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Abstract
The cultivation of microalgae has currently shown a growth in interest because it has shown significant contributions to the
production of energy, high quality food and as agents for tertiary treatment of wastewater. Microalgae culture are carried out on
photobioreactors, which are often very complex. Therefore, the automatic control of these devices can be very difficult and the
lack of in-line sensors makes it difficult to control them. For this purpose, state observers have proven to be an excellent tool
for measuring variables that cannot be measured online. In this paper a theoretical design of a robust linear type observer, the
so-called Chained Observer is proposed. Stability is demonstrated through Lyapunov functions and an observer is didactically
designed for the study of tertiary wastewater treatment by demonstrating that under certain conditions, the Chained Observer
presents better yields than even more sophisticated observers. A simple technique for multi-disciplinary researchers is presented.

Keywords: Spirulina maxima, observers, photobioreactors, Lyapunov.

Resumen
En la actualidad, el cultivo de microalgas ha sido de gran interés por sus aportaciones en la producción de energía, desarrollo de
alimentos de alta calidad y uso como agentes para el tratamiento terciario de aguas residuales. El cultivo de microalgas se realiza
en fotobiorreactores, a menudo con dinámicas muy complejas. Por lo tanto, el empleo de técnicas de control automático aplicadas
en estos dispositivos puede resultar muy difícil, ya que un problema común es la falta de sensores en línea para su control. Con
este propósito, los observadores de estado han demostrado ser una excelente herramienta para medir variables que no pueden
ser medidas en línea por algún sensor. En este trabajo se propone un diseño teórico de un observador robusto de tipo lineal
denominado Chained Observer (observador encadenado). El estudio de estabilidad se demuestra a través del uso de funciones
de Lyapunov. Un observador encadenado es diseñado de manera didáctica para el estudio del tratamiento terciario de aguas
residuales demostrando que bajo ciertas condiciones, el Chained Observer presenta mejores rendimientos que los observadores
aún más sofisticados. En este trabajo se presenta una técnica sencilla de entender para investigadores multidisciplinarios.

Palabras clave: Spirulina maxima, observadores, fotobiorreactores, Lyapunov.

1 Introduction

The human population has grown at a very high
rate since the middle of the last century as it has
never been seen in history. The demand for energy

sources, pharmaceuticals and the production of food
products also has a very high demand rate, thus
modern science must put all its efforts into improving
the processes of obtaining them Myers (2002). The
vast majority of these resources are obtained through
complex processes called bioprocesses.
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Bioprocesses play an effective role in the
production of value-added products in the
pharmaceutical, food and energy industries. Therefore,
the study and improvement of these processes is
an important topic for current research. A very
special group of these bioprocesses are carried out
through photosynthetic processes Zhang et al. (2018).
The natural process that allows the production of
biomass using only sunlight as the energy source and
carbon dioxide is photosynthesis. Photosynthesis is
the photochemical process carried out by special kind
of cells to produce the inverse effect of mineralizing,
i.e. converting inorganic matter into organic matter, by
fixing the energy from the sun (Cañedo & Lizárraga,
2016). The origin of life on earth began with a reduced
atmosphere. The atmosphere became oxidizing
through the production of oxygen from photosynthesis
carried out by the proliferation of cyanobacteria
from 2,400 to 3,200 million years ago. With oxygen
production, the ozone layer was developed in the
stratosphere which filters part of the UV-B (280-
315 nm) radiation, helping the development of all sorts
of living organisms on the planet (del Rio-Chanona et
al., 2018; Ooms et al., 2017; Yun & Park, 2003).

Photobiochemical crops and microalgae
fermentations have recently received much attention
and scientific study due to the production of high
nutritional quality foods (e. g. cyanobacteria: Spirulina
maxima) and pharmaceutical production of high
value-added by-products, as well as CO2 fixation
(thereby helping to mitigate the greenhouse effect)
and renewable energy production. This situation can
be related to the high photosynthetic performance and
the main and cleanest source of energy: solar energy.
Compared to other living organisms such as terrestrial
plants whose growth is limited by the availability of
CO2, massive cultivation of microalgae leads to a high
potential for algae biomass production of several tens
of tons per hectare per year (Cañedo & Lizárraga,
2016).

Microalgae biological systems are the most
efficient systems known for capturing sunlight in
nature. They produce proteins from inorganic sources
through the photosynthetic process. Millions of years
of evolution have helped to maximize the optimization
of energy efficiency in aqueous photosynthesis. This
could represent an immediate solution to meet
the high demand for energy and food products.
Fixing of energy from inexhaustible primary sources
could contribute directly to meet the food needs
of the growing demand of the above-mentioned
exponentially growing of human population (del Rio-

Chanona et al., 2018; Ooms et al., 2017; Yun
& Park, 2003). Microalgae are usually grown in
devices called phobioreactors. A photobioreactor is
a special type of bioreactor where biochemical and
photochemical reactions are carried out, resulting in
the production of microalgae biomass. Bioreactors
are controlled devices whose purpose is to maximize
the production of biochemical products through the
control of variables such as flow, volume, temperature,
pH, dissolved oxygen, among others (Junker & Wang,
2006).

Growing microalgae on a large scale can be done
in open systems (lakes or ponds) and in closed
controlled systems called photobioreactors. Outdoor
pond systems are cheaper to build. They only require
a ditch or pond but they are usually difficult to control.
In an open pond culture, perishability performance
can be easily disturbed by natural distortions such
as: microbial contamination, temperature changes,
light, pH, availability of carbon dioxide, among
others. In contrast, photobioreactors are closed and
controlled systems that allow the optimal operation,
minimize pollution, achieve maximum production
and allow the use of axenic algae and monoculture
cultivation. Therefore the cultivation of microalgae
in photobioreactors has many advantages over open
systems (Singh & Sharma, 2012).

For a high performance, the design requirements
and conditions that a photobioreactor must meet are
the following:

1. Reactor must provide the culture conditions of
several types of microalgae.

2. The reactor design should ensure uniform
controlled illumination of the irradiation zone
and an excellent distribution of photons from the
natural or artificial light source.

