model (TPL)
as a continuous and ascendant dynamic response to the
same agitation rates.

As previously mentioned, Figures 4 and 5 have
different dynamic responses, mainly due to the
differences in the mathematical formulation for each
modelling approach.
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Table 5. Empirical kinetic parameters 

Primary homogeneous nucleation 
Parameter Adjusted 

value 
Quintana et al., 

(2008) 
Bolaños et al., 

(2014) 
𝑘" # #	&'()*+,)

&-. ∙012∙(4	&-.)6∙('7-)8
9 23.00 10.50 1.56x10-2 

𝑏 2.80 5.03x10-3 6.27x10-4 
𝑗 5.00x10-4 5.00x10-4 2.04x10-3 
𝑝 4.20x10-3 3.50x10-2 1.41 
    

Crystal growth 
Parameter Adjusted 

value 
Quintana et al., 

(2008) 
Bolaños et al., 

(2014) 
𝑘4 # &-

012∙('7-)=
9 2.00x10-1 7.50x10-4 1.31x10-5 

𝑔 1.05 1.05 1.03 
ℎ 3.29x10-2 6.24x10-1 8.45x10-1 
    

Crystal death and birth 
Parameter Adjusted 

value 
Quintana et al., 

(2008) 
Bolaños et al., 

(2014) 
𝑘+ # #	&'()*+,)

&-.∙(4	&-.)@∙('7-)A
9 1.00x10-3 1.00 ---- 

𝑎 1.10 7.00x10-2 ---- 
𝑘 9.00x10-2 2.50x10-2 ---- 
𝑟 1.00x10-2 1.00x10-3 ---- 

  
Figure 5.  Primary nucleation from TLP approach under 100, 300 and 600 rpm 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

Fig. 5. Primary nucleation from TLP approach under
100, 300 and 600 rpm.

The mechanistic approach (Figure 4 and Eq. (15))
satisfies the phenomenological behavior observed
experimentally reported in Bolaños et al. (2014). By
analyzing Figures 3a - 3c, during the time interval
from 0 to 10 min, an increase in concentration
occurs (due to solvent evaporation); this makes the
concentration to reach the nucleation zone. After
10 min, concentration presents a downward trend,
decreasing the concentration towards the growth zone

where theoretically should not appear homogeneous
primary nucleation. Related with the agitation rate,
100 rpm and 600 rpm has the same nucleation rate:
2.0 × 106 (No. of particle / m3 min), opposed with
the case with 300 rpm, where the pulse response
reach values for 2.7 × 106 (No. of particle / m3 min).
Experimentally, these results are explained as follows:
for low agitation rates (100 rpm), the concentration
is not uniform inside the crystallizer allowing the
presence of micro-volumes (∆V), where only some
of them have the concentration needed to generate
nucleation, decreasing the global nucleation rate. For
the case of high agitation rate (600 rpm), the minimum
size of a nuclei (Lcrit) increase, avoiding the early
formation of new crystals.

Prediction for primary nucleation rate by
using TPL approach shows an increasing trend.
Due to the mathematical formulation (see Eq.
24), supersaturation has a strong effect at the
beginning of the process, where high values of
supersaturation are reached due to the evaporation of
solvent. Then, after supersaturation go downwards;
the increment of nucleation rate promotes the
formation of new particles, according to Eq.
(24), nucleation rate depends on mass of crystals
which increases during all process and produces
different nucleation rates at the end of process.
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a) 

 

b) 

 

c) 

Figure 6.  Overall particle flux number due to attrition at: a) 100 rpm, b) 300 rpm and c) 600 rpm 

 

 

Fig. 6. Overall particle flux number due to attrition at:
a) 100 rpm, b) 300 rpm and c) 600 rpm.

Figure 5 shows the three nucleation rates predicted by
Eq. (24), getting final values of 4,607.71, 4,849.97 and
5,237.96 No. of particles/cm3 min for 100, 300 and
600 rpm, respectively.

