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Abstract
In this paper, the problem of fault diagnosis in complex industrial systems in the presence of missing data is addressed. Firstly,
how to perform online imputation when there are missing values in the observations obtained by the data acquisition system is
presented. Later, the possibility to apply advanced statistical techniques as Sequential Regression Multiple Imputation, Singular
Value Decomposition, Local Least Squares Imputation and k- Nearest Neighbors as examples of possible tools to be used in the
online imputation is displayed. In addition, the effects on the fault diagnosis process, when using these statistics tools to estimate
the missing data are analyzed. A Neural Network Multi-layer Perceptron for the fault diagnosis system was used. The study was
done using the Tennessee Eastman benchmark process. The results show the viability of the proposal. Keywords: missing data,
online imputation, statistical techniques, fault diagnosis, industrial process.

Resumen
En este trabajo se presenta una propuesta de diagnóstico de fallos en sistemas industriales complejos cuando en el proceso de
adquisición de datos se produce pérdida de información. Primeramente se presenta cómo realizar la imputación en línea cuando
hay valores de variables perdidas en cada observación que es obtenida por el sistema de adquisición de datos. Posteriormente se
presenta como aplicar las técnicas estadísticas de Imputación Múltiple con Regresión Secuencial, Descomposición en Valores
Singulares, Mínimos Cuadrados Locales y k-Vecinos más Cercanos como ejemplos de posibles herramientas a utilizar en la
imputación en línea. También se analizan las afectaciones que se producen en el proceso de diagnóstico de fallos cuando se
utilizan estos métodos para estimar las variables perdidas. Como herramienta para el diagnóstico se utilizó una Red Neuronal
Perceptrón Multicapa. El estudio se realizó utilizando el proceso de prueba Tennessee Eastman y sus resultados muestran la
viabilidad de la propuesta.
Palabras clave: pérdida de información, imputación en línea, herramientas estadísticas, diagnóstico de fallos, procesos
industriales.

1 Introduction

As industries develop and the processes taking place
in them become more complex, the necessity to
automatically detect the faults affecting the industrial
systems have increased. In addition, it is very
important the location and identification of them
to counteract their negative consequences on the
processes.

From the point of view of plant safety, the fast
and efficient diagnosis of faults has become a very
important task, since their occurrence in processes of
medium or large magnitude can cause great economic,
environmental and human losses (MacGregor and
Cinar 2012, Prieto-Moreno et al. 2013, Zhang et al.
2013, García-Morales et al. 2015, Téllez-Anguiano et
al. 2016). For that reason, it is fundamental the training
of technical personnel in this regard (Castello et al.
2015).
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From the knowledge of the process in its normal
operation mode, the objective of the fault diagnosis
methods is to analyze the behavior of the process
in order to determine if it corresponds to its normal
operation state or another known state characterized
by the presence of a fault. (Zhang et al. 2013, Téllez-
Anguiano et al. 2016). The development of digital
instrumentation, industrial networks and Supervisory
Control and Data Acquisition (SCADA) systems,
allow storing a large volume of data from industrial
processes, which permit the use of fault diagnosis
methods based on historical data. These methods are
very advantageous in very complex processes where
it is very difficult to obtain models that represent
their operation satisfactorily (Venkatasubramanian et
al. 2002).

It is well known that methods based on historical
data are affected by missing information (Walczak and
Massart, 2001a; Walczak and Massart, 2001b; Nelson
et al., 2006). In the case of the chemical industries,
there are some aspects that may cause incomplete data
sets (Askarian et al. 2016). Therefore, it is necessary
to address this problem with the aim of having robust
fault diagnosis in order to avoid false alarms and
obtain reliable fault diagnosis systems (Askarian et al.,
2016; Severson et al., 2017). The treatment of missing
data has become a fundamental requirement when
monitoring the process state. An incorrect treatment
of them can cause great errors or false results in the
classification process (Nelson et al., 2006; Zhang et
al., 2013). In some articles as García-Laencina et al.
(2010), Luengo et al. (2012a), Askarian et al. (2016),
and Severson et al. (2017) this subject is analyzed, and
it is considered as a very common current problem.
Then, in order to achieve a satisfactory performance
in fault diagnosis systems, it is necessary to select
the techniques to be used to deal with the missing
information.

Several methods for the treatment of missing
data have been proposed in the scientific literature
(Raghunathan et al. 2001, Little and Rubin 2002, Li
et al. 2004, García-Laencina et al. 2010, Jerez et al.
2010, Luengo et al. 2012a, b, Askarian et al. 2016,
Sovilj et al. 2016 and Severson et al. 2017). The main
methods according to García-Laencina et al. (2010)
are:

• Ignoring and eliminating incomplete data: only
data that is complete is used.

• Imputing or estimating missing data using
statistical or computational intelligence tools.

• Model based on the distribution of the data.

• Learning Machines: procedures where the
missing values are incorporated into the
classifier.