3. Fast mass transfer of CO2 and O2.

4. The photobioreactor sometimes works under
intense foaming conditions, such as reactors
with high mass transfer rates.

5. The reactor must have a minimum lighting
section to ensure the light-dark cycle necessary
for the photosynthetic metabolic process in
order to get an extra control variable on cell
stress. It is known that many microalgae can be
induced to stress in controlled cycles of light
and darkness. Such stress is usually used for the
production of some kind of high value-added
metabolite (Cañedo & Lizárraga, 2016).
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For an excellent operation of the different types of
photobioreactor devices, precise and reliable control
of monitored variable must be guaranteed. But
controlling biological systems is a challenge for
modern control theory. In more recent decades, the
automation of the cultivation of microorganisms in
bioreactors has been investigated in a wide range
of ways. The control of such processes can be
complex and costly, since they are highly non-linear
systems from their phenomenological description
and mathematical modeling (Bernard, 2011). In
addition, sensors to measure relevant crop variables
(biomass and metabolites of interest) are often very
expensive, non-existent in the commercial market
or do not meet the required technical standards,
such as response time, accuracy and reliability. It is
important to remember that a sensor is a mechanism
or device that converts an actual physical variable and
characterizes it to a digital or analogical electrical
variable in order to be processed in an automated
control system (Lyubenova et al., 2013). Modern
control theory offers analytical and numerical tools
to solve the task of estimating variables in which
they cannot be measured, the sensors are expensive
or the measurement variable is inaccessible. Such
tools are often referred to as observers or state
estimators. Biological systems, especially those made
in bioreactors or photobioreactors, are the ideal
processes for the application of these techniques
for estimating bioreactor variables. An observer is
a dynamic system which tasks online estimation of
states that cannot be measured at the output of a
systems (Lyubenova et al., 2013; Rodríguez-Mata et
al., 2011; A. Rodriguez-Mata et al., 2015; Celikovsky
et al., 2015; Farza, 2014; Gauthier et al., 1992). The
output variables are the variables that can be measured
in a process through a sensor. Some examples of
such variables in a typical chemical reactors are the
concentration of reagents or products, temperature,
pressure, among others. The control variables or inputs
are the variables that modify the dynamics of a system.
These variables are usually managed through actuators
such as valves, circuits, resistances, among others.

The so-called Luenberger observer is the most
widely used asymptotic observer, especially in linear
systems. Extension to non-linear systems has been
studied in several versions of observers, such as
those shown in Doko (2017) and Liu et al. (2017).
Within these non-linear observers, high gain non-
linear observers stand out, whose structure is not
fundamentally dependent on the input. Under the
hypotheses of a perfect knowledge of plant parameters

and the absence of unknown disturbances, these
observers have shown excellent performances in non-
linear systems and used in some types of simple
bioreactor models (Gauthier et al., 1992). There are
limited studies about the online estimation of the
states of variables in photobioreactors using state
observation techniques, due to the high complexity
of these type of systems, but some works in which
it has been demonstrated demonstrating that the
use of non-complex techniques such as Luenberger
observers allow for exclusive results when dealing
with estimation problems in this type of system
(Benavides et al., 2015). In this paper, the use
of Chained Observers state estimators are proposed
for the estimation of variables in photobioreactors.
A didactic exposition of basic concepts of modern
control on the use of state observers is presented
in such a way that a multi-disciplinary reader (non-
automatic control specialists) can understand such
control theory. The use and develop of control
techniques used for the solution of marked problems in
the estimation of variables in photobioreactors are also
discussed. The basic concepts and definitions used for
the development of observers and the mathematical
models used for the description of photobioreactors
are presented. Finally, numerical simulation studies
are proposed.

2 Materials and methods

2.1 Preliminary observer theory

Estimating the status of variables that are not
measurable or present in a process (also called plant)
could be possible by using observer theory. A system
is suitable to be observable, if it fulfills certain
conditions as a condition of observability.

Definition 2.1. Observability of system
A state of a system o process can be reconstructed
through the input, output and mathematical model
information of a dynamic system. This system may be
represented by nonlinear systems:

ẋ(t) = f (x(t),u(t)) (1)
ynl = h(x(t))

in this work, it is proposed that x(t) is the
n−dimensional state vector, u(t) is the m−dimensional
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output vector and ynl(t) is the p−dimensional output
vector. It is assumed that f (x(t),h(t)) are soft vector
fields, ensuring the existence and uniqueness of the (1)
solution such that f (x(t),h(t)) are Lipschitz functions
and u(t) is a soft and bounded function.

Remark. A particular case of the non-linear system
(1) is when it is represented by a linear plant or the
so-called linearized system, which therefore complies
with the principles of association and overlap. This can
be represented by the following:

ẋl(t) = Axl(t) + Bu(t) (2)
yl = Cxl(t)

where ẋl(t) describes the dynamics of the system, xl(t)
describes the linear vector states, the term A ∈ Rnxn is a
linearly independent square matrix originated from the
Jacobian matrix calculation at a point of equilibrium
of states , B ∈ Rnx1 is the input matrix similarly
originated from the Jacobian matrix calculation at a
point of equilibrium of the variable u(t), C ∈ Rnx1is the
output matrix for n as the system dimension for single
input single output (SISO) systems and output vector
and yl(t) is the p−dimensional output vector.which are
the systems to deal with in this paper.

Soft set theory is a new mathematical tool
developed to deal with uncertainties in modelling
problems with incomplete information and is used in
engineering, physics, computer science, economics,
social sciences and medical sciences. This theory does
not require the specification of parameters. It gives
an approximate description of an object as its starting
point. The application of this theory is now a common
approach in several disciplines and real life problems
(Hussain, 2015).

Definition 2.2. Observer of state The following
auxiliary system is an observer for the system (1):

·

x̂(t) = f (x̂(t),u(t))−ψ(x(t), x̂(t),u(t))e(t) (3)
ŷ(t) = h(x(t))
e(t) = x̂(t)− x(t) (4)

such that:
1.- x̂(0) = x(0)→ x̂(t) = x(t)
2.- ‖e(t)‖ = ‖x̂(t)− x(t)‖ → 0 ∀ t→∞.

