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Abstract
We develop a stochastic model to describe the effects of external noise on the position and power spectrum fluctuations of
the particles of an optically confined aerosol. We propose that externally imposed noise may induce a random frequency of
the confining laser. Our analysis is based on a linear multiplicative Langevin equation and on the cumulant method. We also
derive the associated Fokker-Planck equation and the mean square displacement of the particles. Our model predicts that these
multiplicative fluctuations may produce a large effect on these correlations and on the corresponding fluctuations spectra which
might be measurable.
Keywords: aerosols, fluctuations, stochastic processes, external noise.

Resumen
Desarrollamos un modelo estocástico para describir los efectos de ruido externo multiplicativo en la función de correlación
y en el espectro de las fluctuaciones de la posición de las partículas de un aerosol confinado ópticamente. Proponemos que
fluctuaciones impuestas externamente inducen una frecuencia aleatoria del láser confinante. Nuestro análisis se basa en una
ecuación de Langevin lineal multiplicativa y en el método de cumulantes. Se construye la ecuación de Fokker-Planck asociada
a esta ecuación estocástica multiplicativa y obtenemos el desplazamiento cuadrático medio de las partículas. Nuestro modelo
predice que las fluctuaciones multiplicativas producen un efecto significativo en las correlaciones de posición y en el espectro de
fluctuaciones correspondiente y que por lo tanto podrían ser medibles.
Palabras clave: aerosoles, fluctuaciones, procesos estocásticos, ruido externo.

1 Introduction

An aerosol is a multiphase system composed of a
suspension of fine solid particles or liquid droplets in a
gas. They occur in a broad range of important subject
fields in chemical engineering such as, hydrosol or
aerosol filtration, depending on whether liquid-gas
suspension is involved (Tien and Ramaro, 2007).
Besides water or air, systems which may be treated
by granular filtration include such diverse substances
as flue gas, combustion products, molten metal,
petrochemical feedstocks, or polymers. While in most
cases these filtration processes are carried out in
the fixed-bed mode, they may also be conducted in

fluidized-bed mode (Knettig and Beeckmans, 1974).
More recent efforts in aerosol research in chemical
engineering involve the nucleation of supersaturated
droplets, the dispersion of particles as clouds, and gas
cleaning (Lu et al., 2005; Hrubý et al., 2018). Also,
understanding the process of creation of aerosols can
help to design techniques for removal of aerosol after
combustion; for example, the removal of particulate
non-combusted material in coal fired power stations
by electrostatic precipitators (Slama et al., 2000).
Also, the development of bioseparation techniques
applicable to the separation of bioparticles such as
microorganisms and macromolecules (proteins and
DNA) (Garza-García and Lapizco-Encinas, 2010).
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In general aerosol systems, the droplet and gas
phases are coupled. Transport processes and changes
in chemical composition or temperature of the gas
will affect the properties of the droplets and vice
versa. Thus, quantification of the chemistry involved
cannot be determined through studying only the bulk
system. Instead one must also analyze individual
aerosol droplets. In the last two decades, the technique
of optical tweezers has been widely applied to measure
forces on single particles and materials in physico-
chemical and bio-physical systems (Lang et al., 2002;
Neuman and Block, 2004). Properties of the Brownian
motion of optically trapped aerosol particles, such as
the relation between force and displacement, depend
on particle parameters like size and shape, and on the
index of refraction of the bulk fluid. They depend as
well, on external parameters like the wavelength and
power of the trapping laser. In the regime of small
particle displacements, the particle-trap interaction
can be well approximated by a harmonic potential,
and the particles experience a Hookean restoring
force with a trapping stiffness κ, when displaced by
Brownian stochastic forces (Denk and Webb, 1990;
Yao et al., 2009; Burnham and McGloin, 2009, 2011;
Burnham et al., 2010). The analysis of the random
forces and position fluctuations of aerosol particles is
essential to determine some properties like κ, which
is related to the variance of the power spectrum of
positions of the trapped objects (Berg-Sorensen and
Flyvbjerg, 2004). Also, this power spectrum is often
used to detect their position (Allersma et al., 1998),
to measure forces (Denk and Webb, 1990), or to
investigate colloidal dynamics (Gishlan et al., 1994).