After studying these techniques, it was concluded
that the elimination of the observation with missing
variables and the imputation of the missing values
are the most used techniques to treat the missing
data in the fault diagnosis systems. From these two
variants, the most recommended in the literature
consulted is the imputation, which estimates the
missing values using the information available and
does not eliminate observations that may contain
important information for the diagnostic work
(García-Laencina et al.2010, Askarian et al. 2016,
Severson et al. 2017).

In the large number of studied papers that address
this issue, a common characteristic of the methods
used to carry out the imputation is the necessity of
having a set of observations of the process (data
matrix), some of them with missing data. With
the data matrix formed, the imputation is made to
estimate the missing values in the data matrix using
fundamentally, the relationship among the variables.
When the imputation process is finished, the complete
data matrix is obtained. This result enables to begin
the classification of the observations that form the
data matrix for the fault diagnosis system. The latter
implies the need to store a set of observations that
cannot be classified by the diagnostic system until the
imputation process is developed.

The previous approach establishes a key question
about its effectiveness as follows:

If it is necessary to wait until having a set of
observations stored in order to have the minimum data
matrix that allows applying the imputation methods,
then it is possible that in the time used to accumulate
these observations, a fault could occur and the fault
diagnosis system might not early detect it.

In the case of the modern industrial systems where
the demands of efficiency, quality and safety are very
high, the aforementioned procedure implies a hard
limitation. The imputation of the missing variables of
an observation obtained from the process must be done
online and with strict time requirements determined
by the sampling time that has been established in
the data acquisition system. Taking into account the
above-mentioned, the main objective of this paper is
to propose a procedure to carry out the imputation
process online for each observation obtained by
the data acquisition system which will permits its
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immediate classification by the fault diagnosis system.
In the paper, it is also analyzed how to apply a group
of effective statistical tools widely used for imputation
in large databases (Sequential Regression Multiple
Imputation, Singular Value Decomposition, Local
Least Squares Imputation and k- Nearest Neighbors).
A comparative analysis of the results obtained, the
influence of the imputation process on the subsequent
classification process, and the time requirements for
the online imputation process is also presented in this
paper. The main contributions of this paper are the
following:

1. A proposal of procedure to estimate online the
missing data for each observation obtained from
the data acquisition system.

2. The implementation of the highly effective
statistical methods to carry out the on-line
imputation for each observation obtained with
missing variables in the fault diagnosis system.
In addition, a comparative analysis of the
performance of these imputation tools is made.

It was not an objective of this paper to compare
some classification tools. A Multilayer Perceptron
Neuronal Network (MLP) was used as a classifier
because it has been identified as one of the
computational intelligence tools with better results
in classification processes in the scientific literature
(Patan et al. 2008). The structure of this paper is
as follows, in the Materials and Methods section,
the proposed procedure for the estimation online of
the missing data for each observation obtained, the
general characteristics and operation of the imputation
techniques used in this paper (SRMI, SVD, LLSI,
k-NN), the Neural Network Multilayer Perceptron
as a classification tool and the Tennessee Eastman
Process benchmark to evaluate the proposed procedure
are presented. The Experiments and Results section
shows the experiments developed and the analysis
of the obtained results. Finally, conclusions and
recommendations for future researches are exhibited.

2 Materials and methods

2.1 Proposed scheme for the online
imputation process

When the data acquisition system obtains an
observation from the process, the first step in the

diagnostic system is to analyze if it has the complete
information or not.

In case that the observation is complete,
the diagnostic system classifies it otherwise: the
imputation process is performed to estimate the
missing values. Afterwards, the completed observation
is classified. This procedure is carried out for each
observation that is obtained from the process.

In this way, it is ensured that each observation
received is classified either immediately or after
imputation process if it has missing variables.

2.2 Database for training supervised
classification tools

It has been reported in the scientific literature
the need of performing a previous offline training
when supervised diagnostic tools in fault diagnosis
systems are used. For this training, a database
containing the necessary number of observations
representative of the normal operating state and each
one of the fault states is needed (Watanabe et al.
1989, Venkatasubramanian and Chan 1989). Several
methods have been developed in order to build a
training database. The selection of a specific method
depends on the nature of the process. In general,
these training databases can be divided into two
major groups according to the way they are generated
(Leonhardt and Ayoubi 1997):

• Databases generated analytically

• Databases generated in a heuristic form
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Fig. 1. Flowchart of the on-line imputation and
diagnosis.
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The databases generated analytically are based on
the measurements and those generated in a heuristic
form are based on the observations of human operators
(Leonhardt and Ayoubi 1997).

In this paper, it is assumed the existence of a
training database E ∈ Ri×p composed of vectors
Obi = {v1,v2, ...,vp} of p variables where i = 1, ..., f .
The f observations are needed to characterize
adequately, taking into account the type of process, the
normal operating state and each one of the fault states.

This training database is used in the offline training
of the supervised classification tools and in the online
imputation process to estimate the missing variables.
The last constitutes one of the key proposals in the
main contribution of this paper.

