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Abstract

This paper deals with the modeling of systems subject to random perturbations. The main objective is to compare the
experimentally measured trajectories with the solutions of the ordinary differential equation (ODE) and the stochastic differential
equation (SDE) which model the systems analyzed with the purpose of verify if the SDEs capture the random perturbations
and therefore, are more appropriate to describe the phenomena with random noise. To this end, the Itô’s calculus is used and
numerical simulations of the SDEs are done in MATLAB using the Euler-Maruyama method. As an application of the SDEs, an
optimal investment problem is solved in analytic form by following the standard dynamic programming technique.

Keywords: Brownian motion, Itô’s calculus, optimal control, stochastic processes, white noise.

Resumen

El trabajo estudia el modelado de sistemas que presentan perturbaciones aleatorias. El principal objetivo consiste en comparar
las trayectorias obtenidas de las mediciones experimentales con las trayectorias de la ecuación diferencial ordinaria y la ecuación
diferencial estocástica (EDE) que modelan los sistemas analizados con el propósito de verificar si las EDEs capturan las
pertubaciones aleatorias y por lo tanto, son más apropiadas para describir los fenómenos con ruido aleatorio. Para este fin,
se usa el cálculo de Itô y las simulaciones numéricas se hacen en MATLAB usando el método de Euler-Maruyama. Como una
aplicación de las EDEs, se resuelve de manera analítica un problema de inversión óptima usando la técina de programación
dinámica.

Palabras clave: movimiento browniano, cálculo de Itô, control óptimo, procesos estocásticos, ruido blanco.

1 Introduction

In many applications, the experimentally measured
trajectories of the systems modeled are apparently
subject to random perturbations, the observed state
seems to more or less follow the trajectory predicted
by an ordinary differential equation (ODE), but not
exactly. The SDEs arises when the random effects
disturbing the system are considered in the modeling

of the phenomenona. The aim of this work to compare
the experimentally measured trajectories with the
solution of the SDE and ODE of the systems modeled.
To this end, applications in which it was possible
to obtain experimental data are studied. The Itô’s
calculus allowed us to find the analytic solutions of
the SDEs. Moreover, as an application of the SDEs
an optimal investment problem is solved using the
dynamic programming approach.

Ordinary differential equations are used to describe
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the evolution of systems or processes in the nature,
but much of this process involves random fluctuations
(known noise) which the ODEs do not consider.
Hence, it seems reasonable to modify the ODEs,
somehow to include the possibility of random
effects disturbing the system. This manner, stochastic
differential equations (SDEs) arise when a random
white noise is introduced into ODEs. This random
white noise can be thought of as the derivative
of Brownian motion (or the Wiener process) (see
CKlebaner (2005) for more details). To illustrate
this fact, consider the single-species deterministic
population dynamic model

dN(t) = a(t)N(t)dt, N(0) = N0, t ≥ 0, (1)

where N(t) denotes the population size and a(t) is
the population growth rate. Under some standard
assumptions, there exists a unique solution N(t) to
ODE (1). Nevertheless, given that populations systems
are often subject to environmental noise, it is important
to discover whether the presence of the such noise
affects the solution N(t). Suppose that the population
growth rate is constant a(t) = r and moreover is
stochastically perturbed, i.e.,

a(t) = r +αξ(t), r > 0, (2)

where ξ(t) is white noise and α > 0 represent
the intensity of the noise. Then replacing stochastic
population growth rate (2) in the deterministic
population dynamic (1), it obtains the stochastic
differential equation

dN(t) = rN(t)dt +αN(t)ξ(t)dt, t ≥ 0. (3)

This SDE is known as Itô’s SDE in honor to the
mathematician Kiyoshi Itô, since developed the Itô’s
stochastic calculus theory. The basic concept of this
theory is the Itô’s integral, and the most important
of the results is the Itô’s Lemma. Stochastic calculus
became a very useful tool for applied problems and it
allows a consistent theory of integration to be defined
for integrals of stochastic processes with respect to
stochastic processes. With Itô’s stochastic calculus it
possible to obtain a solution to the SDE (3), which is
given by

N(t) = N(0)exp
[
(r−

α2

2
) +αW(t)

]
, t ≥ 0,

where W(t) is a Brownian motion.
Stochastic differential equations have been studied

in, for instance, Durret (1996), Evans (2013),

Friedman (2007), Karatzas and Shereve (1998), and
Morimoto (2010). The systems that evolves according
a SDEs in different areas are, the labor supply, the
price of stocks, or the price of capital at time t ≥ 0
in economic applications, whereas, the evolution of
population growth and genetic evolution in biology, in
engineering and in physics, the signals contaminated
by a noise and the random oscillators with white
noise, respectively. Also, in stochastic optimal control
and filtering problems, Itô’s SDEs are employed as
models of dynamical systems disturbed by noise.
See CKlebaner (2005), for details of the stochastic
calculus used in the study of this systems.

Stochastic optimal control theory is a subfield
of the control theory which seek to optimize a
cost/reward functional over certain control functions
and where the systems evolves according a stochastic
differential equation controlled. An optimal control
can be derived using Pontryagin’s maximum principle
or solving the Hamilton-Jacobi-Bellman equation
(dynamic programming approach), Friedman (2007).

The structure of this work is as follows. Section 2
introduces the notion of SDEs and the Ito’s calculus.
Section 3 show some applications which allow us to
compare the experimental data together the stochastic
and deterministic solutions from SDE and ODE,
respectively. On the other hand, Section 4 it describes
briefly the stochastic optimal control (OSC) problem
and the OSC theory is applied to an optimal investment
problem. Finally, Section 5 states some concluding
remarks.

2 Stochastic differential
equations: Itô’s stochastic
calculus

Since there are excellent books which give a detailed
description of the Itô’s stochastic calculus, in this
section we give a brief account of this theory
and recommended the reader to these books for
more information, CKlebaner (2005), Durret (1996),
Evans (2013), Friedman (2007), Karatzas and Shereve
(1991),(1998).