Experimental methods based on the optical
trapping of liquid aerosols (Burnham et al., 2010),
is a powerful tool in a variety of physico-chemical
research fields, such as viscosimetry (Pesce et al.,
2005), or in molecular biology (Lang et al., 2002).
These methods may serve for studying Brownian
dynamics in over and underdamped conditions.
Optical trapping methods have been also used for
measurements of Casimir forces (Hertlein et al.,
2008), to analyze the validity of fluctuation-dissipation
theorems (Carberry et al., 2007) and to study colloidal
crystals (Lee and Grier, 2005), thermal ratchets and
freezing (Chowdhury et al., 1985).

For the purpose of future comparison with
the results of this work, we briefly recall the
usual stochastic description of aerosols. The trapped
particles are microspheres with radius R, mass m,
immersed in a fluid at temperature T , with dynamic
viscosity µ and mass density ρ. Its equation of motion

is usually modeled by a Langevin equation with
additive noise (Burnham et al., 2010).

mẍ(t) + γ0 ẋ + κx(t) = η(t). (1)

Here γ0 is the viscous damping of the medium (drag
coefficient) and is well approximated by a constant
determined by Stokes law, γ0 = 6πµR. Since the
phenomenological equation (1) is compatible with the
local equilibrium assumption and the linear response
regime, it is reasonable to assume that for near
equilibrium states, the additive random force η(t) is
a Gaussian stochastic processes. More specifically,
for near equilibrium states, it is assumed to be a
white noise with zero average 〈η(t)〉 = 0, and an
instantaneous auto-correlation

〈η(t)η(t′)〉 = Dδ(t− t′), (2)

Here the parameter D = 2kBTγ0 measures the strength
of the stochastic force and kB is Boltzmann’s constant.

In almost all experiments with optical tweezers
in a liquid environment, it is considered that the
particles behave as overdamped oscillators. However,
underdamped motions have also been observed
(Jokutty et al., 2005). This is indeed the usual situation
for optical trapping for beads and particles: They
are generally in a low Reynolds number regime and
strongly damped. However, there is an additional
manifestation of this damping, namely, thermal
fluctuations of Brownian motion. The fluctuation-
dissipation theorem guarantees that any system with
damping, will eventually attain equilibrium and show
fluctuations, whose size depends inversely on the
damping. Actually, these experimental observations
motivate the main purpose of this work. In contrast to
the additive fluctuations described by (1), we pursue to
calculate the power spectrum of position fluctuations
of the optically trapped particles of an aerosol, from
a stochastic model with parametric multiplicative
noise. More specifically, our objective is to investigate
the effects produced by multiplicative external noise
in the (corner) frequency of the confining laser,
on the position-position correlation function of the
trapped particles and on their power spectrum. To
our knowledge the effect of these type of fluctuations
has not been considered in the literature for aerosols.
Although there are several approaches to deal with
multiplicative noise (Fox, 1972; Hänggi, 1978; Sancho
and San Miguel, 1980a, 1980b, 1984; Hernández-
Machado et al.,1983), here we use a description based
on cumulant techniques. The practical usefullness of
a direct application of these methods is appropriate to
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deal with linear processes (Fox, 1972; van Kampen,
1981a; Rodríguez et al., 2001, 2011).

For this purpose the work is organized as
follows. In the next section 2 we discuss the
stochastic model that is derived from (1) when inertial
effects are neglected, but the fluctuations remain
additive. Then in section 3 we generalize this model
by neglecting the additive noise, and introducing
parametric noise in the frequency of the confining
laser. We calculate analytically the position-position
correlation function and its spectral density. In section
4 we derive the Fokker-Planck equation associated to
the multiplicative Langevin equation and calculate the
second moment of the position to calculate the mean
square displacement of the particles. We close the
paper in section 5 by making some further physical
remarks.