4.3.2 Secondary nucleation

Figures 6a - 6c shows the variation of the characteristic
length (L) of the abraded crystals at agitation rate of
100 rpm, 300 rpm and 600 rpm, resulting from Eq.
(20). The population (z axes) represents the particle
number of abraded original crystals and the particle
number of generated crystals somewhat smaller than
the original crystal and the crystals abraded. The
mechanistic framework predicts an increase in the
overall particle flux number given that attrition is
proportional to the characteristic crystal length. Thus,
the attrition phenomena have a stronger effect into
crystals greater than 350 µm, 400 µm and 550 µm
for 100 rpm, 300 rpm and 600 rpm, respectively,
showing a sharp decreasing in the overall flux number.
However, by population balance (Eq. 32), at different
L intervals, particles can be lost for attrition (death
crystals) producing negative values in the overall flux
number (sharp decreasing) if there are not particles
going in the L interval. This is observed in Figures 6a
- 6e when the crystal lengths reach 400 - 600 µm (at
different times).

Nowadays, it is not possible to validate the
predicted values by the mechanistic model due to
the lack of experimental data and the difficulty in
measuring the abraded crystal size online.

4.3.3 Crystal growth rate

Figure 7 shows the results for crystal growth rate
from the mechanistic approach (Eq. 18). It is clear
how agitation rate affects the growth of crystals.
600 rpm promotes faster growth at 20 min of
process (In this time, the process arises the maximum
relative supersaturation) compared to 100 and 300
rpm. Towards the end of the process, crystal growth
rate should reach a zero value (thermodynamic
equilibrium); the three agitation rates allow the crystal
growth rate to reach values close to zero, where the
value of 600 rpm again predicts better values (close to
0) compared to 100 and 300 rpm.
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Figure 7. Crystal growth from mechanistic approach under 100, 300 and 600 rpm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Crystal growth from mechanistic approach
under 100, 300 and 600 rpm.

4.4 Average crystal diameter D(4,3)

Figures 8a - 8c show that the mechanistic model
predicts a peak on the D(4,3)’s path around the 6
minute for the experiments conducted at the three
different agitation rates. This can be explained as
follows: the seed fed grows without any generation
of new nuclei until, by effect of solvent evaporation,
saturated solutions achieve the metastable limit for
growth zone. Once completed, the primary nucleation
phenomena take place (see Figure 4). These new
nuclei of length Lcrit reduce the average crystal
diameter D(4.3). Empirical models do not predict
such exhibited behavior in the evolution of the D(4,3)
(Figures 8a-8c).

In the case of an agitation rate of 100 rpm,
mechanistic and empirical approaches follow the same
behavior with coefficients of determination (R2) of
0.95 and 0.94, respectively; as it is shown in Figure
8a.

For a constant agitation rate of 300 rpm the R2

are 0.98 and 0.95 for the mechanistic and empirical
models, respectively (see Figure 8b). Regarding the
results for an agitation rate of 600 rpm (see Figure 8c),
an R2 of 0.80 is obtained for empirical models. On the
other hand, mechanistic models follow the behavior
observed from the experimental data. According to
Mersmann et al., (2002), the generated fragments by
attrition is proportional to the dynamic pressure of
the crystallizer, which increases as the square of the
tangential velocity of the agitator and the particle
density.

 
a) 

 
b) 

 
c) 

Figure 8.  D(4,3) for: a) 100 rpm, b) 300 rpm and c) 600 rpm 

 
Fig. 8. D(4,3) for: a) 100 rpm, b) 300 rpm and c) 600
rpm.
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Figure 9.  Mass of crystals for: a) 100 rpm, b) 300 rpm and c) 600 rpm 

 
Fig. 9. Mass of crystals for: a) 100 rpm, b) 300 rpm
and c) 600 rpm.

The mechanistic framework describes this
phenomenological behavior in detail. Hence, the
capable of prediction of these models is more
accurate for crystallization processes where secondary
nucleation occurs (Kalbasenka et al., 2011).

4.5 Mass of crystals

Figures 9a-9c show the mass of crystals at the three
different agitation rates studied in this work. The
empirical model returned R2 of 0.92, 0.92, and 0.91
(when compared to the experimental data) for 100
rpm, 300 rpm and 600 rpm, respectively. Similarly,
mechanistic models have R2 of 0.96, 0.94 and 0.95.
Figures 9a-9c also show that there are no significant
variations in the amount of mass of crystals at the end
of the batch; Akrap et al., (2010) and Bolaños et al.,
(2014) reported that the agitation rate and profiles do
not affect the mass of crystals during the batch.