Definition 2.1 (White noise process.) A white noise
process, ξ(t), is a stochastic process such that

(a) ξ(t) is a Gaussian random variable with zero
mean and variance 1, i.e., E[ξ(t)] = 0 and
E[ξ2(t)] = 1.
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(b) ξ(t) and ξ(s) are not correlated if t , s, i.e., the
covariance function

C(t) = E[ξ(t + s)ξ(s)]

is the Dirac delta

C(t) = δ(t) =

{
0 si t , 0
1 si t = 0 (4)

Remark 2.2 The Fourier transform of the covariance
function C(t), also known as spectral density of the
process ξ(t) is constant:

h(λ) :=
1

2π

∫ ∞

−∞

e−iλtC(t)dt =
1

2π
, −∞ < λ <∞. (5)

That is, the spectrum of the process ξ(t) is white
because all frequencies appear with the same intensity
(in analogy with the "white" light that uniformly
contains all the frequencies of visible light).

From (5), the covariance function C(t) can be
obtained by the inverse transform

C(t) =

∫ ∞

−∞

eiλth(λ)dλ.

Then, as C(t) = δ(t) we have

C(0) = E[ξ2(t)] =

∫ ∞

−∞

h(λ)dλ =∞,

this result contradicts the fact that the variance C(0) =

E[ξ2(t)] = 1 (Definition 2.1(a)). Thus, the white
noise Gaussian ξ(t) not exists (in the usual sense).
Therefore, what sense have the equation (3)? The
response the have the biologist Robert Brown and the
mathematicians Louis Bachelier and Norbert Wiener.

In 1827 Robert Brown (Scottish biologist) observe
a suspended pollen grain in water. While looking
at this pollen grain underneath a microscope, he
notices that it undergoes a type of random walk.
The phenomenon that he observed now is known as
Brownian motion. In 1900, Louis Bachelier, French
mathematician modeled the stochastic process now
called Brownian motion (Definition 2.3), which was
part of his PhD thesis The Theory of Speculation. In
1923, Norbert Wiener (American mathematician and
philosopher) gave the first constructive demonstration
of Brownian motion. By this reason the Brownian
motion is also known as Wiener process.

Definition 2.3 (Brownian motion). Any continuous
time stochastic process W(·) := {W(t), t ≤ 0} is called a
Wiener process or Brownian motion if satisfies that

(a) W(0) = 0,

(b) has independent increments, i.e., for all times
0 ≤ t1 ≤ t2 ≤ . . . ≤ tn the random variables
W(tn) −W(tn−1),W(tn−1) −W(tn−2), . . . ,W(t2) −
W(t1), are independent,

(c) has stationary increments, that is, the
distribution of the increment W(t + h) − W(t)
does not depend on t, moreover, W(t + h)−W(t)
has a normal distribution with mean zero and
variance h,

(d) has almost surely continuous paths,

(e) is almost surely nowhere differentiable.

In 1908, Paul Langevin (French physicist) found
that the velocity of a particle that move with Brownian
motion satisfies the SDE

dx(t) = −αx(t)dt +σξ(t)dt, α > 0 and σ = constant,
(6)

also, it found that if the Brownian motion W(t) were
differentiable, then its derivative would the Gaussian
white noise process,

dW(t) = ξ(t)dt. (7)

So, the Langevin equation (6) can be written as

dx(t) = −αx(t)dt +σdW(t). (8)

Generally, the SDE dx(t) = b(t, x(t))dt +

σξ(t)dt, x(0) = x0, can be expressed as

dx(t) = b(t, x(t))dt +σ(t, x(t))dW(t),
x(0) = x0, 0 ≤ t ≤ T, (9)

which in integral form is given by

x(t) = x(0) +

∫ T

0
b(t, x(t))dt +

∫ T

0
σ(t, x(t))dW(t),

(10)

x(0) = x0, 0 ≤ t ≤ T.

The first integral in right-hand side is interpreted in
the usual sense, but how is interpreted the second
integral? In 1951, the Japanese mathematician Kiyosi
Itô developed the Itô’s calculus whose central concept
is the stochastic integral. In this work, let us consider
an n-dimensional stochastic differential equation (also
called diffusion process) evolving according to (9),
where b : [0,T ] × Rn → Rn and σ : [0,T ] × Rn →

Rn×n1 are given functions called the drift and the

www.rmiq.org 1023
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diffusion term, and W(·) is an n1-dimensional standard
Brownian motion. The following assumption ensures
the existence and uniqueness of solutions to the
stochastic differential equation (9), see for instance,
Mao and Yuen (2006).

Assumption 2.4 (a) (Lipschitz condition.) The
functions b(t, x) and σ(t, x) are continuous on
Rn, and x 7→ b(t, x), x 7→ σ(t, x) satisfies a
Lipschitz condition uniformly in t ∈ [0,T ]; that
is, there exist two positive constants K1 and K2
such that for all x,y ∈ Rn

|b(t, x)− b(t,y)| ≤ K1|x− y|,

|σ(t, x)−σ(t,y)| ≤ K2|x− y|.

(b) (Linear growth condition.) There exists a
constant K3 such that for all x ∈ Rn.

|b (t, x)|+ |σ(t, x)| ≤ K3(1 + |x|).

Remark 2.5 (a) If Assumption 2.4 hold, then there
exists a solution to stochastic differential
equation (9) given by

x(t) = x(0) +

∫ T

0
b(s, x(s))ds +

∫ T

0
σ(s, x(s))dW(s),

(11)
where the first integral of the right-hand side
is the Lebesgue integral and second is the Itô’s
stochastic integral.

(b) The equation (11) is known as the Itô’s integral
equation.

(c) The Itô’s stochastic integral does not obey the
rules of ordinary calculus, instead of ordinary
(classical) calculus we have the Itô’s calculus.

Itô’s calculus. Let C1,2([0,T ] × Rn) be the space
of real-valued functions f (t, x) on [0,T ] × Rn which
is twice continuously differentiable in x and once
differentiable in t. Let f (t, x) be in C1,2([0,T ] × Rn),
we denote by fx and fxx the gradient (row) vector and
the Hessian matrix of f , respectively.