In the above definition, the ψ(·) = ψ(x(t), x̂(t),u(t))
is a correction function that can be linear or non-
linear and represents the feedback used to stabilize the
estimation error e = x̂(t)− x(t)).

The objective of the ψ(·) correction function is
to obtain asymptotic (for k1 > 0 and k2 > 0) of
the estimation error in order to guarantee that the
estimated variable is the non-measurable variable (Liu
et al., 2017).

‖e(t)‖ ≤ k1e(t)−k2t ∀ t > t0. (5)

It is often difficult to achieve an exponential
stability criterion, as in many systems the uncertainties
that are not constant over time make it difficult. For
this reason, more practical stability criteria have been
defined in the literature see to Khalil (2002a), as shown
below:

Definition 2.3. Ultimated Bounded Stability (U.B.S)
The solution of non-linear differential equation e(t) are
U.B.S. if there exists a positive constant c, independent
of t0 ≥ 0 and every a ∈ (0,c), there B = B(a) > 0
independent of t0 such that the solution will tend to
be inside a ball of attraction or convergence B:

‖e(to)‖ ≤ a⇒ ‖e(t)‖ ≤ B,∀t ≥ t0 (6)

On the other hand in the vast majority of results
in the literature the main condition that a system of
non-linear differential equations as (1) must fulfill to
be able to use the observer as (3) for the estimation of
states is shown in the following definition.

Definition 2.4. Uniform Autonomous Observability
(U.O.)
The system (1) is U.O. if it exists diffeomorphism (Fx :
Rn→ DxR

n) for all input u(t) and any initial condition
as follows (more details of this see to Gauthier et al.
(1992)):



Fx : Rn → DxR
n

x(t) →


h(x)

L f h(x)
·

·

Ln−1
f h(x)


(7)

where L f u is Lie derivation operator (derived
under a system trajectory) for output-state with
L f uϕ =

∂ϕ
∂x f (x,u).
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Remark. A diffeomorphic change of coordinates (7)
on a invariant linear system as shown in equation (2)
can be designed using the Lie derivation operator as
follows:

f (x,u, t) = Axl(t) (8)
h(x,u, t) = Cxl(t)

Then:

L f h(x) = CA(xl) (9)

Ln−1
f h(x) = CAn−1(xl)

Ln
f h(x) = CAn(xl)

Such that:


h(x)

L f h(x)
·

·

Ln−1
f h(x)

→


C
CA
·

·

CAn−1

 = O (10)

where O is Kalman’s classic observability matrix
(Hussain, 2015). In order to be the (3) to be observable
it is necessary that the range of the matrix be full
(linearly independent).

2.2 Linear Observer

Let linear observer be as in Liu et al. (2017):

·

x̂l(t) = Ax̂l + Bu +ψ(·) (11)
ŷl = Cx̂l

ψ(·) = −KCel (12)
el = (x̂l − xl)

where vector estimated states x̂l of the above linear
observer, K is an output gain matrix and C is the
system output matrix defined from the observability
analysis (see remark 1). By obtaining dynamic error
between (2) and (11) it is obtained:

ėl(t) = Ax̂− Ax−KCel

ėl(t) = Ace

el(t) = exp(Act)
Ac = A−KC

where el(t) is defined as estimation linear states error.
If the whole set of eigenvalues (λi) defined as output
feedback system spectrum (σ(λi)[A−KC]) of the matrix
Ac has negative real part (Hurwitz condition), then the
error will converge to zero when time tends to infinity,
such that:

σ(λi)[A−KC] = {λ1,λ2, . . .λn} ∈ R
−

Then:

‖el(t)‖ =
∥∥∥exp(Act)

∥∥∥ ≤ k1 exp(−k2t) for k1,k2 > 0
(13)

thereafter:

‖e(t)‖ → 0 when t→∞

A non-linear system can be linearized and
therefore treated as a linear system in a certain
region of the function domain. A particular case
is the photobioreactor which is a system where
its mathematical model is usually highly non-linear
but, under certain operating conditions, a robust
linear observer can estimate variables via output
feedback even deliver superior results in comparison
to highly complex non-linear techniques for specific
case studies as. This can be of a great interest to easy
design state estimators for multidisciplinary users in
diverse microalgae cultures and this will be presented
in the following chapters of this paper.

2.3 Preliminaries of mathematical model

This part describes dynamics of the microalgae growth
process in a photobioreactor culture in terms of the
Monod model. This formulation is one of the most
widely used in mathematical models for biochemical
problems. Although it is a non-linear model, it
represents sufficient information in the system without
being too complex for using the analytical tools
of automatic control. With the Monod model, it is
possible to represent any type of photobioreactor: open
lagoon, tubular, among others, independently of the
type of cultivation (batch, fedbatch or continuous).

2.3.1 A photobioreactor model

A photobioreactor is a biological active and regulated
system where photochemical and biochemical
processes are carried out using living organisms.
This system is sensitive to changes under ambient
conditions. Therefore, the optimal conditions of the
microalgae culture must be ensured, such as pH,
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light intensity, temperature, oxygen concentration and
carbon dioxide (Bernard, 2011; Zhang et al., 2018).
The following model of a photobioreactor in batch
phase is presented:

dx
dt

= r(s, pH,T,v.V,O2,CO2,CHl) · x (14)

ds
dt

= −m−1
3 µ(s, pH,T,v.V,O2,CO2,CHl) · x

x(t0) = x̂l s(t0) = s0 t ≥ 0
µ(·) = µ(s, pH,T,v.V,O2,CO2,CHl)

where s is the substrate (mg/L), x is a concentration of
biomass (mg/L), T the temperature of the bioreactor
(K), v the agitation rate (RPM), V the volume of the
reactor (L), m3 is stoichiometric constant (constant
of digestion), O2, CO2, CHl, oxygen concentration,
carbon dioxide and chlorophyll respectively (mg/L).
The r(·) = r(s, pH,T,v.V,O2,CO2,CHl) function is
a unwieldy non-linear function that represents
the complex growth rate of the photosynthetic
microorganism with frequency units (hr−1) . This
representation is usually very complicated, hence
it is necessary to make assumptions to develop a
mathematical model. This is shown in the following
condition.