2 Underdamped regime with
additive noise

With the purpose of future comparison with our
future results for the multiplicative case, we recall
the analytic expressions for the position correlation
function and its corresponding fluctuation spectrum
for the case of additive noise. It is experimentally
well established that a micro-sized colloidal particle
optically trapped in a viscous fluid has a characteristic
time for loss of energy through friction given by,
tinert = m/γ0 ≈ 10 ns. Since this time is far shorter
than the experimental time resolution, texp ≈ 20µs, its
motion is extremely overdamped and the inertial term
in (1) can be dropped leaving (Denk and Webb, 1990;
Burnham, 2009),

γ0 ẋ(t) + γ0ωcx(t) = η(t), (3)

where ωc = κ/γ0 is the corner frequency, defined
as the frequency at which the power reaches
half its low frequency asymptotic value. η(t) is a
zero averaged, 〈η(t)〉 = 0, and stationary Gaussian
stochastic processes with auto-correlation function

〈η(t)η(t′)〉 = C(|t− t′|). (4)

When the system described by Eq. (3) is in an
equilibrium state, the functions ωc and C(t) are related
to each other by means of the fluctuation-dissipation
theorem (Kubo, 1966),

C(t) = 2kBTγ0, (5)

where kB is the Boltzmann constant. In this case the
random force is sometimes referred to as internal
noise. However, in nonequilibrium systems the driving
noise and the dissipation may have different physical
origin and no fluctuation-dissipation relation holds. In
such a case the driving noise will be referred to as
external noise.

To calculate the fluctuation spectrum S (ω) of
the position x(t) in this overdamped additive regime,
we have to compute first the one-time position
autocorrelation function χ(t) defined by

χ(t) ≡
〈
x0〈x(t)〉x0

〉eq
. (6)

Here the notation indicates the following: take a
certain initial value x0 at t = 0, calculate the average
〈x(t)〉x0 conditional on the given x0; multiply it by
x0 and average the product over the values x0, as
they occur in an equilibrium distribution. From (3) the
additive normalized position autocorrelation function
turns out to be

χa
w(t) ≡

〈
x0〈x(t)〉x0

〉eq

x2
0

= e−ωct. (7)

According to the Wiener-Kintchine theorem the power
spectrum of positions of the trapped objects, S a(ω), is
given by (van Kampen, 1981)

S a
w =

2
π

∞∫
0

χa(τ)cos(|ωτ)dτ =
2
π

1
ω2 +ω2

c
(8)

In the following section we derive the corresponding
expressions for multiplicative noise and compare them
with χa

w(t) and S a
w(ω).

3 Non-inertial limit with
multiplicative noise

It is well-known that the fluctuations existing in
open systems may be conveniently classified into
internal and external fluctuations. The former are those
self-originated in the system, while the latter are
determined by the environment. Internal fluctuations
are a consequence of the large number of degrees of
freedom averaged out in a macroscopic description;
they scale with the size of the system and therefore
vanish in the thermodynamic limit, except at a critical
point where long range order is established. Their
study is an important and well known part of statistical
mechanics (Landau, 1970). In contrast, external
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fluctuations exist when a system is under the influence
of noise caused by a natural or induced randomness of
the environment of the system. These fluctuations play
the role of an external field driving the system and they
do not scale with the system size. Thus, if external
noise is present in a macroscopic system it will
dominate over internal fluctuations. Among others,
physico-chemical systems where the effect of external
noise has been considered include fluids (Gollub and
Steinman, 1980); lasers and optical systems (Arecci,
and Politi, 1979); chemical reactions (De Kepper and
Horsthemke, 1978), and liquid crystals (Rodríguez
et al., 1997). In these applications external noise
is usually considered as a stochastic process that is
introduced into the parameters of the deterministic
equations which describe the macroscopic behavior of
a system. In any case, in this work the term fluctuations
in a state variable or in a system’s parameter, shall be
identified with the random deviations from its average
near equilibrium values.

Let us now change the physical situation of the
previous section by assuming that the state of the
surrounding fluid is modified by an external noise.
Multiplicative stochastic equations arise frequently
in the description of systems under the influence
of external or parametric noise. The description
of their dynamics is usually given in terms of a
phenomenological equation which describe the system
in the absence of noise. Then an appropriate parameter
in this equation is replaced by a stochastic process
and is allowed to fluctuate with prescribed statistics.
If the fluctuating parameter enters linearly in the
deterministic equation, one is led to a stochastic
equation of the Langevin type with multiplicative
noise (Horsthemke, 1981).