The following lemma shows the well known Itô
formula. For a proof we quote Friedman (2007)
Theorem 5.3, or Morimoto (2010), Theorem 1.6.2.

Lemma 2.6 (Itô’s lemma). Let x(·) be as in (11) and
let f (t, x) ∈ C1,2([0,T ] × Rn). Then, the stochastic

process y(t) = f (t, x(t)) satisfies the stochastic
differential equation

dy(t) = ft(t, x(t))dt+ fx(t, x(t))dx(t)+
1
2

fxx(t, x(t))(dx(t))2.

(12)
Substituing (9) in (12) and using the rule of

multiplication dt · dt = 0, dt · dW = 0, dW · dt = 0 and
dW · dW = dt, we obtain

dy(t) =[ ft(t, x(t)) + b(t, x(t)) fx(t, x(t)) +
1
2

fxx(t, x(t))]dt

(13)

+ fx(t, x(t))σ(t, x(t))dW(t).

The stochastic differential equation (13) is called
the Itô’s formula and it is an extension to the stochastic
theory of the rule chain of ordinary calculus.

3 Applications

In this section it shows some applications of the
stochastic differential equations in the modeling from
an electrical RLC circuit, a liquid level system and
a DC motor. The evolution of these systems are
modeled by means a SDE, as well as, an ODE with
the aim to compare both solutions and so, can evaluate
if the solution (trajectory) of an SDE presents a
better approximation to the experimentally measured
trajectories than the solution of an ODE.

3.1 Series RLC circuit

This section presents the ordinary differential equation
and the stochastic differential equation, which model
the charge in a series RLC circuit. In the rest of this
work we consider a source of voltage of direct current
(DC).

A series RLC circuit, as shown in the Fig.1, is a
single electric network consisting of a Resistance (R),
an Inductance (L), a Capacitance (C) and a source of
voltage (V).

Hayt et al. (2012) or Nilsson and Reidel (2015).
The Kirchhoff’s voltage law, gives the ordinary
differential equation that describes the behavior of the
current i(t) in the circuit:

V = Ri(t) + L
di(t)
dt

+
1
C

∫ t

0
i(τ)dτ, t ≥ 0. (14)

1024 www.rmiq.org
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V

R L

C

Fig. 1: Series RLC circuit.

Deterministic Model. Let q(t) be the charge in the
circuit (see Fig.1) at time t. We know that i(t) =

dq(t)
dt ,

then we can rewrite (14) as

V = R
dq(t)

dt
+ L

d2q(t)
dt2

+
1
C

q(t) (15)

with initial conditions q(0) = 0 and q′(0) = 0.
Multiplying by 1/L the equality (15) and rearranging
terms, we have

d2q(t)
dt2

= −
1

LC
q(t)−

R
L

dq(t)
dt

+
V
L
, (16)

which indicates the evolution of the charge in the
series RLC circuit.

If we define the column vector Q(t) as

Q(t) :=
(

Q1(t)
Q2(t)

)
=

(
q(t)
q
′

(t)

)
(17)

then, from (16) the charge in the circuit will be
represented by the matrix differential equation

dQ(t)
dt

=

[
0 1
− 1

LC −R
L

] [
Q1
Q2

]
+

[
0
V
L

]
. (18)

Taking A =

[
0 1
− 1

LC −R
L

]
and b =

[
0
V
L

]
, of

(16)-(18) we obtain the lineal ordinary differential
equation for the charge in a series RLC circuit

dQ(t)
dt

= AQ(t) + b, (19)

with analytic solution

Q(t) = eAtQ0+

[∫ t

0
eA(t−z) dz

]
b where Q0 =

(
q(0)
q
′

(0)

)
.

(20)
Stochastic model. The most used DC sources

currently are switched sources. This last sources is
more efficient than regulated sources, but generate
high frequency noise. Since the system is affected
by the voltage sources noise, it can be modeled

through stochastic differential equations. Considering
a stochastic effect in the source, the voltage can be
represented by

V∗(t) = V(t) +αξ(t), (21)

where ξ(t) is the white noise and α a constant (that
in our case is determined of the experimental data).
Substituting (21) in the equation (15) and proceeding
as in the deterministic model we can get

dQ(t)
dt

= AQ(t) + b + ξ(t)a, (22)

with a =

(
0
α
L

)
and A, b as in (19).

Now, using (7), the matrix stochastic differential
equation (22) in terms of the Brownian motion is equal
to

dQ(t) = (AQ(t) + b)dt + adW(t). (23)

The equation (23) is a lineal stochastic differential
equation (SDE) with constant coefficients. It’s easy to
prove that this lineal SDE satisfies the Assumption
2.4, therefore, there exists a solution Q(·) which is
calculated with Itô’s formula (13) as follows.

Solution with Itô’s Formula. To find the analytic
solution of the equation (23) with Itô’s formula
first, we define g(t,Q(t)) = e−AtQ(t), therefore, Itô’s
differential rule as in Lemma 2.6 gives

dg(t,Q(t)) = −Ae−AtQ(t)dt + e−AtdQ + 1
2 (0)(dQ)2,

(24)
replacing dQ

d(e−AtQ(t)) = −Ae−AtQ(t)dt
+e−At((AQ(t) + b)dt + adW(t))

= e−Atbdt + e−AtadW(t),
(25)

integrating the last equation we get

Q(t) = eAtQ0+

[∫ t

0
eA(t−z)dz

]
b+

[∫ t

0
eA(t−z)dW(z)

]
a.

(26)
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Fig. 2: Series RLC circuit and NI data acquisition card USB 6003.

a) b)

Fig. 3: Voltage experimental data, deterministic and stochastic voltage.