2.3 Sequential regression multiple
imputation

Sequential Regression Multiple Imputation (SRMI)
has emerged as a popular approach for handling
incomplete data with complex features. In this
approach, imputations for each missing variable are
produced cyclically based on a regression model using
other variables as predictors. As an unsupervised tool,
it does not need previous off-line training and is being
widely used for its satisfactory results (Raghunathan
et al. 2001).

The basic strategy relies on creating imputations
through a sequence of regressions. The type of
regression depends on the variable that will be
imputed, and the objective of the algorithm is to find
the correlation between the variables (Raghunathan et
al. 2001).

Next, the general characteristics of the algorithm
are presented.

Let M ∈ Rm×n be a data matrix of m observations
of n variables each one. The columns of the matrix
M are reordered such that the variables with missing
information are grouped in a sub-matrix Y ∈ Rm×k of k
column vectors Z j where j = 1, ...,k, and the variables
with the complete information are grouped in a sub-
matrix X ∈ Rm×(n−k) of n − k columns. The reordered
matrix M can be represented as (Z1,Z2, · · · ,Zk,X).
From here, the correlation coefficients of each variable
Z j with missing data and the variables with full
information are calculated. Taking into account these
correlation coefficients, the variables with missing
data are ordered from the most correlated to the
least correlated, being ordered in a sub-matrix
Y = [Y1,Y2, · · · ,Yk].

In the initial iteration, the imputation is developed
using a regression model, according to the following
conditioned distributions:

Y1|X

Y2|X,Y1

Y3|X,Y1,Y2

...

Yk |X,Y1,Y2,··· ,Yk−1

First, the regression of the most correlated
variable, Y1, is performed on X. Once a prediction
of Y1 has been obtained, this variable is incorporated
into the X matrix of complete variables and the matrix
[X;Y1] is obtained. Later, the regression of Y2 (second
best correlated) on [X;Y1] is performed, and so on
until the missing values of the variable Yk are imputed.
At the end of the first iteration, there are not missing
values in any variable.

In the following iterations, this initial iteration is
repeated, but all variables are included because they
have no missing values:

Y1|X,Y2,··· ,Yk

Y2|X,Y1,Y3,··· ,Yk

Y3|X,Y1,Y2,Y4,··· ,Yk

...

Yk |X,Y1,Y2,··· ,Yk−1

Since the SRMI algorithm is iterative, it is
necessary to establish the stop criteria. For this paper,
two stopping conditions were established:

• Error ε < β where the value of β is set by
the experts, and ε = Miter

i − Miter−1
i is the

error calculated from the difference between the
observation obtained from the imputation in the
current iteration and the observation obtained in
the previous iteration.

• The maximum number of iterations Itermax is
reached.

Note that this imputation method requires the
existence of a data matrix to carry out the imputation.
The training database previously established and
mentioned in subsection 2.1 will be used to apply this
imputation method offline.
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Fig. 2. Example of database to perform the imputation
using SRMI algorithm to an observation with two
missing variables.

The use of the training database guarantees
the best conditions considering the number of
observations representing each state, and the quality
of these observations which is fundamental to obtain
high performances of the imputation algorithms.

When a new observation is received, it is analyzed
to determine if there are missing data. If the
observation does not have missing data, it is classified
by the diagnostic system. If the observation has
missing data, it is added as the last row to the training
data matrix to perform the imputation. Fig. 2 shows
an example of the M ∈ Rm×n when it is built with
the training database and an observation that arrives
missing the values of the variables 1 and 2. In this case
m = f + 1, n = p and k = 2.

To develop the imputation online, it is proposed the
following procedure:

1. An observation Obi ∈ R
1×n with k missing

data is received online. The missing variables
are eliminated in the new observation. Using
the variables available, the distance of the
new observation to the center of each
class represented in the training database
is calculated. The minimum distance is
determined, and with this, the class to which
the new observation will be associated. With
the r observations belonging to that class in the
training data matrix, a new sub-matrix N ∈ Rr×n

of a small dimension is formed, and it will be
used to perform the imputation process. This
simplifies the computational complexity of that
process.

2. The new observation with missing data is added
as the last row of the matrix N by forming the

matrix N′ ∈ R(r+1)×n.

3. As it was previously presented, the imputation
process is performed by using matrix N′.

4. Once all the missing values have been
estimated, the observation is classified using the
diagnostic system classification tool.

Remark: It is possible that the diagnostic tool
classifies the observation with estimated data in a
class different from the one used for the imputation.
This could be explained by the degree of overlapping
among the classes in the observation space.

2.4 Singular value decomposition

The imputation method based on the Singular Value
Decomposition (SVD) was proposed in Troyanskaya
et al. (2001), and it has been used effectively to
impute missing data (Wang et al. 2014). As supervised
tool, it needs previous offline training using the
training database that has been built. SVD is a matrix
factorization which allows determining the singular
values of any matrix.