Assumption 1. The growth rate r(·) may be the result
of the addition the following terms:

r(·) = µ(s) + β(·) (15)
β(·) = β(s, pH,T,v.V,O2,CO2,CHl)

µ(s) =
m1s

m2 + s

Where µ(s) is the growth rate expressed in Monod
terms and β(·) function is a bounded and unknown
function, such that:
1.-The parameters m1 = a1 ± d1 (hr−1) and
m2 = a2 ± d2 (mg/L) are Monod’s kinetic parameters
(a1 maximun exponential rate and a2 saturation
constant) and di are the maximum statistical
averages of possible disturbance or changes of these
parameters. Both may be variable over time due to
the high sensitivity that microalgaes can show in the
metabolism of the substrate (s).
2.-The β(·) function (hr−1) is a Lipschitz function in
the time, |β(·)| < k1t ∀ k1 > 0, therefore β(·) ∈C∞.

Remark. When the Monod parameters m1 and m2 do
not change in time, they are the nominal parameters of
the systems.

2.3.2 Continuous bioreactor model

General balance of matter for the operation of
a continous bioreactor is required, such that the
quantities associated to the input and output flows
must be included in each incremental change
expression.

dx
dt

= µ(s)x− u(t)x + β(·)x (16)

ds
dt

= −m−1
3 µ(s)x− β(·)x + u(t)(a4 − s)

µ(s) =
m1s

m2 + s
(17)

The above system of differential equations (16)
will be considered as the working model in this paper.
The dilution ratio of the feed u(t) = F/V (hr−1) is
considered as the flow rate (F) quotient of input and
output over the volume of the photobioreactor (V) and
represents the control input of the system and a4 is
feeding input concentration substrate (mg/L). In the
literature, it is usual for this type of system to use the
main state variable for the design of control laws (see
for example: Pimentel et al., 2015; Dewasme et al.,
2011). In this direction, a robust control law based on
variable biomass x(t) can be obtained on the control
variable urobust(t) for the cancellation of uncertainties
β(·), through natural bi-linearity properties of the
system (16).

dx
dt

= µ(s)x− urobust(t)x + β(·) (18)

urobust(t) = u(t)− β̂(·)

With a good estimation of the unknown function
β̂(·) ≈ β(·), this disturbance can be rejected and the
Monod’s typical behavior (18) is presented due to
absence of disturbances. This situation would help
greatly in order to use optimal control open-loop,
using dilution rate to optimize productivity biomass.
The Optimum productivity of a microalgae culture
(without disturbance effect) is defined as product of the
dilution ratio by concentration of the microorganism in
a stationary state (Dominguez-Bocanegra A., 2002):

P = u(t)xest

Where xest (mg/L) is biomass stationary equilibrium
point. Based on this, an optimal dilution rate is
proposed to maximize biomass productivity.

uopt(t) = a1(1−
√

a2

a2 + a4
) (19)
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Fig. 1. Schematic diagram of the Chained Observer.

2.3.3 A chained observer

This chapter of this paper deals with the design of a
robust type of linear observer for the particular case of
the nonlinear system shown (1) for R2. The dynamics
of a linear system (11) can be modified in such a way
that it can follow the dynamics of another system, i.e.
design a Trajectory Tracking Control (T.T.C.). Based
on this, a virtual T.T.C. (uv(t)) can be designed such
that a linearized system (11) follows dynamics of
original non-linear system (1), even in presence of
disturbances or moving away from equilibrium point.
For this virtually controlled system can be design a
state observer, resulting finally in sum of 2 linear
systems interconnected, this will be treated below.

Let a particular case of the system (1) be in the
following equation for R2:

·
x = f (x) + g(x)(u(t) + β(·)) (20)

ynl = Cx

Assumption 2. The previous system (20) contains soft
and limited functions f (x),g(x) ∈ R2 such that:
1.- lim

t→inf
f (x) = fest

2.- lim
t→inf

g(x) = gest

3.- fest , gest ∈ R
2 are vector constants.

In some systems, assumption 2 is fulfilled
in certain systems (Rodriguez-Mata et al., 2015;
Bernard, 2011), such as in the case of chemical,
biochemical and biological systems and for all types
of systems that converge at the point of natural
equilibrium (xeq). In this sense, the system (20) can
be represented as a linear system (2) using the Taylor
approach (Jacabian matrix) in an equilibrium point
(xest) in addition to aforementioned virtual T.T.C.

Let the following linear system be:

ẋl = Axl + buv(t) (21)
yl = Cxl

where xl ∈ R
2 is state vector, A ∈ R2x2 is a Jacobian

matrix respect to state matrix of non-linear system
(20), b ∈ R2 is a Jacobian matrix respect to input
of non-linear system (20), yl is the output and C is
the otoput matrix. The following linear observer is
proposed for linearized system (21):

˙̂xl = Ax̂l + buv(t) + Ke0 (22)
yl = Cx̂l

eo = x̂l − xl

here x̂l ∈ R
2 is vector of estimated states, K is a gains

Hurwitz matrix and eo is observer error. An important
element to use is defined below.