Remark 3.1 The Euler-Maruyama method us gives
a numerical approximation for Q(t) in (26), i.e.,
it gives an approximation for the charge q(t) and
the current dq(t)

dt = i(t). But, since in this section a
stochastic effect on the voltage source is considered,
in the following two subsections the formula V(t) =
dq(t)

C is used for modelling the voltage through
of the RLC circuit. Moreover, It will be written
deterministic solution (deterministic voltage) when
the approximation q(t) is modeled by ODE (20) and
will be writing stochastic solution (stochastic voltage)
when q(t) let be approximate by the SDE (26).

3.1.1 Experimental procedure

A DC voltage source connected to a circuit was used
to carry out the experiment of RLC serie electric
circuit, with V = 5.8V , R = 100kΩ, L = 336mH, and

C = 10µF, as shown in Fig.1. It was used a National
Instrument (NI) data acquisition card USB 6003 with
a resolution of 16 bits connected to Labview software
to measure the voltage across the capacitor and store
data. The experiment consists of connecting the DC
source to the RLC circuit and measuring the voltage
in the capacitor, the source is disconnected and the
capacitor is discharged, this process was repeated 50
times, see Fig.2.

3.1.2 Numerical results

This section shows the graphs of the voltage
experimental data in the capacitor of RLC circuit,
as well as, the deterministic and stochastic solutions
of the ordinary differential equation and stochastic
differential equation, respectively, which model this
circuit, see Remark 3.1.

Table 1

1026 www.rmiq.org
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Table 1. Mean squared errors for the RLC circuit

Mean squared errors

Stochastic solution vs experimental data 0.38%
Deterministic solution vs experimental data 0.47%

a) b)

Fig. 4: Amplification of the deterministic and stochastic voltages vs voltage measurements.

a) b)

Fig. 5: Comparison between the voltage experimental data and the deterministic and stochastic voltage.

The voltages in the capacitor measured in the 50
experiments that were carried out are compared with
the deterministic (analytical) solution of the ODE (20),
see Fig. 3 a). There are slight differences, this is due to
the variations of noise that exists in the voltage source.

Using the Euler’s numerical method we simulated the
stochastic differential equation (26) with α = 0.0277.
The α value was estimated directly from measured
data, see Fig. 3 b).
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Fig. 6: Liquid level system.

We observed in Fig. 4 a)-b) an amplification that is
shown to detail the ODE solution, the SDE solution
and the voltage measurements in the capacitor. Fig.
5 show the stochastic and deterministic solutions vs.
experimental data. It notes that the SDE solution is
closer to the experimental data. In fact, the mean
squared error Ems was calculated, see Table 1. In
this table, we can see that the stochastic solution
is closer to the experimental data because the mean
squared error (MSE) presents a minor value, 0.38 % in
comparison with the MSE between the experimental
data and deterministic solution, 0.47 %.

Ems =
1
n

n∑
i=1

(Ŷi −Yi)2, (27)

where Ŷi is a vector of n predictions and Yi is the
average vector of the measured values.

3.2 Liquid level system

Industrial processes the most common variables to
control are flow and level, for example, in the process
of the petrochemical industries and generation of
energy, usually required a constant level in their
process for example in the case of a boiler that
generates pressure steam, usually need a level constant
in a tank to prevent it from running out of water and
overpressure occurs.

The system shown in Fig. 6 consists of a tank of
uniform cross section area A, which has two valves,
a control valve in the inflow and a load valve in the

outflow. The load valve represents a resistance (R) for
the outflow. In this application we are interested in to
analyze the variation over time of the height of tank
level, h(t), from its steady-state value, hs, when steady-
state flow rate, qs, present a small deviation, q(t). For
this end, we define the following variables.

• qs= steady-state flow rate (before any change
has occurred), m3/s

• q(t) = small deviation of inflow rate from its
steady-state value, m3/s

• qo(t) =small deviation of outflow rate from
its steady-state value ( flow rate (volume/time)
through the resistance), m3/s

• hs =steady-state head (before any change has
occurred), m

• h(t) =small deviation of head from its steady-
state value, m

As mentioned the authors in Ogata (2010), the
relationship between R, qo(t) and h(t) is given by

R =
h(t)
qo(t)

, (28)

for a laminar flow. Then, using a transient mass
balance around the tank:

[ rate of mass flow in ]− [ rate of mass flow out ]
= [Rate of accumulation of mass in tank],

1028 www.rmiq.org
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a) b)

Fig. 7: Modular Process Control Trainer (MPCT®) and level process diagram.

it obtains

ρq(t)− ρqo(t) = ρA
dh(t)

dt
(29)

q(t)− qo(t) = A
dh(t)

dt
, (30)

where ρ is the liquid density. Thus, from (28) and (30)
it have for a constant value of R, the following ordinary
linear differential equation:

dh(t) =
(q(t)

A
−

h(t)
RA

)
dt, (31)

which models the variation of h(t) in a small time
interval, dt.

Stochastic differential equation. Now consider
that small deviation of inflow rate q(t) is the form

q∗(t) = q(t) + βξ(t). (32)

So, replacing (32) in (30) a simple calculus gives

dh(t) =
(q(t)

A
−

h(t)
RA

)
dt +

β

A
dW(t). (33)

3.2.1 Experimental procedure

Measurements were taken from the Modular
Process Control Trainer (MPCT) of the Universidad
Veracruzana campus Coatzacoalcos is shown in the
Fig. 7. The level process is described in Fig. 7(b)

as follows: the signal Qi := qs + q(t) is transmitted
to peristaltic pump 1 which adjusts the inflow to the
graduated tank accordingly. The signal Qo := qs+q0(t)
is transmitted to peristaltic pump 2 which adjusts
the outflow from the graduated tank. The signal
corresponding to the tank level, h(t), is supplied by
the pressure transducer fitted to the bottom of the tank.
The pressure and level are correlated according to a
linear relationship. These signals are connected to data
acquisition card USB -6003, through a USB protocol
connected to the PC with software Labview where the
data is stored.

A total of 50 measurements was performed on the
MCPT to measure the level of the graduated tank with
initial conditions hs(t) = 3.33 %, Qi = 6.1 l/h and
Qo = 5.1 l/h. The graphs of the mean of experimental
measures versus the solution deterministic are shown
in the Fig.8 a)- b), where the differences that exist in
the measurements of the level with respect to the time
are generated for the inflow Qi caused by the inherent
characteristic of the operation of the peristaltic pumps.