In our model an external noise is superimposed
on the corner frequency ωc of the confining laser.
This parameter then fluctuates around its average
(deterministic) value with fast and small fluctuations,

ωc→ ωc + ζ(t). (9)

Here ζ(t) is a so far unspecified external noise which,
as before, is assumed to be a stationary Gaussian
process, with zero mean and arbitrary finite auto-
correlation 〈

ζ(t)ζ(t′)
〉

= C(|t− t′|). (10)

Under these assumptions (3) can be rewritten as the
linear multiplicative stochastic equation

ẋ = A(t)x ≡ [A(0) +αA(1)(t)]x, (11)

where we have identified

A(0) ≡ −ωc, A(1)(t) ≡ ζ(t). (12)

Furthermore, A(1)(t) is assumed to have a finite
autocorrelation time τc, in the sense that for any two
times t1, t2, such that |t1 − t2| ≥ τc, one may treat
A(1)(t1) as statistically independent of A(1)(t2). It is
also convenient to assume that A(1)(t) is a stationary
stochastic process, so that 〈A(1)(t)〉 can be incorporated
in A(0) by setting A(0)′ = A(0) +α〈A(1)(t)〉 and A(1)′(t) =

A(1)(t) − 〈A(1)(t)〉, so that 〈A(1)′(t)〉 = 0. Assuming
that this has been done, in what follows we shall
suppress the primes and treat Eq. (11) with 〈A(1)(t)〉 =

0. As mentioned before, for near equilibrium states
the fluctuations are known to be small from statistical
mechanics, therefore it is reasonable to assume that
the parameter α, which measures the magnitude of
the fluctuations in the coefficient A1(t), is small with
a finite correlation time τc. These assumptions are
conveniently expressed in terms of the Kubo number,
ατc, which is thus assumed to be small, ατc� 1.

There are few approaches to solve a multiplicative
stochastic equation like Eq. (11) (Hänggi, 1978;
Grabert et al., 1980). Among them the functional
methods, based on short τc expansions, are often
used in nonlinear stochastic equations (Sancho and
San Miguel, 1980a, 1980b). However, the cumulant
techniques (Fox, 1972; van Kampen, 1981a) are more
appropriate for linear multiplicative equations. Within
this last approach and using a heuristic derivation,
van Kampen has derived the following non-stochastic
differential equation for the expectation value 〈x(t)〉,
(van Kampen, 1981a)

d
dt
〈x(t)〉 =

[
A(0)+

α2

∞∫
0

〈
A(1)(t)eτA(0)

A(1)(t− τ)
〉

e−τA(0)
dτ

]
〈x(t)〉 , (13)

This equation reinforces the statement that the free
motion of x(t) is slow compared to the fluctuations in
A1(t). This heuristic expression can be also rigorously
derived by using the cumulants theory (van Kampen,
1981a). In this case (13) reduces to

d
dt
〈x(t)〉 =

{
−ωc +α2c0(t)

}
〈x(t)〉, (14)

where we have used (10) and

c0(t) =

∞∫
0

〈ζ(t)ζ(t− τ)〉dτ. (15)
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Thus, for given x0 we get

〈x(t)〉x0 = x0 exp
{
−[ωc −α

2c0(t)]t
}

(16)

From (6) it follows that the normalized position-
position correlation function is

χm(t) = exp
{
−[ωc −α

2c0(t)]t
}
. (17)

and for the special case of white noise where C(t) =

βδ(t− t′) and c0(t) = β,

χm
w(t) = exp

{
−

1
γ0

(κ−α2γ0β)t
}
, (18)

The Wiener-Kintchine theorem then leads to

S m
w(ω) =

√
2
π

γ0(κ−α2γ0β)
(κ−α2γ0β)2 + γ2

0ω
2

=

√
2
π

ω0

ω2 +ω2
0

,

(19)
with ω0 ≡ (κ − α2γ0β)/γ0. A plot of Eqs. (17) and
(7) is shown in Fig. 1, where χa

w(t) and χm
w(t) are

functions of t for different values of α. The material
aerosol parameters were taken as κ = 1pN/µm, µ =

2 × 10−5kg/ms and R = 5µm, which correspond to a
microsphere in water (Burnham, 2009). The frequency
of the laser is ωc = 531s−1. Figure 1 shows that
the intensity of χm

w(t) is always larger than that of
χa

w(t), and that the multiplicative position correlation
decays more slowly than the additive one. This
behavior shows that multiplicative noise may produce
a significant, and perhaps measurable effects, on the
position correlation function of the aerosol particles.