Definition 2.5. Total Output Injection Error
When in a system (20) it is not possible to access
all measurements from all states, it is said that Total
Output Injection Error (eT ) is difference between
measurable states (ynl = Cx, via sensors) and observer
(22).

eT = Cxl − ynl = C(xl − x) (23)

Remark. In a system of type (20) where x ∈ R2.
For instance if it has an output matrix C = [1 0],
x = [x1 x2]T and a linear observer as (21). Then it is
obtained:

eT =
(
1 0

) (x̂1
x̂2

)
−

(
1 0

) (x1
x2

)
= x̂1 − x1. (24)
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The main problem in this section is the possibility
of estimating x of (20) under the presence of uncertain
disturbance terms β(·). Then, this disturbance function
is estimated and rejected via uv(t). For this purpose,
interconnection of a virtual T.T.P. control (uv(t)),
a linearized system (21) and a linearized system
observer (22) is proposed. This interconnection is
called the Chained Observer. This result is shown in
following system:

ẋl = Axl + buv(t) (25)
˙̂xl = Ax̂l + buv(t) + Ke0

uv(t) = u(t)− β̂(·)
·

β̂(·) = κcε̇(t)

where:

ε = [eT

∫
eT dt]T

κc = [kp ki]T

The previous system (25) is chained via uv(t)
which is a form of PI control with saturation uv(t) =

u(t) + β̂(·) (in this work u(t) = uopt(t) within meaning
(19)). Estimation of uncertainty or disturbance β̂(·) is
based on an output feedback and the positive defined
gains kp,ki > 0. The stability of the state global error
(e = x− xl) is achieved using following main theorem
by R2 system.

Theorem 2.1. Chained Observer
Let system (25) be a Chained Observer of

the non-linear system (20). Then global error
e = x− xl presents Ultimated Bounded Stability only
if following conditions are fulfilled:

1. The pair (A,C) of (21) is completely observable
in the sense of (10).

2. The β(·) ∈C∞.

3. The K is a Hurwitz matrix.

4. The kp,ki are proportional and integral gain,
such that:

Γ =

(
bkp b
ki 0

)
is a Hurwitz matrix.

5. f (x),g(x),β(·) ∈C∞.

Proof. The following will prove stability of the
estimation error of the chained observer. This situation

is demonstrated via Lyapunov functions. Since two
linear systems are interconnected (25), it is possible
to use principle of separation. The proposed proof
methodology is divided into two parts: virtual control
stability proof and robust observation error.

a).- It is proposed an order of virtual tracking
control law stage( uv(t) of (25). Let ėT be and replacing
differents dynsmics (20) and (21) :

ėT = Cẋ−Cẋl

ėT = C( f (x) + g(x)u(t) + g(x)β(·)− Axl − buv(t))

In the same sense , in this paper it is proposed
that CΛ1(·) = f (x) + g(x)u(t) + g(x)β(·)− Axl, since
functions f (x), g(x), β(·) ∈ C∞ are soft functions. The
virtual control uv(t) shown (25) is replaced. Therefore:

ėT = CΛ1(·)−Cbuv(t)

uv(t) = u(t)− β̂(·)
·

β̂(·) = κT
c ε̇(t)

ε = [eT

∫
eT dt]T

κc = [kp ki]T

reducing:

ėT = CΛ(·)−Cb(−kpeT − ki

∫
eT dt)

Then:

ėT = CΛ(·)−Cb(−kpe−w)
ẇ = −kie

The General Tracking Error Function
(E = [eT w]T ) is used and Replacing coordinate
change on above expression, it is obtained:

Ė = ΓE + CΛT (·) (26)

Γ =

(
b1kp b1

ki 0

)
ΛT (·) =

(
CΛ(·)

0

)
where Γ is matrix of distribution is Hurwitz by
construction.
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The following function is proposed as a candidate
of Lyapunov and its derivative lowers the trajectories
of the (26) :

V = 0.5EP1ET

where P1 is a no negative symmetric matrix,
V̇ = ĖP1ET + EP1ĖT with ĖT = EPT

1 + ΛT
T (·) and

Ė = P1E +ΛT (·). The following is obtained:

V̇ = ET (ΓT P1 +ΓP1)E + 2ΛT (·)P1E

Since Γ is Hurwitz, then matricial Lyapunov
equation is obtained ET (ΓT P1 + ΓP1)E = −Q1,
bounded due to Liszchtz condition of ‖2ΛT (·)P1E‖ ≤
2hλmax(P1) = b for any ‖ΛT (·)‖ < h. Then,it is possible
to limit in same sense of A. Rodriguez-Mata et al.
(2015):

V̇ ≤ −λmax(Q1)‖E‖2 + b‖E‖

V̇ ≤ −λmax(Q1)‖E‖
(
‖E‖ −

b
λmax(Q1)

)

For values of b smaller than λmax(Q1) where Q1
is a solution matrix matrix of the Lyapunov matrix
equation.
Virtual tracking control maintains the error eT
with a ultimated bounded stability with a ratio of
convergence ball as a function of λmax(Q1) in the sense
Khalil (2002b).

b).- The test stage of the observer between the
linearized system and Luenberger linear observer part
(22). Let linear system and observer system be:

ẋl = Axl + burobust(t) (27)
˙̂x0 = Ax̂l + burobust(t) + Ke0

The estimation of states error is proposed:
eo = xl − x̂l. Through the dynamics of this error,
ėo = ẋl − ˙̂x0 is obtained. The observer and linearized
plant are replaced such that:

ėo = Axl − Ax̂l −Ke0 (28)
ėo = AKe0

AK = A−K

with V(t) = −0.5eT
0 P2e0 and using the derivative

with respect to the trajectories of V(t), the following
equations are obtained:

V̇(t) = −ėT
0 P2e0 − eT

0 Pė0

V̇(t) = −eT
0 (AT

K P2 + P2AK)e0

If the K matrix is chosen properly such that AK is
Hurwitz matrix AT

K P2 + P2AK = −Q2, the error eo is
asynthically stable with function of Q2 solution of the
algebraic matrix of Lyapunov.

V̇(t) = −λmax(Q2)‖e0‖
2

�

The stability of the chained observer has been
demonstrated. By using the principle of separation
in the chained observer, it can be argued that the
system is total stable, from a practical stability point of
view (Khalil, 2002b). Therefore unavailable variable
of the non-linear system is estimated. The following
techniques will be used in the estimation of states in
models of photobioreactors.