Consider the complex matrix A ∈ Cm×n and its
decomposition into singular values:

A = UΣVT (1)

where U ∈ Cm×m is an orthogonal matrix, V ∈ Cn×n

is an orthonormal matrix and Σ ∈ Cm×n is a diagonal
matrix whose non-zero elements in the main diagonal
are the singular values σi ordered decreasingly. The
column vectors of U are known as singular vectors by
the left of A, and the column vectors of V as singular
vectors by the right of A.

The imputation based on singular value
decomposition has been used successfully to estimate
the values in DNA microarrays (Troyanskaya et al.
2001) and in genetic interaction data (Wang et al.
2014). It is characterized by the speed of execution
(Smith et al. 2015).

Like the SRMI algorithm, the SVD algorithm
needs a data matrix to perform the imputation and for
this, the training database will be used.

The procedure to make the online imputation using
SVD algorithm for observations with missing data is
the following:

1. Idem to step 1 using the SRMI algorithm. In this
step, the matrix N ∈ Rr×n is obtained.

2. Idem to step 2 using SRMI algorithm. In this
step, the matrix N′ ∈ R(r+1)×n is obtained.
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3. The values of the missing variables in the last
row of the matrix N′ are filled using the average
of the values of the respective column in order
to complete the initial matrix.

4. The Expectation-Maximization (EM) algorithm
(Dempster et al. 1977) is used to find
the estimated values and the Singular Value
Decomposition is applied for the new obtained
matrix. This procedure is also iterative and it
is repeated until the total change of the matrix
is less than a threshold of 0.01 established
empirically (Troyanskaya et al. 2001).

The matrix Σ contains in its main diagonal the
singular values of the matrix N′ ∈ R(r+1)×n. Taking
a certain number of significant singular values is
sufficient to estimate the missing data (Troyanskaya
et al. 2001). Therefore, how many and which singular
values should be used to achieve the best estimation is
determined by the experts with experiments. The latter
will depend on the type of process, and the relationship
between its variables.

2.5 Local least squares imputation

The local least squares imputation (LLSI) is a
method proposed by Kim in 2004. It has had a
great application in the estimation of data in DNA
microarrays (Kim et al., 2004a, b).

LLSI algorithm assumes C ∈ Rm×n to denote the
expression of the data associated to each one of the
variables through an array with m observations and n
variables.

In the matrix G presented in (2), a column
gi ∈ R

m×1 contains the values of the variable i−th in
m experiments.

G = (g1 · · ·gn) ∈ Rm×1 (2)

A missing value in the l − th localization of the
variable i− th is denoted by α (see Eq. 3)

G(l, i) = gi(l) = α (3)

To simplify the description of the algorithm, the
estimation of all missing values is described assuming
a missing value in the first position of the first variable
as it is presented in (4).

G(1,1) = g1(1) = α (4)

The method of Local Least Squares Imputation has
two steps (Kim et al. 2004b):

1. Selection of the k genes by using the Pearson
correlation coefficients.

2. Regression and estimation.

2.5.1 Selection of genes or variables

To estimate a missing value in the first position g1(1)
of g1 in ∈ Rm×n by using the Pearson correlation
coefficients, the k closest variables to the missing value
are selected (Lei et al. 2017).

When there is a missing value in the first position
of g1, the Pearson correlation coefficient between two
vectors g′

1 = (g12, · · · ,g1n) and g′
j = (g j2, · · · ,g jn) is

defined as Eq. (5):

ri j =
1

n− 1

(
g1k − ḡ1

σ1

)(
g jk − ḡ j

σ j

)
(5)

where (ḡ1), (ḡj) represent the average values in (ḡ′
1),

(ḡ′
j
) and σ1, σ j represent the standard deviation of

those values respectively.

2.5.2 Imputation by using LLSI

Based on the k genes closest to the missing variable,
which have been selected using the Pearson correlation
coefficients, the matrix N ∈ Rk×(n−1) and the vectors
b ∈ Rk×1 and w ∈ R(n−1)×1 are formed. The k rows in
the matrix N consist of the nearest k genes gT

i ∈ R
1×n

1 ≤ i ≤ k with its first value removed. The elements
of the vector b are formed by the first components of
the k vectors gT

i and the elements of the vector w are
the n− 1 elements of the vector g1. After forming the
matrix N and the vectors b and w, the least squares
problem is formulated as:

min
x
||NT x−w||2 (6)

The missing value α is estimated by the following
linear combination:

α = bT x = bT (NT )+w (7)

where (NT )+ represents the pseudo-inverse of NT .
Procedure to impute online with LLSI:

1. Idem to step 1 using the SRMI and SVD
algorithms. In this step, the matrix N ∈ Rr×n is
obtained.

2. Idem to step 2 using SRMI and SVD algorithms.
In this step, the matrix N′ ∈ R(r+1)×n is obtained.
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3. The k− genes of the matrix N′ ∈ R(r+1)×n closest
to the missing variables in the observation
are selected using the Pearson correlation
coefficients.