Remark 3.2 The variations (or noise) in the flow is
due to two-shoe peristaltic pump belongs to positive
displacement pump class which pump fluid at a
constant average flow rate. However, because the
individual pumping elements of these pumps discharge
discrete quantities of fluid, the instantaneous flow rate
varies in cyclic form. Pulsations are observed in the
system as pressure spikes. This pulsating flow can
cause operational problems and shorten equipment
service life.
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Table 2. Mean squared errors for the level system

Mean squared errors

Stochastic solution vs experimental data 4.57%
Deterministic solution vs experimental data 6.32%

a) b)

Fig. 8: Level experimental data, stochastic and deterministic levels.

a) b)

Fig. 9: Amplification of level experimental data vs stochastic and deterministic levels.

3.3 Numerical results

Experiments were performed to measure the level
of the liquid in the tank, the deterministic (31)
and stochastic solutions (33) are shown in the Fig.
8 a)- b), respectively. Fig. 9 a) we plot the level
experimental data and deterministic and stochastic

solutions (levels), whereas, Fig. 9 b) an amplification
of the simulations is done. A visual inspection allows
us to ensure that the solution of the SDE is closer to the
level experimental data that the solution of the ODE.
In fact, calculating the mean squared errors Ems, it
possible to confirm this observation, see Table 2.
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T

Fig. 10: DC motor.

3.4 Angular velocity in a DC motor

This application, it analyses the differential equation
that model the angular velocity in a DC motor. Our
main source is Emhemed and Mamat (2012).

The DC motors are devices that convert electrical
energy into mechanical energy, they are formed by two
parts the stator and the rotor (induced). Mathematical
modeling of the DC motor requires two equations,
a mechanical equation and other electrical equation.
These equations are coupled and are based on the
laws of dynamics and Kirchhoff, respectively. The
mechanical equation, mainly models the movement
of the rotor, and the electric equation models what
happens in the electrical circuit of the armature, Mora
(2008).

The motor model has electrical variables that are:
supply voltage of the rotor, Vin, current i that will
circulate by the rotor (armature current), winding
resistance of the rotor R, and the inductance of the
winding of the rotor L; the mechanical characteristics
are: angular velocity of rotation of the rotorω, moment
of inertia equivalent of the rotor shaft J and the angular
position θ as shown in Fig. 10.

Let KT and Kb be proportionality constants. Is well
known that the torque T , available at the shaft of a DC
motor is proportional to the current i, i.e.,

T = KT i (34)

and the voltage Vb(t), across the rotor is proportional
to the angular velocity of the shaft, that is,

Vb = Kb
dθ
dt

(35)

Using the Kirchhoff’s voltage law for the motor
circuit given in Fig. 10, we obtain

Vin = Ri + L
di
dt

+ Vb, (36)

replacing (40) and (39) in (36)

Vin =
R

KT
T +

L
KT

dT
dt

+ Kb
dθ
dt
. (37)

The relation between torque and angular acceleration
for a shaft whose moment of the inertia is J,

T = J
d2θ

dt
+ Vb, (38)

us allows obtaining the third-order differential
equation that model the angular acceleration in a DC
motor.

Vin =
JL
KT

d3θ

dt3
+

RJ
KT

d2θ

dt2
+ Kb

dθ
dt
. (39)

For many motors, the inductance can be neglected.
So, the equation (39) can be rewritten as

Vin =
RJ
KT

d2θ

dt2
+Kb

dθ
dt
⇒

d2θ

dt2
= −

KT Kb

RJ
dθ
dt

+
KT

RJ
Vin

(40)

Taking A1 =

[
0 1
0 −

KT Kb
RJ

]
, b1 =

[
0

KT
RJ Vin

]
and Θ(t) :=

(
Θ1(t)
Θ2(t)

)
=

(
θ(t)
dθ(t)

dt

)
. The matrix

representation of the differential equation (40) is

dΘ(t)
dt

= A1Θ+ b1, (41)

which is a linear differential equation similar to the
given for the RLC circuit, see (19). Again, considering
noise in the voltage source, Vin(t) = Vin(t) + αξ, it can
get the stochastic differential equation which model
the angular acceleration in a DC motor as in Section
3.1, obtaining

dΘ(t) = (A1Θ+ b1)dt + a1dW(t) (42)

with a1 =

(
0
αKT
RJ

)
. The Itô’s solution for the SDE

(42) is (26) taking Q ≡ Θ, A ≡A1, b ≡ b1 and a ≡ a1,
i.e.,
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Fig. 11: Angular position and velocity, θ and dθ
dt , respectively.

Fig. 12: Angular velocity.

Θ(t) = eA1t
Θ0 +

[∫ t

0
eA1(t−z)dz

]
b1 (43)

+

[∫ t

0
eA1(t−z)dW(z)

]
a1.

Note that, taking expected value in both side of
(43) it get

E[Θ(t)] = E[eA1t
Θ0] +E

[ [∫ t

0
eA1(t−z)dz

]
b1

]
+E

[ [∫ t

0
eA1(t−z)dW(z)

]
a1

]
(44)

= eA1t
Θ0 +

[∫ t

0
eA1(t−z)dz

]
b1. (45)

The equality (44) is because the expectation of the
Itô integral is zero and the expectation of a constant is
the same constant. So, (44) implies that the expected
value of the stochastic solution coincides with the
deterministic solution (20) independently of the noise
amplitude. In the following section this statement
is verified from the sample mean of the stochastic
solutions as an estimator of the expectation, E[Θ(t)].
Confidence intervals for this estimator are calculated
using the Student’s t-distribution since we can suppose
that the stochastic solution it’s normally distributed.

Remark 3.3 Noise in voltage sources is due to factors
such as ripple voltage which is the alternating
component of the unidirectional voltage from a
rectifier or generator used as a source of DC.
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This ripple is due to incomplete suppression of
the alternating waveform after rectification. Ripple
voltage originates as the output of a rectifier or from
the generation and commutation of DC power.