2.4 Chained observer for a photobioreactor

Since stability was proved stability of the two main
interconnections. The chained observer will allow to
measure some state or variables of the photobioreactor
that are not available in the output. Some difficult
variables are measured online in a photobioreactor.
In this case, these variables are used to estimate the
growth rate and the remanent substrate or nutrients of
the culture. In order to achieve this, it is necessary
to obtain the linearized model of (16) by using
the Jacobian matrix evaluated on the variables and
parameters in equilibrium. It is proposed a study a
method in order to generate a linealization for any
point of equilibrium xest = [xest sest]T and u(t) = uest
such as:

ẋl = Alxl + blul (29)
yl = Clxl
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where :

A =

(
α1 α2
α3 α3

)∣∣∣∣∣∣
equili

b =

(
b1
b2

)∣∣∣∣∣∣
equili

α1 =
(a1sest)

(a2 + sest)
− uest

α2 =
(a1sest)

(a2 + sest)
−

(a1sest xest)
(a2 + sest)2

α3 =
(a1sest)

a3(a2 + sest)

α4 =
(a1sest xest)
(a2 + s)2 −

(a1sest)
a3(a2 + sest)

− uest

b1 = −xest

b2 = a4 − sest

Cl = [1 0]

where the state linear is defined as xl = [x − sest
s− sest]T and ul = u(t)− ueq. Generally, the stationary

state is the operation region where a photobioreactor
is intended to work for a culture. The stability of
this process depends entirely on the dynamics of
the optimum dilution rate, which can be checked by
calculating the eigenvalue of the linear matrix of (29).

With the above, it is possible to verify the
negativity of eigenvalues (30), where the stability of
the operating point depends directly on the u optimal.
In this work uest was calculated using the equation
shown in (19). It is proposed that the only measurable
variable is biomass, therefore yl = Clx with C = [1 0].
In the Monod model shown in (16), the term β(·)
is unknown. This term cannot be quantifiable and
is taken as an uncertainty variable that cannot be
modelled on the chained observer.

Some aquatic photosynthetic organisms such
as microalgae have environmental applications in
water treatment, generally as part of a tertiary
wastewater treatment. In Dominguez-Bocanegra A.
(2002), the elimination of nutrients (total phosphorus,
orthophosphates and ammonia nitrogen) in wastewater
is studied by using the microalgae Spirulina maxima.

The eigenvalues of Al are:

λ1 = −uest (30)

λ2 = −
(a3s2

estuest + a1a2xest − a1a3s2
est + a2

2a3uest + 2a2a3sestuest − a1a2a3sest)

(a3a2
2 + 2a3a2sest + a3s2

est)

In this work, a wastewater treatment is modeled via
a Monod Model. Wastewater samples were obtained
from the Río de los Remedios, located in the
municipality of Ecatepec, State of Mexico, Mexico.

The following values for Monod parameters were
used: a1 = 0.027hr−1, a2 = 25mg/L, a3 = 3.45,
a4 = 205.4mg/L, s0 = 152mg/L, x̂l = 35mg/L, xequili.
The following microalgae Spirulina maxima model is
obtained:

dx
dt

= µ(s)x− uopt(t)x (31)

ds
dt

= −
1

3.45
µ(s)x + uopt(t)(205.4− s)

µ(s) =
0.027s
25 + s

uopt(t) = 0.027(1−

√
25

25 + 205.4
) = 0.018

where uopt(t) is the optimal dilution rate shown in (19).

The linearization of the previous system is obtained
via stationary states of the variables xest = 445(mg/L),
sest = 4545(mg/L) and uopt

est (t) = 0.018(hr−1).
Calculating the Jacobian matrices via (29) and

reducing it is obtained a observer chained for the
previous system:

ẋl = Axl + buv(t) (32)
˙̂x0 = Ax̂l + buv(t) + Ke0

yl = Clxl

uv(t) = 0.018− β̂(·)
·

β̂(·) = κcĖ(t)

with A =

(
0 0.0624

−0.0052 −0.0361

)
,

b =
(
−519.30 150.58

)T
and Cl = [1 0]. Fulfilling

conditions indicated in Theorem 1 and calculating in
turn the matrix of distribution Γ. The proportional and
integral gains were chosen based on stability (26).
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Sucha that Γ will be a Hurwitz matrix:

Γ =

(
(b1c1 + b2c2)kp (b1c1 + b2c2)

ki 0

)
(33)

∀c1 = 1,c2 = 0→ ΓC=[1 0] =

(
−519.30kp −519.30

ki 0

)
Such that all eigvalors must be strictly negative for

the above Hurwitz matrix, as follows:

λΓ1 = −259.65kp −
1
2

√
2.6967× 105k2

p − 2077.2ki

λΓ2 =
1
2

√
2.6967× 105k2

p − 2077.2ki − 259.65kp

The proportional and integral gains were
kp, ki = 0.1→ λΓ1 = −50.2,λΓ2 = −1.02. Therefore,
matrix fulfills the condition of Theorem 1. Finally,
the calculation of matrix K is obtained by calculating
values of matrix Ak = A−K :

K =

(
100 0

0 100

)
→ Ak =

(
0 0.0624

−0.0052 −0.0361

)
−

(
100 0

0 100

)
λAk1 = −100.01,λAk2 = −100.03

The matrix Ak is Hurwitz with the gains kp,
ki = 0.1. The robust chained observer shown in (32)
is an observer with practical stability for the model of
a photobioreactor (31).