From the results, mechanistic approach allows a
better representation of experimental data and should
be applied for accurate simulation of cane sugar
crystallization. In the case of the TPL approach, results
show minor deviations compared with experimental
data, with the advantage of easy solution where
no physicochemical properties are needed to solve
it, property with use in model-based (dynamic)
optimization.

Conclusions

This work presented an analysis between empirical
and mechanistic approaches of kinetics for vacuum
batch crystallization of cane sugar. Unlike the
empirical approach, the mechanistic model predicts
the expected behavior for the primary nucleation,
following a pulse response. Primary nucleation should
not occur throughout the process if temperature
profiles drive the solute concentration. However, both
approaches fail at describing the continuous phase
density. The empirical approach is not adequate
to predict nucleation rates when working with
different operating conditions for which the kinetic
parameters were originally adjusted (temperature,
vacuum pressure and agitation speed). The secondary
nucleation rate is predicted adequately only by the
mechanistic approach, since it generates satisfactory
information on the size of crystals (L) that loose
from mechanical effects, and crystals that are born by
attrition (fragments). This approach represents a better
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option than the TPL for inclusion in the population
balance equation and its solution by method of lines.

The growth rate of crystals must be adequately
calculated, since it is the basis of the prediction
of the average crystal size in %volume D(4,3).
The formulated mechanistic approach considers
the diffusion-integration mechanism and allows
a good correlated prediction with the solution´s
concentration.

The kinetic constants obtained for the mechanistic
and empirical models have similar orders of
magnitude compared to those reported in previous
studies. In the cases of agitation rates of 100 rpm and
300 rpm, it is shown that both approaches have higher
coefficients of determination than 0.9 for the D(4,3)
and mass of crystals. In the case for 600 rpm, the
discrepancies observed in the empirical model in the
D(4,3) can be attributed to the attrition phenomena,
which is not accurately captured by the term of birth
and death of crystals.

Finally, from the results of both approaches and
experimental validation, we conclude that mechanistic
approach best represents the dynamic behavior of cane
sugar batch crystallization under different operational
conditions than the empirical approach (TPL).
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Nomenclature

Acool heat transfer area, m
Bnu primary nucleation rate, 1/ m3 s
C molar concentration, kmol/ m3

C∗ saturation molar concentration, kmol/
m3

CC crystal molar concentration, kmol/ m3

Cexp experimental concentration, kg/m3

Csim simulated concentration, kg/ m3

Cp heat capacity, kJ/kg
dm molecule diameter, m
D(4,3) average diameter in % volume, m
DAB diffusion coefficient, m2/s
dL change in crystal length, m
dv change in crystal growth rate, m/s
∂G change in total enthalpy
G growth rate of individual crystal, m/s
k Boltzmann constant, 1.381×10−23 J/K
kr integration rate constant
kV volume shape factor, dimensionless
kd mass transfer coefficient for crystal

growth, m/s
K factor, dimensionless
L crystal length, m
L f rag fragment length, m
Mw molecular weight, kmol
MT total mass of crystals, kg
NA Avogadro’s number, 6.023 ×

1026kmol−1

N number density function, 1/m
n±at individual particle number fluxes due

to attrition at the stirrer, 1/m s
ncool cool water rate, m
ngr,nnu molar fluxes between liquid phase and

solid phase due to growth and primary
nucleation, mol/s

nliq total number of moles in the liquid
phase, mol

nvap evaporation flux, kg
pl liquid pressure, kPa
pV vapor pressure, kPa
R gas constant, J/mol K
S r supersaturation ratio, dimensionless
S(4,3) standard deviation in % volume, µm
t time, min
Tcr absolute temperature of the

crystallizer, K
Vliq volume of liquid phase, m3

VP,at abraded volume of crystals, m3

v stoichiometric coefficient
wDS weight of dry substance, Brix

Greek symbols

ε error, dimensionless
ε specific energy dissipation rate of

stirrer, W/kg
αV adhesion coefficient
β attrition rate, 1/s
ηL dynamic viscosity, Pa·s
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γCL interfacial tension, J/m2

σ relative supersaturation,
dimensionless

ρliq density of liquid phase, kg/m3

ρs density of solid phase, kg/m3
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