3.5 Numerical results

The simulation of the DC motor was carried out using
the following parameters R = 5.2Ω, J = 0.01kg.m,
KT = 0.75N.mA−1, Kb = 0.75N.mA1 and Vin = 24V .
Data were taken from Emhemed and Mamat (2012).

In Fig. 11 we can see the solutions (angular
position and velocity) of the ODE (41) and SDEs (42)
for different amplitudes of the Brownian motion. Fig.
12 its plot the sample mean of the stochastic solutions
and deterministic solution with an interval confidence
of 99%, as can see, the sample mean of the stochastic
solution is close the deterministic solution as indicated
the theory, (44).

4 Stochastic optimal control

This section describes the stochastic optimal control
theory to illustrate of the use from SDEs. To this end,
It’s study an optimal investment problem in which
the stochastic calculus and the optimal control theory
are applied, Cklebaner (2005), Durret (1996), Fleming
and Rishel (1975), Ghosh et al. (1992), Ghosh et al.
(1997) . In the optimal investment problem a stochastic
differential equation with Markovian switching which
modelling the price of a stock in a financial market
is considered. The form in which the optimal control
problem is resolved can be applied to any optimal
control problem in engineering, of course, with its
respective modifications.

In an optimal control problem must be indicate the:

(i) evolution of the dynamic system (48),

(ii) controls (actions) set available for the controller
(51),

(iii) objective function (function to optimize) (53),
and

(iv) some additional restrictions (50)-(51),

with these four elements, the optimal control problem
consists with to optimize (minimize/maximize) the
objective function over the controls set.

We use the dynamic programming technique
applied to continuous-time optimal stochastic problem

which is based on Bellman’s principle of optimality.
The value function ν (54), is defined as the
minimun cost /maximun payoff (minimun/maximum
objective function). Assuming that ν is a continuously
differentiable function, then application of the
principle of optimality yields the so-called Hamilton-
Jacobi-Bellman (HJB) equation (55). If ν can be
found, then the HJB equation (55) is provided by
means of obtaining the optimal control.

The control system we are concerned with is
the controlled Markov-modulated diffusion process
(also known as a piecewise diffusion or a switching
diffusion or a diffusion with Markovian switching)

dx(t) = b(x(t),ψ(t),u(t))dt +σ(x(t),ψ(t))dW(t),
x(0) = x, ψ(0) = i, (46)

with coefficients depending on a continuous-time
irreducible Markov chain ψ(·) with a finite state space
E = {1,2, . . . ,N}, and transition probabilities

P(ψ(s + t) = j|ψ(s) = i) = qi jt + o(t). (47)

For states i , j the number qi j ≥ 0 is the transition
rate from i to j, while qii = −

∑
j,i qi j. Moreover,

in (46), b : Rn × E × U → Rn and σ : Rn × E →
Rn×d are given functions, usually called the drift and
the dispersion matrix, respectively, and W(·) is a d-
dimensional standard Brownian motion independent
of ψ(·). The stochastic process u(·) is a U−valued
process called the control process and the set U ⊂ Rm

is called the control (or action) space.

4.1 Optimal investment model

In mathematical finance, the price of a stock is often
modeled as a geometric Brownian motion which is
determined by two parameters: µ (expected return
rate) and σ (volatility). (A detailed analysis of this
model appears, for instance, in Karatzas and Shreve
(1998).) These parameters are usually considered to be
deterministic. As Bäuerle and Rieder (2004) point out,
models with deterministic coefficients are only good
for relatively short periods of time and cannot respond
to changing conditions. Some factors that influence
the movement of stock prices are the market changing
conditions due to external factors, such as inflation,
money devaluation, and so forth. To incorporate the
trends of the stock (up or down) due to external
factors, it is necessary to modify the geometric
Brownian motion to allow for the expected return
rate and the volatility to depend on general market
conditions (for further motivation see, for instance,
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Zhang (2001)). This is the financial market considered
in this application, namely, a Black-Scholes market
with Markovian switchings (also called a Markov-
modulated market), so that the coefficients depend on
a continuous-time finite-state homogeneous Markov
chain. The states of the Markov chain represent the
market conditions.

Let (Ω,F ,P) be a probability space, and T > 0 a
fixed time horizon. Let W1(·) and W2(·) be standard
Brownian motions. The price process P(·) of the risky
stock satisfies the stochastic differential equation with
Markovian switchings

dP(t) = P(t)µ(ψ(t))dt+P(t)σ(ψ(t))dW1(t) for t ∈ [0,T ],
(48)

while the stochastic cash flow, or risk process of the
company, satisfies that

dY(t) = αdt + βdW2(t) ∀ t ∈ [0,T ], (49)

where α ∈ R and β > 0 are given constants. It assume
that the functions µ(·),σ(·) : E→ R in (48) satisfy that∫ T

0

{
|µ(ψ(t))|+ |σ(ψ(t))|

}
dt <∞ a.s., (50)

and, we assume that ψ(·) and W j(·) are independent
( j = 1,2), but the Brownian motions W1(·) and W2(·)
can be correlated, with a correlation coefficient |
ρ |< 1, that is, E[W1(t)W2(t)] = ρt. We ignore the
uninteresting case ρ2 = 1, because then there would
be only one source of randomness in the model.

We denote by f (t) the total amount of money
invested by the company in the risky stock at time t
under an investment strategy f . The set of admissible
strategies f over the planning period [t,T ], for every
0 ≤ t ≤ T , is given by

A(t, F̂t) := { f : [t,T ]→ R | f is F̂t − adapted,∫ T

t
f (s)2ds <∞ a.s.}, (51)

where F̂t is the filtration generated by W1,W2 and ψ,
i.e., F̂t = σ(W1(s),W2(s),ψ(s), s ≤ t) for t ≥ 0.