3 Results and discussion

3.1 Numerical simulation results

A numerical study is proposed for the simulation
of a Spirulina maxima microalgae culture under
the parameters shown in the previous section
(see Dominguez-Bocanegra A., (2002)). Nutrient
estimation (substrate) is verified by comparing the
Chained Observer shown in (32) with classical non-
linear results in (35):

With high gain matrix has the following structure
already well studied:

S∞ =

[
θ−1 −θ−2

−θ−2 2θ−3

]
(34)

S∞ ∈ R2x2 is a positive definite symmetric matrix
which is the solution of 0 = −hS∞ − AT

o S∞ −
S∞ Ao + CT C through a diffeomorphism and its anti-
defeomorphism the next observer of the plant can be
obtained (Gauthier et al., 1992):


·

x̂1
·

x̂2

 =

 (µ(ŝ)−D)x̂− 2θ e(t)

−
µ(ŝ)
a3

x̂ + (−ŝ + a4)D + ( 2θ ŝ(a2−ŝ)
a2 x̂ −

θ2(a2−ŝ)2

a1a2 x̂ ) e(t)


(35)

µ(ŝ) =
a1 ŝ

a2 − ŝ
e(t) = x̂− x

Based on the parameters suggested by
Dominguez-Bocanegra A. (2002), previous system
can be expressed as follows:


·

x̂
·

ŝ

 =

 (µ(ŝ)− 0.018)x̂− 2 e(t)

−
µ(ŝ)
3.45 x̂ + (−ŝ + 205.4)0.018 + ( 20ŝ(25−ŝ)

25x̂ −
100(25−ŝ)2

0.675x̂ ) e(t)


µ(ŝ) =

0.027ŝ
25− ŝ

e(t) = x̂− x

θ = 10 (36)

The high gain observer (HG) shown above has
been widely used in the literature. This usually has
the problem of requiring a complete knowledge of
the system, i. e. if nominal parameters are constant
or variable. These situation are usually reflected in
problems during the estimation. In this work, chained
observer (32) was insensitive to a possible change
of the parameters a1 and a2 and showed a better
performance than classical HG, as it is shown in (35).

Fig. 2. Parameter dynamics a1(hr−1).
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Fig. 3. Parameter dynamics a2(mg/L).

Fig. 4. Parameter dynamics of biomass.

Therefore, a simulation was carried out in Matlab
7.10 Simulink environment through Dorman-Price
numerical method, with a fixed step of 0.001 and
1200 hours of culture process time of Spirulina
maxima. A change in Monod’s parameters (a1,a2)
is proposed (see to figure 2 y 4). In addition, an
output signal with Gaussian noise (sensor dynamics) is
proposed in such a way that it recreates real conditions
(Figure 4).

Numerical simulation is shown in figure 5. These
results demonstrated that the chained observer (25)
was superior to a non-linear HG observer because the
chained observer is insensitive to the changes in the
operating parameters shown in (figure 5) even though
the technique is relatively much less complex than the
HG from a point of view of automatic control theory.

Fig. 5. Parameter dynamics of sustrate mg/L.

Fig. 6. Parameter dynamics of sustrate mg/L.

Fig. 7. Parameter dynamics of sustrate mg/L.
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For a better analysis of the effectiveness of
the proposed technique, a root mean square (RMS)
analysis is proposed. With the aim of a more crucial
analysis, an analysis with noise and another without
noise is shown, since as we know, the noise in the
signal increases significantly the REM, this with the
aim of a better comparison.

It is easy to see that based on these results in
the RMS calculation, that the chained observer is
superior without noise to the high gain observer, it is
also possible to see the most known disadvantages of
the high gain value, in the appreciation of the noise
at the output the RMS grows critically while in the
chained observer remains within much lower ranges
(see figures 7 and 8).

Conclusions

This paper deals with the study of a photobioreactor
modeling, with some environmental disturbances and
the common problems present while using analytical
tools for photobioreactor control. It was demonstrated
that observers can have a great application to
multidisciplinary tasks such as estimating variables
that can not be measured on-line through common
methods, such as nutrients in a microalgae culture. A
special type of observer was proposed for biological
systems, the so-called Chained observer. Under certain
conditions, this observer presented better results than
the HG nonlinear control. Dynamic nutrient estimation
was tested in a wastewater treatment model using
Spirulina maxima culture. The chained observer
supported the control of microalgae cultivation
process, which can be extended to other cultures
and/or types of photobioreactors.

References

Benavides, M., Coutinho, D., Hantson, A.-L., Impe,
J. V., & Wouwer, A. V. (2015). Robust
luenberger observers for microalgal cultures.
Journal of Process Control 36, 55-63. Doi:
https:/ / doi.org/10.1016/ j.jprocont.2015.09.005

Bernard, O. (2011). Hurdles and challenges for
modelling and control of microalgae for CO2
mitigation and biofuel production. Journal of
Process Control 21, 1378-1389. Retrieved from

http://www .sciencedirect.com/science/article/pi
i/S0959152411001533 (Special Issue:Selected
Papers From Two Joint IFAC Conferences:
9th International Symposium on Dynamics
and Control of Process Systems and the
11th International Symposium on Computer
Applications in Biotechnology, Leuven,
Belgium, July 5-9, 2010.) Doi: https://doi
.org/10.1016/ j.jprocont.2011.07.012

Cañedo, J. C. G., & Lizárraga, G. L. L. (2016).
Considerations for photobioreactor design and
operation for mass cultivation of microalgae.
Retrieved from http://dx.doi.org/10.5772/63069
doi: 10.5772/63069

Celikovsky, S., Torres-Munoz, J., Rodriguez-
Mata, A., & Dominguez-Bocanegra, A. R.
(2015, Oct). An adaptive extension to high
gain observer with application to wastewater
monitoring. In 2015 12th international
conference on electrical engineering,
computing science and automatic control (cce)
(p. 1-6).

del Rio-Chanona, E. A., Liu, J., Wagner, J. L.,
Zhang, D., Meng, Y., Xue, S., & Shah,
N. (2018). Dynamic modeling of green
algae cultivation in a photobioreactor for
sustainable biodiesel production. Biotechnology
and Bioengineering 115, 359-370. Retrieved
from http://dx.doi.org/10.1002/bit.26483 doi:
10.1002/ bit.26483

Dewasme, L., Coutinho, D., & Wouwer, A.
V. (2011). Adaptive and robust linearizing
control strategies for fedbatch cultures
of microorganisms exhibiting overflow
metabolism. In: Informatics in Control,
Automation and Robotics. J. A. Cetto, J.-L.
Ferrier, & J. Filipe (Eds.) 283-305. Berlin,
Heidelberg: Springer Berlin Heidelberg.