4. Based on the k− genes closest to the missing
variables selected in the previous step, the
matrixes N′′ ∈ R(n−q)×(r+1), b ∈ R(r+1)×q and the
vector w ∈ R(n−q)×1 are formed.

5. The least squares problem is formulated
by estimating the missing values using the
following linear combination:

αest = bT (N′′T )+w (8)

2.6 k-Nearest neighbors

The algorithm k-Nearest Neighbors (k-NN) is a tool
widely used in imputation tasks (Chen and Chao 2000,
Eskelson et al. 2009) and classification (Bathia and
Ashev 2010) due to its simplicity and good results. It is
an unsupervised tool so, it is not necessary to perform
a previous offline training.

In general form, the k-NN algorithm for
imputation operates as follow: given m observations
xi and an observation y1 with missing variables,
the distance between y1 and each one of the m
observations xi is calculated by using a measure of
similarity, by eliminating from both observations used
to calculate the distance, the missing variables in y1.
Later, the k observations xi that are closer to y1 are
chosen. The values of each missing variable in y1
are imputed by using the average of the sum of the
same variable in the k observations xi selected (García-
Laencina et al. 2010, Luengo et al. 2012a, Askarian et
al. 2016) as it is presented in (9):

ŷl j =

∑k
i=1 xi j

k
(9)

where ŷl j is the estimated value of the variable j in the
observation y1 using the k observations xi selected.

The distance measure used in this paper was
the Euclidean distance (García-Laencina et al., 2010;
Askarian et al., 2016) which is presented in (10):

d(x,y) =

√√ n∑
i=1

(xi − yi)2 (10)

There is no single criterion established to choose
the value of k. For this reason, it is usually determined
empirically. The algorithm k-NN is not iterative. It
ends when all the distances are calculated, the nearest

k observations are found and the values of the missing
variables are imputed.

In order to use this algorithm online, the training
database (set of observations xi) is used. Also, the
value of k should be defined by the experts. The new
observation that arrives with missing data is identified
as y1.

Steps to impute online with k-NN:

1. From the training database M ∈ Rm×n and the
received observation with missing variables y1,
the information corresponding with the missing
variables are removed.

2. The k observations of the training database
closest to y1 are determined using the Euclidean
distance (See Eq. (10)).

3. The variables missing in y1 are estimated using
the Eq. (9).

2.7 Multilayer Perceptron Artificial Neural
Network

For this paper, the Multi-layer Perceptron Artificial
Neural Network (MLP) was chosen because it is one
of the most used architectures due to its simplicity and
excellent performance (Patan et al., 2008; Portillo et
al., 2009; Ramírez et al., 2015).

Let denoting by ai, i = 1,2,3, ...,n the inputs to
the MLS artificial neural network; b j, j = 1,2,3, ...,n
the outputs of the hidden layer; ck, k = 1,2,3, ...,n the
outputs of the final layer, and tk the target outputs. In
addition, wi j and θ j are the weights and thresholds
of the hidden layer, and w′k j and θ′k are the weights
and thresholds of the output layer, respectively. The
activation functions f1(t) and f2(t) correspond to the
hidden layer and the output layer respectively. The
operation of an MLP with a hidden layer is expressed
as (del Brio and Molina, 2006):

ck = f2
(∑

j

w′k jb j − θ
′
k

)
= f2

(∑
j

mw′k j f1(wi jai − θ j)− θ′k
) (11)

The MLP Artificial Neural Network uses a
supervised learning by error backpropagation (BP).
Since the goal is to obtain an output of the neural
network as close as possible to the desired output, the
learning of the network is formulated as a problem of
error minimization (del Brio and Molina, 2006).
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E =
1
2

p∑
µ=1

n∑
i=1

(
tµi − ck

)2
(12)

The minimization is carried out by means of a
descendent gradient algorithm, but there will be a
gradient with respect to the weights of the output layer
and another one with respect to those of the hidden
layer (del Brio and Molina 2006).

w′k j(n) = w′k j(n− 1)−α
∂E
∂w′k j

(13)

wi j(n) = wi j(n− 1)−α
∂E
∂wi j

(14)

2.8 Tennessee Eastman (TE) process

The Tennessee Eastman (TE) test process is based
on an industrial chemical process of the Eastman
Chemical Company that was published in Downs and
Vogel (1993), with the purpose of making available
to the scientific community a reference problem to

develop and evaluate different techniques of process
control, optimization and monitoring and diagnostic
methods.

The process consists of five major units: a reactor,
a condenser, a recycle compressor, a separator, and a
stripper; all interconnected as shown the flow diagram
in Figure 3. The control objectives, suggested potential
applications and features of the process simulation are
described in more detail in Downs and Vogel (1993),
and Chiang et al. (2001). The TE process contains
21 preprogrammed faults and one normal operating
condition data set.