Let X f (t) be the wealth of the company at time t,
given that it follows the strategy f , with X f (0) = x0
being the initial wealth. This process then, by (48) and
(49), evolves as

dX f (t) = f (t)
dP(t)
P(t)

+ dY(t) (52)

= ( f (t)µ(ψ(t)) +α)dt + f (t)σ(ψ(t))dW1(t)
+βdW2(t).

This is a stochastic differential equation with
Markovian switchings, which satisfies the Itô’s
conditions, Assumption 2.4, Mao and Yuan (2006);
hence, it has a unique strong solution X f (t).

Once the company has decided to invest, it has the
following problem.

Optimal investment problem. Find a strategy f ∗

that maximize the utility of the terminal wealth, i.e.,
find f ∗ such that

sup
f∈A(t,F̂ )

E
f
t,x,i[u(X f (T ))] = E

f
t,x,i[u(X f ∗ (T ))] <∞

∀ (t, x, i) ∈ [0,T ]×R+ × E, (53)

where u : R+ → R is a given utility function and E f
t,x,i

denotes the conditional expectation given X f (t) = x
and ψ(t) = i.

Denote by

ν(t, x, i) := sup
f∈A(t,F̂ )

E
f
t,x,i[u(X f (T ))]. (54)

To solve the optimal investment problem we
will use the dynamic programming technique. The
corresponding HJB equation (Fleming and Rishel
(1975) or Karatzas and Shreve (1998)) is{

supy∈ML
yν(t, x, i) = 0, t < T ;

ν(T, x, i) = u(x)
(55)

with M a compact set, ν in C1,2([0,T ] ×R+ × E), and
Lyν(t, x, i) as

Lyν(t, x, i) := νt(t, x, i) + [yµ(i) +α]νx(t, x, i)

+
1
2

[y2σ2(i) + β2 + 2yσ(i)βρ]νxx(t, x, i)

+

N∑
j=1

qi jν(t, x, j). (56)

In our model, a solution of the HJB-equation (55)
gives us the optimal value function ν(t, x, i) and the
optimal portfolio strategy f ∗. This is a consequence
of the following “verification theorem", whose proof
is quite standard (see, for instance, Bäuerle and Rieder
(2004)).

Theorem 4.1 (A verification theorem.) Suppose that
G ∈ C1,2([0,T ] × R+ × E) is a solution of the HJB-
equation (55), and satisfies the growth condition
|G(t, x, i)| < K(1 + |x|k) for some constants K > 0 and
k ≥ 1, and for all i ∈ E and 0 ≤ t ≤ T. Then

(a) G(t, x, i) ≥ ν(t, x, i) for all (t, x, i) ∈ [0,T ]×R+×E.
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(b) Let y∗(t, x, i) be a maximizer of (56), and let
f ∗(t) := y∗(t,X(t),ψ(t)). Then G(t, x, i) = ν(t, x, i)
for all x ∈ R+ and i ∈ E. Moreover, f ∗ is an
optimal portfolio strategy.

Maximizing exponential utility of terminal
wealth. We look a strategy that maximizes the
expected utility of the terminal wealth of the company
when the utility function is of the form

u(x) = λ−
γ

θ
e−θx, (57)

where γ, λ, and θ are all positive constants. The
constant θ is called the absolute risk aversion
parameter (see, for instance Gerber (1979)).

From Theorem 4.1 we obtain the following result
which gives in explicit form the optimal investment
strategy that solves optimal investment problem when
the utility function u(·) is as in (57).

Theorem 4.2 The strategy that maximizes the
expected utility (53) is to invest, at each time 0 ≤ t ≤ T,
the amount

f ∗(t, x, i) =
µ(i)
σ2(i)θ

−
ρβ

σ(i)
. (58)

The corresponding value function is given by

ν(t, x, i) = λ−
γ

θ
g(t, i)exp{−θx}, (59)

where g(t, i) satisfies the linear differntial equation

gt(t, i) + g(t, i)a(i) +

N∑
j=1

qi jg(t, j) = 0, (60)

with terminal condition g(T, i) = 1, and a(i) is defined
as

a(i) :=
1
2
β2(1−ρ2)θ2−[α−

ρβµ(i)
σ(i)

]
θ−

1
2

( µ(i)
σ(i)

)2
∀ i ∈ E.

(61)

Proof. We suppose that a solution G ∈ C1,2([0,T ]×
R+ × E) of the HJB-equation (55) has the form

G(t, x, i) = λ−
γ

θ
g(t, i)e−θx, (62)

where la function g(·, i) is in C1([0,T ]) for all i ∈ E.
We also assume that g ≥ 0, so that the function x 7→
G(t, x, i) is concave. Therefore we have

Gt = −
γ

θ
e−θxgt, Gx = γge−θx, Gxx = −γθge−θx. (63)

Inserting these values in (55) we see that the
maximizer f ∗ of the HJB-equation is given by the
function

f ∗(t, x, i) = −
µ(i)
σ2(i)

( Gx(t, x, i)
Gxx(t, x, i)

)
−
ρβ

σ(i)
. (64)

By (63) and (64) it follows that f ∗ is an admissible
portfolio strategy. Moreover, substituting (63) and (64)
in (55) gives

gt(t, i) + g(t, i)a(i) +

N∑
j=1

qi jg(t, j) = 0, (65)

with terminal condition g(T, i) = 1 for i ∈ E, and a(i)
as in (61). It’s easy to prove that the system of linear
differential equations (65) has a unique solution g (see
Perko (1991) Theorem 1). In fact, the equation (65)
can be written as

g’ = Ag (66)

where g(t) :=


g(t,1)
g(t,2)

. . .
g(t,N)

 and

A :=


q11 + a(1) q12

... q1N
q21 q22 + a(2) . . . q2N
...

... . . .
...

qN1 qN2
... qNN + a(N)


.