Doko, M. L. (2017). The application of
adaptive luenberger observer concept in
chemical process control: An algorithmic
approach. AIP Conference Proceedings
1840, 070002. Retrieved from https://aip
.scitation.org/doi/abs/10.1063/1.4982291 doi:
10.1063/1.4982291

Dominguez-Bocanegra A., J. A.-M. (2002).
Estudio teórico práctico de la remoción de
contaminantes presentes en el río de los

www.rmiq.org 285



Rodríguez-Mata et al./ Revista Mexicana de Ingeniería Química Vol. 18, No. 1 (2019) 273-287

remedios, Estado de México. Ingeniería
Hidraulica en México 24, 81-91.

Farza, M. (2014). Adaptive observers for a
class of uniformly observable systems with
nonlinear parametrization and sampled outputs.
Automatica 50, 2951-2960.

Gauthier, J. P., Hammouri, H., & Othman, S.
(1992, Jun). A simple observer for nonlinear
systems applications to bioreactors. IEEE
Transactions on Automatic Control 37, 875-880.
doi: 10.1109/9.256352

Hussain, S. (2015). On some soft functions.
Mathematics Science Letters 4, 55-61. doi:
http://dx. doi.org/10.12785/msl/040112.

Junker, B., & Wang, H. (2006). Bioprocess
monitoring and computer control: Key roots
of the current pat initiative. Biotechnology
and Bioengineering 95, 226-261. Retrieved
from http://dx.doi.org/10.1002/ bit.21087 doi:
10.1002/ bit.21087

Khalil, H. (2002). Nonlinear Systems. Prentice Hall.
Retrieved from https://books.google.com.mx/bo
oks?id=t d1QgAACAAJ

Liu, J., Vazquez, S., Wu, L., Marquez, A., Gao, H.,
& Franquelo, L. G. (2017, Jan). Extended state
observer-based sliding-mode control for three-
phase power converters. IEEE Transactions
on Industrial Electronics 64, 22-31. doi:
10.1109/TIE.2016.2610400

Lyubenova, V., Junne, S., Ignatova, M., & Neubauer,
P. (2013). Software sensor design considering
oscillating conditions as present in industrial
scale fed-batch cultivations. Biotechnology
and Bioengineering 110, 1945-1955. Retrieved
from http://dx.doi.org/10.1002/bit.24870 doi:
10.1002/ bit.24870

Myers, N. (2002). Environmental refugees:
a growing phenomenon of the 21st
century. Philosophical Transactions of the
Royal Society of London B: Biological
Sciences 357, 609-613. Retrieved from
http://rstb.royalsocietypublishing.org/content/35
7/1420/609 doi: 10.1098/ rstb.2001.0953

Ooms, M. D., Graham, P. J., Nguyen, B., Sargent,
E. H., & Sinton, D. (2017). Light dilution via

wavelenght management for efficient high-
density photobioreactors. Biotechnology and
Bioengineering, 114, 1160-1169.Retrieved
from http://dx.doi.org/10.1002/bit.26261 doi:
10.1002/ bit.26261

Pimentel, G. A., Benavides, M., Dewasme,
L., Coutinho, D., & Wouwer, A.
V. (2015). An observer-based robust
control strategy for overflow metabolism
cultures in fed-batch bioreactors. IFAC-
PapersOnLine 48, 1081-1086. Retrieved from
http://www.sciencedirect.com/science/article/pii
/S2405896315011933 (9th IFAC Symposium
on Advanced Control of Chemical Processes
ADCHEM 2015) doi: https://doi.org/10.1016/j.if
acol.2015.09.112

Rodriguez-Mata, A., Lopez, R., Martinez-Vasquez,
A., Salazar, S., Osorio, A., & Lozano, R. (2015).
Robust control with disturbance observer for
uav translational tracking. In: 2015 Workshop
on Research, Education and Development of
Unmanned Aerial Systems (red-uas) (419-423).

Rodriguez-Mata, A. E., Torres, J., Dominguez, A.,
Flores, F., & Rangel, G. (2016). Nonlinear
robust control for a photobioreactor in presence
of parametric disturbances. Revista Mexicana de
Ingeniería Química 15, 985-993.

Rodríguez-Mata, A., Torres-Muñoz, J., Domínguez,
A. R., Hernandez-Villagran, D., & Celikovsky,
S. (2011, Oct). Nonlinear high-gain observers
with integral action: Application to bioreactors.
In: 2011 8th international conference
on electrical engineering, computing
science and automatic control (1-6). doi:
10.1109/ICEEE.2011.6106611

Singh, R., & Sharma, S. (2012). Development of
suitable photobioreactor for algae production
− a review. Renewable and Sustainable
Energy Reviews 16, 2347-2353. Retrieved from
http://www.sciencedirect.com/science/article/pii
/S1364032112000275 doi: https://doi.org/10.101
6/ j.rser.2012.01.026

Yun, Y.-S., & Park, J. M. (2003). Kinetic modeling
of the light-dependent photosynthetic activity
of the green microalga Chlorella vulgaris.
Biotechnology and Bioengineering 83, 303-311.
Retrieved from http://dx.doi.org/10.1002/bit.10
669 doi: 10.1002/ bit.10669

286 www.rmiq.org



Rodríguez-Mata et al./ Revista Mexicana de Ingeniería Química Vol. 18, No. 1 (2019) 273-287

Zhang, Y., He, S., & Simpson, B. K. (2018).
Enzymes in food bioprocessing−novel
food enzymes, applications, and related
techniques. Current Opinion in Food
Science 19, 30-35. Retrieved from

http://www.sciencedirect.com/science/article/pii
/S2214799317300838 doi: https://doi.org/10.101
6/ j.cofs.2017.12.007

www.rmiq.org 287


	 Introduction
	Materials and methods
	Preliminary observer theory 
	 Linear Observer
	Preliminaries of mathematical model
	Chained observer for a photobioreactor

	Results and discussion
	Numerical simulation results