The data sets from the TE are generated along 48
hours of operation with the inclusion of faults after 8
simulation hours. Each historical data set contains 52
variables (41 measured variables, plus 11 manipulated
variables) with a sampling time of 3 min. and Gaussian
noise incorporated in all measurements. Concerning
the study performed in this paper, only the 33 variables
available online were considered, as shown in Table
1. A description of simulated faults is shown in Table
2. All data sets used in this paper can be downloaded
from http://web.mit.edu/braatzgroup/TE_process.zip.

Table 1. Monitored variables in the Tennessee Eastman process.

No. Variable No. Variable

1 A feed 18 Stripper temperature
2 D feed 19 Stripper steam flow
3 E feed 20 Compressor work
4 Total feed 21 Reactor cooling water outlet temperature
5 Recycle flow 22 Separator cooling water outlet temperature
6 Reactor feed rate 23 D feed flow valve
7 Reactor pressure 24 E feed flow valve
8 Reactor level 25 A feed flow valve
9 Reactor temperature 26 Total feed flow valve

10 Purge rate 27 Compressor recycle valve
11 Product separator temperature 28 Purge valve
12 Product separator level 29 Separator pot liquid product flow rate
13 Product separator pressure 30 Stripper liquid product flow valve
14 Product separator underflow 31 Stripper steam valve
15 Stripper level 32 Reactor cooling water flow
16 Stripper pressure 33 Condenser cooling water flow
17 Stripper underflow

Table 2. Monitored variables in the Tennessee Eastman process.

Fault Description Type

1 A/C feed ratio, B composition constant Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step

11 Reactor cooling water inlet temperature Random variation
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Fig. 3. Flow diagram of the Tennessee Eastman benchmark process.

To show the principal aim of this paper five states
of the TEP were selected. Four of them represent fault
states and the other represents the normal operation
condition (NOC). The selected faults are shown in
Table 2. These faults were chosen because they affect
several parts of the process. (Quiñones-Grueiro et al.
2014).

3 Experiments and results

In this paper four experiments were designed:

1. Detection and classification without missing
data.

2. Imputation of missing data randomly for 1, 2,
3, 4, 5 and 6 missing variables per observation
which represents up to 18% of missing variables
per observation. It was considered that a greater
percent of missing variables represent a fault in
the data acquisition system.

3. Detection and classification with imputed data.

4. Imputation, detection and classification of the
data with 10, 20 and 30 percent of missing

information with the mechanism missing
completely at random (MCAR) in the database.

All experiments were carried out in a computer
with the following characteristics: Intel® CoreTM i7-
3537U 2.00 GHz processor, 8 Gb of RAM.

The training database used in the experiments had
300 observations by state to be diagnosed (normal
operation condition and four fault states), i.e. a total
of 1500 observations of 33 variables each one.

The datasets used to prove the procedure proposed
in this paper had 1000 observations each one by state
to be diagnosed for a total of 5000 observations. For
the second and third experiments, six datasets were
created, i.e. one for each number of missing variables
per observation.

For the fourth experiment, were created three
datasets of 5000 observations each one with the 10%,
20% and 30% of missing variables respectively, which
satisfies the MCAR pattern.

The parameters used in the SRMI algorithm were
β = 0.0001, and Itermax = 30. The parameters used in
the case of the k-NN algorithm, were the Euclidean
distance and k = 3. In the case of the Singular Values
Decomposition algorithm, after some experiments was
determined to use 30 singular values to develop the
experiments. A greater number of singular values do
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not improve the results.
In the case of the MLP neural network, it was used

the following configuration: 33 neurons in the input
layer (one per variable of the TEP), ten neurons in the
hidden layer and four neurons in the output layer. As
activation function in the hidden layer, it was used the
sigmoidal function and the lineal function was selected
to the activation function in the output layer.

3.1 Results of experiment 1: Detection and
classification without missing data

The objective of this experiment is to obtain the
performance in detection and classification of the fault
diagnosis system without missing variables in the
observations. Later, these results are used to analyze
the impact caused in the performance of the fault
diagnosis system when the imputation of missing
variables is made using the different tools used in the
paper.

Table 3 presents the results of detection and
classification of the observations without missing
variables using the MLP Neural Network.

Table 3. Results in detection and classification of the
MLP without missing data.

Detection Rate (%) Classification Rate (%)

MLP 96.25 94.83

3.2 Results of experiment 2: Analysis of the
imputation errors

The experiment 2 had as main objective the analysis
of the performance of the algorithms in the imputation
process. The imputation error was the indicator to
evaluate the performance of each algorithm.

In addition, it was also analyzed the performance
of the algorithms for 1, 2, 3, 4, 5 and 6 variables
missed per observation with the aim of evaluating the
affectation in the performance in the diagnostic system
due to the imputation of different numbers of missing
values by observation.

The data eliminated in each observation in order
to create the missed variables were selected randomly
but as the number of missing variables per observation
is established, the pattern could be classified inside the
type Missing at Random (MAR).

The errors were calculated taking into account
the difference between the original values and the
estimated values for the missed variables. The
performances obtained by the different imputation

algorithms are shown in Tables 4, 5, 6 and 7 where
Error represents the average error in %, σ represents
the standard deviation and t̄1 represents the average
time in seconds used in the imputation process.