Thus, the solution to (66) is given by

g(t) = eAtg0, (67)

where, the terminal condition g(T, i) = 1 for i ∈ E
implies that g0 = e−AT , so,

g(t) = eA(t−T ). (68)

As a result the function g satisfies the HJB equation
(55), see (65). Moreover, the function G given in
(62) is in C1,2([0,T ] × R+ × E), and taking M(t) :=
maxi∈E |g(t, i)|, G satisfies the growth condition, i.e.,
| G(t, x, i) |≤ K(1+ | x |) for a suitable constant K.
Consequently, the desired conclusion follows from
Theorem 4.1. �
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4.2 Maximizing exponential utility with
positive interest rate

In this section we assume that our company may also
invest in a risk-free asset which has a positive interest
rate r > 0. Therefore, in addition to the risky stock,
given by (48), and the risk process Y(t) in (49), there
is also a bond whose price B(t) evolves as

dB(t) = rB(t)dt, (69)

with r > 0. In this case, any wealth not invested in
the stock, say X f (t) − f (t), will be invested in the
bond. Hence, for any strategy f inA(t, F̂ ), the wealth
process X f (·) is now given by

dX f (t) = f (t)
dP(t)
P(t)

+ (X f (t)− f (t))
dB(t)
B(t)

+ dY(t)

= [rX f (t) + f (t)(µ(ψ(t))− r) +α]dt

+ f (t)σ(ψ(t))dW1(t) + βdW2(t). (70)

The generator of the new wealth process is

L
f
r ν(t, x, i) = νt(t, x, i) + [ f (t)(µ(i)− r) + rx +α]νx(t, x, i)

+
1
2

[ f (t)2σ2(i) + β2 + 2ρσ(i)β f (t)]νxx(t, x, i)

+

N∑
j=1

qi jν(t, x, j)

=L f ν(t, x, i) + r(x− f (t))νx(t, x, i). (71)

with L f as in (56).
We assume that µ(i) > r for all i ∈ E. We

wish to find an investment strategy that maximizes
the terminal utility Et,x,i[u(X f (T ))]. To this end, we
use Theorem 4.1 with the HJB-equation (55), but
replacing the generator L f ν(t, x, i) by L f

r ν(t, x, i) in
(71).

Theorem 4.3 Assume r > 0. Consider the Problem
(53) for the utility function u given in (57). Then the
optimal strategy is to invest the amount

f ∗(t, x, i) =
µ(i)− r
θσ2(i)

e−r[T−t] −
ρβ

σ(i)
(72)

in the risky stock at time t. Moreover, the value function
is given by

ν(t, x, i) = λ−
γ

θ
g(t, i)e−θxer[T−t]

, (73)

where g(t, i) satisfies

gt(t, i) + g(t, i)b(i) +

N∑
j=1

qi jg(t, j) = 0 ∀i ∈ E, (74)

with boundary condition g(T, i) = 1, and

b(i) := xrer[T−t]θ+
[
rx +α−

ρβ

σ(i)
(µ(i)− r)

]θr
γ

er[T−t]

+
1
2

(µ(i)− r
σ(i)

)2
θ (75)

−
1
2
β2(1− ρ2)θ2e2r[T−t] for all i ∈ E.

Proof. Suppose that a solution G ∈ C1,2([0,T ]×R+×E)
of the HJB-equation (55) can be written as

G(t, x, i) = λ−
γ

θ
g(t, i)e−θxer[T−t]

, (76)

for some nonnegative function g(·, i) ∈ C1([0,T ],R) for
all i ∈ E. Then the derivatives of G are given by

Gt(t, x, i) =−
γ

θ
e−θxer[T−t]

gt(t, i)

− [g(t, i)γxrer[T−t]]e−θxer[T−t]
,

Gx(t, x, i) =γer[T−t]g(t, i)e−θxer[T−t]
, (77)

Gxx(t, x, i) =− γθe2r[T−t]g(t, i)e−θxer[T−t]
.

Hence, since g ≥ 0, the function x 7→ G(t, x, i) is
concave. Moreover, inserting (77) in (55) we see that
the maximizer f ∗ of the HJB-equation (55) is given by

f ∗(t, x, i) = −
µ(i)− r
σ2(i)

Gx(t, x, i)
Gxx(t, x, i)

−
ρβ

σ(i)
. (78)

By (77) and (78) it follows that f ∗ is an admissible
portfolio strategy. Replacing the derivatives (77) and
f ∗ in the HJB-equation we obtain the system of
equations

gt(t, i) + g(t, i)b(i) +

N∑
j=1

qi jg(t, j) = 0 ∀i ∈ E, (79)

with boundary condition g(T, i) = 1, and b(i) as in (75).
The existence of a solution to (79) is well known. In
fact, the equation (79) can be written as

g’ = Ag (80)

where g(t) :=


g(t,1)
g(t,2)

. . .
g(t,N)

 and
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A :=


q11 + b(1) q12

... q1N
q21 q22 + b(2) . . . q2N
...

... . . .
...

qN1 qN2
... qNN + b(N)


.

Thus, the solution to (80) is given by

g(t) = eAtg0, (81)

where, the terminal condition g(T, i) = 1 for i ∈ E
implies that g0 = e−AT , so,

g(t) = eA(t−T ). (82)

Finally, replacing (77) in (78) gives the optimal
strategy (72). Again, as a result, G is in C1,2([0,T ] ×
R+ × E), and G satisfies the growth condition, i.e.,
| G(t, x, i) |≤ K(1+ | x |) for a suitable constant K
considering M(t) := maxi∈E |g(t, i)|. The optimality of
(72) and (73) follows from Theorem 4.1. �

5 Concluding remarks

This paper shows applications of the Itô’s stochastic
calculus to the problem of modeling a series RLC
electrical circuit, liquid level system and, angular
velocity of a DC motor, including experimental
measurements (in some cases) and both deterministic
and stochastic solutions for the ODE and SDEs,
respectively. In the optimal control area, an optimal
investment problem was solved using the dynamic
programming approach. Stochastic differential
equations are an interesting alternative in order
modeling different processes in engineering, because
these processes present randomness and therefore,
the SDEs are more appropriate for describing them
as it saw in the applications developed in this work.
Although in this paper, we focus on the Itô’s integral,
there is also the Stratonovich’s integral, but this is
most frequently used within the physical sciences.
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