This comparison between χa
w(t) and χm

w(t) can
be better quantified by plotting the ratio, R(t) ≡
χm(t)/χa(t), as a function of t. This is displayed in
Fig. 2 and the curves show that, indeed, multiplicative
noise in the frequency of the confining laser may
increase significantly the fluctuations of the positions
of the trapped particles. Note that the quantitative
effect of R(t) depends on the values of both parameters
α and β. The multiplicative correlation function can be
one order of magnitude larger than the additive one.

Fig. 1. The correlation functions χa
w(t) and χm

w(t), given
by Eqs. (7) and (18), as functions of time.

Fig. 2. Plot of the ratio R(t) = χm
w/χ

a(t) as a
function of time for the noise parameter values
α2β = (2,2.6,3)× 102 s−1.

Fig. 3. The power spectra of position fluctuations,
S a

w(ω) and S m
w(ω), for the trapped particles, as

functions of ω.

Fig. 4. Power spectra of position fluctuations
neglecting inertia and calculated from Eqs. (8) and
(19) for the same parameter values as in Figs. 1-3.

The calculated power spectra of position
fluctuations of the trapped particles, S a

w(ω) and S m
w(ω),

as functions of ω, are shown in Fig. 3. Note that the
curves show the same behavior as the one observed
in Fig. 1 for the position correlations functions,
namely, the multiplicative spectrum may be ∼ 100%
larger than the additive one in the interval between
ω ≈ ± 372 Hz. Below these values there is a crossover,
and S m

w(ω) decreases in ∼ (30 − 40)%. This effect
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can be more easily appreciated in the log-log plot of
S a

w(ω) and S m
w(ω) shown in Fig. 4. Both curves show

a plateau and the spectra show a characteristic tail
ω−2; S a

w(ω) and S m
w(ω) show a low frequency plateau

of amplitudes γ0/κ
2 and γ0/(κ − α2γ0β)2. Note that

although they have the same form, the multiplicative
one has an effective lower trapping stiffness κ−α2γ0β.

4 Fokker-Plank equation and
mean square displacement

For the purpose of calculating the mean square
displacement (MS D),

〈[∆x(t)]2〉 ≡ 〈x2(t)〉 − 〈x(t)〉2, (20)

of the trapped particles for multiplicative non-inertial
position fluctuations, it is necessary to calculate
the second moment 〈x2(t)〉. This quantity can be
calculated from the associated Fokker-Planck equation
to (11). This equation can be derived by noting
first that (13) is actually an equation for the entire
probability density P(x, t), rather than just for the
average 〈x(t)〉, because according to van Kampen’s
lemma, the following identification is valid (van
Kampen, 1981),

〈x(r)〉 = P(x, t) (21)

To see the consequences of this relation in more
detail, note that for all noise realizations the stochastic
equations for x(t) describe a flow of trajectories in x-
space with density Q(x, t) which obeys the continuity
equation

∂Q(x, t)
∂t

= −
∂

∂x
[xQ(x, t)] (22)

If x now runs over all its realizations with their
appropriate probabilities and we use (11), then (22)
can be rewritten in the general form of a linear
stochastic differential equation for Q(x, t),

∂Q(x, t)
∂t

={
−Q(0)

(
1 + x

∂

∂x

)
−α2Q(1)(t)

(
1 + x

∂

∂x

)}
Q(x, t) (23)

Furthermore, if we identify the operators

Q̂(0) ≡ ωc

(
1 + x

∂

∂x

)
, (24)

Q̂(1) ≡ −ζ(t)
(
1 + x

∂

∂x

)
, (25)

from van Kampen’s lemma (21), we can rewrite (23)
as a time evolution equation for the probability density
P(x, t)

∂P(x, t)
∂t

={Q̂(0) +α2
∫ ∞

0
dτ

〈
Q̂(1)(t)eτQ̂(0)

Q̂(1)(t− τ)
〉

e−τQ̂(0)
}P(x, t)

(26)

The right hand side (r.h.s) is evaluated by
calculating the action of the different operators
over P(x, t), either by Fourier transforming or by
developing the operators e±τQ(0)

in a Taylor series
around the point (x, t). In this way one arrives at the
following nonlinear Fokker-Planck equation (NLFP)
or the time evolution of P(x, t), which in its canonical
form reads