The Friedman’s nonparametric statistical test
(Luengo et al. 2009) was applied to determine if the
number of missing variables by observation affected
the performance of each imputation algorithm taking
into account the estimation error.

It was found that there was no significant
difference in the performance obtained from each
algorithm regardless of the number of missing
variables. Then, the imputation error of each algorithm
is not affected by the number of missing variables.
Furthermore, the Friedman nonparametric statistical
test was applied to compare the results of the
performances of each algorithm. It was determined
that at least one of them had a behavior significantly
different from the others.

The Wilcoxon non-parametric statistical test
(Luengo et al. 2009) was applied and the result showed
that the LLSI algorithm had the best behavior in the
imputation process.

The results show that in all cases, the imputation
times are small compared with the time constants and
the sampling time of the SCADA systems of the most
processes in the industrial plants such as chemical,
pharmaceutical, food processing, just to mention some
examples. The algorithm with the smallest imputation
times was the k-NN.

3.3 Results of experiment 3: Detection and
classification with imputed values

With the missing values imputed by each algorithm,
the detection and classification process was developed
with the aim of evaluating the affectations that the
imputation process produces in the detection and
correct classification of the faults and the normal
operating state.

Table 4. Imputation results using SRMI algorithm in
experiment 2.

Missing
Error(%) σ t̄isegVariables

1 3 0,1373 0,053
2 3,35 0,1859 0,057
3 3,33 0,1906 0,058
4 3,59 0,2355 0,060
5 3,61 0,2490 0,067
6 3,55 0,2378 0,076
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Table 5. Imputation results using SVD algorithm in
experiment 2.

Missing
Error(%) σ t̄isegVariables

1 3,24 0,0969 0,1271
2 2,60 0,1162 0,1345
3 2,75 0,0810 0,1317
4 2,62 0,0799 0,1787
5 2,48 0,0785 0,2310
6 2,51 0,0786 0,2393

Table 6. Imputation results using LLSI algorithm in
experiment 2.

Missing
Error(%) σ t̄isegVariables

1 1,85 0,0621 0,4483
2 1,28 0,0352 0,4314
3 1,16 0,0422 0,4813
4 1,52 0,0455 0,5070
5 1,22 0,0402 0,5291
6 1,46 0,0426 0,5383

Table 7. Imputation results using k-NN algorithm in
experiment 2.

Missing
Error(%) σ t̄isegVariables

1 2,78 0,0545 0,0033
2 2,51 0,0488 0,0035
3 2,80 0,0950 0,0034
4 2,75 0,0862 0,0033
5 2,84 0,0889 0,0032
6 2,95 0,1035 0,0033 
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Fig. 4. Results of the detection rate with data imputed
in experiment 3.

It is necessary to remark that detection can be
seen as a binary classification where the observation
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is classified into two major groups: fault of non-fault
(normal operation condition).

3.3.1 Detection stage

In Figure 4 are presented the percentage of detection
rates (DR) by using the artificial neural network MLP,
for 1, 2, 3, 4, 5 and 6 missed variables per observation.

The main conclusion obtained from these results
is that the detection rate decreases when the number
of missing variables in the observations increases.

However, the percentages of success in the
detection for 6 missing variables per observation
guarantee an acceptable level of effectiveness for the
diagnostic system of more than 87% in the detection
rate for the four imputation algorithms.

3.3.2 Classification stage

The influence of the number of missing variables per
observation in the classification error after the online
imputation is presented in Figure 5.

The classification process was developed by using
the MLP artificial neural network. As it was expected,
the Fig. 5 shows a downward trend behavior in the
classification rate of the observations with imputed
variables when the number of them increases.

However, similar to the detection stage, the
success classification rates reflect the possibility
of maintaining an acceptable performance of the
diagnostic system in the classification process higher
than 81%.

The Friedman nonparametric statistical test
was applied to compare the results between the
performances of each algorithm in detection and
classification. No significant differences were found
in the performance obtained by each algorithm
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3.4 Results of experiment 4: Imputation,
detection and classification of data
for 10, 20, 30 percent of the random
missing data

The main objective of the experiment is to analyze
the effects of the imputation process on the detection
and classification process when there are high
percentages of missing variables with the pattern
Missing Completely At Random (MCAR) globally.

In this experiment, datasets with 10, 20 and 30
percent of missing information globally were used,
and the missing variables occur randomly (MCAR).

The imputation and classification processes were
developed with the proposed procedure, and by using
the imputation tools presented in section 2.

3.4.1 Imputation stage

The performance of the imputation algorithms for
10, 20, and 30 percent of the missing data globally
are shown in Tables 8, 9, 10 and 11 where Error
represents the average error in %, σ represents the
standard deviation and t̄1 represents the average time
in seconds used in the imputation process.

3.4.2 Detection stage

In Figure 6 are presented the results of the detection
rates (DR) using the MLP neural network for the
different percentages of global missing information for
each imputation algorithm.