∂

∂t
P(x, t) =−

∂

∂x
{[−ωc +α2c0(t)]}P(x, t)

+
1
2
∂2

∂x2 [2α2c0(t)x2P(x, t)]
(27)

4.1 Second moment

The time evolution equation for the second moment
〈x2〉 is obtained by multiplying Eq. (27) by x2 an
integrating over all the values of x,

d
dt
〈x2〉 = −2[ωc − 2α2c0(t)]〈x2〉 (28)

where c0(t) is given by Eq. (15). For given x2
0 its

solution reads

〈x2(t)〉 = x2
0 exp{−2[ωc − 2α2c0(t)]t}, (29)

and is valid for an arbitrary (Gaussian) noise with a
well defined auto-correlation c0(t), For multiplicative
non-inertial fluctuations the mean square displacement
(MS D) is obtained from Eqs. (16) and (29),

1
x2

0

〈[∆x(t)]2〉 =

exp{−2[ωc − 2α2c0(t)]t}[exp(2α2c0(t)t)− 1] (30)

Note that the explicit time dependence of the MS D
as given by (30), depends on the explicit form of c0(t),
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which in terms depends on the type of noise. Thus,
the type of diffusion of the aerosol confining particles
depends on the nature of the external noise.

Conclusions

In this work we have developed a stochastic model
for the position-position correlation function and its
power fluctuation spectrum of an optically trapped
aerosol when the frequency of the confining laser
fluctuates. To elaborate on these results the following
comments may be useful. It should be stressed that
in this paper we have reported model calculation
results of some properties which may be measurable.
Our calculations were based on the multiplicative
stochastic linear equation (11), valid when inertial
effects on the stochastic motion of the particles
are neglected. As mentioned in the Introduction,
underdamped motions of aerosol particles have been
observed (Jokutty et al., 2005). This is indeed the usual
situation for optical trapping for beads and particles,
since they are generally in a low Reynolds number
regime and strongly damped. More specifically, we
show that this situation may be generalized by
considering multiplicative parametric noise in the
frequency of the trapping laser, instead of the usual
thermal additive noise. This noise in the signal may be
produced with a noise generator, or it can be produced
by the action of external agents. These fluctuations
were described by a multiplicative Langevin equation
with white noise. Explicit analytic expressions were
obtained for the corresponding additive (χa

w(t)) and
multiplicative (χm

w(t)) position correlations functions
for external white noise, given by (7) and (18),
respectively. We showed that the effect produced by
externally imposed multiplicative fluctuations on the
frequency of the confining laser may produce a large
effect (∼one order of magnitude) on these correlations
and on the corresponding fluctuations spectra S a

w(ω)
and S m

w(ω), Eqs. (8) and (19), respectively. This effect
could be also manifested in transport properties like
the diffusion coefficient for different types of noise,
and will determine the nature of the diffusion, which
could be anomalous. This issue will be discussed
elsewhere. The difference between χa

w(t) and χm
w(t)

were quantified and our results show that the inclusion
of multiplicative external noise may have significant
effects on χm

w(t). This quantity is always larger
in intensity than χa

w(t) and decays more slowly.
This behavior shows that multiplicative noise may

produce a significant and perhaps measurable effect
on the position correlation function. The curves in
Fig. 3 show the Lorentzian character of the power
spectra of position fluctuations S a

w(ω) and S m
w(ω).

The multiplicative spectrum is ∼ 100% larger than
the additive one in the interval between ω ≈ ±372
Hz, but below these values there is a crossover and
S m

w(ω) decreases in ∼ (30−40)%. Both spectra show a
plateau of the same form in similar frequency ranges.
The multiplicative plateau is of the same form as
for the additive case, but with a smaller effective
trapping stiffness κ − α2γ0β. In this sense our results
reduce to those reported in the literature (Burnham,
2009; Yao et al., 2009) and validate the model. It
should be emphasized that in this work we have
proposed a stochastic model to describe multiplicative
noise effects on the fluctuations of aerosol particles
which is based on a simple model calculation. The
eventual verification of these predictions and their
validity can only come from experiments, but this is,
to our knowledge, an open question that remains to be
assessed.
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