Table 8. Imputation results using SRMI algorithm in
experiment 4.

Missing
Error(%) σ t̄isegdata (%)

10 2,59 0,1256 0,0491
20 2,63 0,1225 0,0525
30 2,04 0,0789 0,0541

Table 9. Imputation results using SVD algorithm in
experiment 4.

Missing
Error(%) σ t̄isegdata (%)

10 3,29 0,0519 0,1328
20 3,08 0,0471 0,1437
30 3,25 0,1047 0,1826

Table 10. Imputation results using LLSI algorithm in
experiment 4.

Missing
Error(%) σ t̄isegdata (%)

10 2,05 0,0847 0,1893
20 2,23 0,0808 0,2244
30 1,17 0,0588 0,2526

Table 11. Imputation results using kNN algorithm in
experiment 4.

Missing
Error(%) σ t̄isegdata (%)

10 2,87 0,0554 0,0035
20 2,90 0,0737 0,0035
30 3,08 0,1167 0,0034
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Fig. 5 Results of the detection rate with data imputed in experiment 4 571 
Fig. 6. Results of the detection rate with data imputed
in experiment 4.

Figure 6 shows a small decrease on the
detection rate when the percentage of global missing
information increases. However, this decrease is not
really significant.

The Friedman nonparametric statistical test was
applied and no significant differences were found
in the performance of the four variants imputation
algorithm −MLP neural network.

Table 12 shows the average percent of the
detection rate for the datasets obtained with each
imputation algorithm taking into account the different
percentages of the global missing information.

It is very interesting to note the small difference
between these performances in the detection process
and the result displayed in Table 1 when the same
process was developed with no missing data.
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Table 12. Average percent of the detection rate for
each variant Imputation Algorithm −MLP neural

network.
Imp.Alg-MLP DR

SMRI-MLP 94.19
SVD-MLP 94.08
LLSI-MLP 93.92
kNN-MLP 93.61

In addition, it is necessary to address the
significant differences between these results and those
presented in Figure 3 for the worst case (six missing
variables per observation).

3.4.3 Classification stage

Figure 7 shows the results for the classification
rates (CR) using the MLP neural network after the
imputation process for different percentages of global
missing information for each imputation algorithm.

In Fig. 7, it can be seen that the performances
of each algorithm are not significantly affected by
the increase in the percentage of global missing
information. The application of nonparametric
Friedman statistical test to compare the results
between the four variants imputation algorithm −

MLP neural network for classification also showed
that there was no significant differences between these
variants.

Table 13 shows the average percent of the
classification rate for the datasets obtained with each
imputation algorithm taking into account the different
percentages of the global missing information.
Analyzing the results displayed in Table 13, it can be
said that there are not show high differences compared
with respect the results presented in Table 1 when the
classification process was developed with no missing
data.
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Fig. 7. Results of the classification stage with data
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Table 13. Average percent of the classification rate for
each variant Imputation Algorithm −MLP neural

network.
Imp.Alg-MLP CR

SMRI-MLP 92.37
SVD-MLP 92.70
LLSI-MLP 92.17
kNN-MLP 91.88

However, there are significant differences between
these results and those presented in Figure 4 for the
worst case (six missing variables per observation) that
which represents 18% of the missing variables.

The principal difference between the established
conditions for the experiments 3 and 4 was the pattern
of the missing variables. This evidence that a Missing
at Random pattern (MAR) affects the prediction
capacity of the algorithms analyzed when there are
fix number of missing variables per observation. In
general, from de practical point of view, however,
it can be assumed the Missing Completely At
Random (MCAR) pattern for the missing data in the
industry. The Friedman’s non-parametric statistical
test was applied with two objectives. First, no
significant differences were found in the performance
of each algorithm with respect to the missing
information percent globally. Second, no significant
differences were found between the performances of
the imputation algorithms. The imputation times had a
similar behavior to experiment 2.

Conclusions

In this paper a new procedure has been presented
for the online imputation of missing variables in the
observations obtained by the data acquisition systems
in industrial processes. In addition, the procedure
ensures the immediate classification by the fault
diagnosis system of all observations received which
is a fundamental element to obtain a fast detection of
faults.

The proposals found in the scientific and technical
literature need the accumulation of a group of data
to be able to make the imputation which decreases
the effectiveness of the diagnostic systems in the fast
detection of faults that appear in this period of time.

The paper also presents the results of the proposed
procedure using the SRMI, SVD, LLSI and k-
NN algorithms, which show very well results in
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the scientific literature in the imputation of large
databases. The very satisfactory results obtained show
the feasibility of the proposal.

In all experiments, the time required to carry out
the online imputation of each observation obtained by
the SCADA system is very small compared with the
typical sampling times of the large chemical plants.
Therefore, the online imputation works in favour of a
fast detection and identification of a fault by the fault
diagnostic system. For future work, it is recommended
to analyze other computational intelligence tools that
can improve the results in the imputation-detection-
classification system.
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