
Vol. 19, No. 1 (2020) 11-20

Ingeniería de alimentos 
Revista Mexicana de Ingeniería Química 

 
CONTENIDO 

 
Volumen 8, número 3, 2009 / Volume 8, number 3, 2009 
 

 

213 Derivation and application of the Stefan-Maxwell equations 

 (Desarrollo y aplicación de las ecuaciones de Stefan-Maxwell) 

 Stephen Whitaker 

 

Biotecnología / Biotechnology 

245 Modelado de la biodegradación en biorreactores de lodos de hidrocarburos totales del petróleo 

intemperizados en suelos y sedimentos 

 (Biodegradation modeling of sludge bioreactors of total petroleum hydrocarbons weathering in soil 

and sediments) 

S.A. Medina-Moreno, S. Huerta-Ochoa, C.A. Lucho-Constantino, L. Aguilera-Vázquez, A. Jiménez-

González y M. Gutiérrez-Rojas 

259 Crecimiento, sobrevivencia y adaptación de Bifidobacterium infantis a condiciones ácidas 

 (Growth, survival and adaptation of Bifidobacterium infantis to acidic conditions) 

L. Mayorga-Reyes, P. Bustamante-Camilo, A. Gutiérrez-Nava, E. Barranco-Florido y A. Azaola-

Espinosa 

265 Statistical approach to optimization of ethanol fermentation by Saccharomyces cerevisiae in the 

presence of Valfor® zeolite NaA 

 (Optimización estadística de la fermentación etanólica de Saccharomyces cerevisiae en presencia de 

zeolita Valfor® zeolite NaA) 

G. Inei-Shizukawa, H. A. Velasco-Bedrán, G. F. Gutiérrez-López and H. Hernández-Sánchez 

 

Ingeniería de procesos / Process engineering 

271 Localización de una planta industrial: Revisión crítica y adecuación de los criterios empleados en 

esta decisión 

 (Plant site selection: Critical review and adequation criteria used in this decision) 

J.R. Medina, R.L. Romero y G.A. Pérez 

 

 

 

 

SPECTROSCOPIC METHOD (FTIR-ATR) AND CHEMOMETRIC TOOLS TO
DETECT COW’S MILK ADDITION TO BUFFALO’S MILK

MÉTODO ESPECTROSCÓPICO (FTIR-ATR) Y HERRAMIENTAS
QUÍMOMÉTRICAS PARA DETECTAR LA ADICIÓN DE LECHE DE VACA A

LECHE DE BÚFALA
L.K.R. Silva, B.R.F. Gonçalves, F.F. da Hora, L.S. Santos, S.P.B. Ferrão*

Southwest Bahia State University, Campus de Itapetinga, Praça da Primavera, 40 - B. Primavera, CEP 45.700-000, Itapetinga,
BA, Brasil.

Received: March 21, 2019; Accepted: May 31, 2019

Abstract
The aim of this work was to use different chemometrics methods to detect cow’s milk addition in the buffalo’s milk, through the
spectroscopic technique Fourier’s Transform Infrared associated with Attenuated Total Reflectance (FTIR-ATR). Preparations
were made with increasing levels of cow’s milk added to the buffalo’s milk, ranging from 0%-100%, totalizing 495 samples. 15
peaks were obtained in the spectral region between 4000 cm−1-600 cm−1 through the FTIR correspondentes a functional groups
of fats, proteins and lactose, whose absorbances were were submitted to Principal Component Analysis (PCA) and Artificial
Neural Network (ANN). The PCA separated the samples as cow’s milk was added to buffalo milk. The ANN showed up to be
more efficient, displaying classification rates of 100% for the reference samples and for most of the groups with the mixture of
cow’s and buffalo’s milk, total classification rate of 95.5% and good prediction with satisfactory correlation and error. The results
displayed the importance of the spectroscopic method FTIR-ATR associated with the chemometrics analysis for the detection of
the authenticity of buffalo’s milk.
Keywords: adulterated buffalo’s milk, cow’s milk, FTIR spectroscopy, Artificial Neural Network, Principal Component Analysis.

Resumen
El objetivo de este trabajo fue utilizar diferentes métodos quimiométricos para detectar leche de vaca en leche de búfala, a través
de la técnica espectroscopica Infrarrojos con Transformada de Fourier asociados con Reflectancia Total Atenuada (FTIR-ATR).
Las preparaciones se realizaron con niveles crecientes de leche de vaca añadida a la leche de búfala, desde 0%-100%, totalizando
495 muestras. Se obtuvieron 15 picos en la región espectral entre 4000 cm−1-600 cm−1 a través del FTIR, correspondentes a
grupos funcionales de grasas, proteínas y lactosa, cuyas absorbancias se enviaron al Análisis de Componentes Principales (ACP)
y Redes Neuronales Artificiales (RNA). La PCA separó las muestras a medida que se añadía leche de vaca a la leche de búfala. La
RNA demostró ser más eficiente, mostrando tasas de clasificación del 100% para las muestras de referencia y para la mayoría de
los grupos con la mezcla de leche de vaca y búfalo, tasa de clasificación total del 95.5% y buena predicción con correlación y error
satisfactorios. Los resultados mostraron el importância del método FTIR-ATR asociado con el quimiometría para la detección de
la autenticidad de la leche de búfala.
Palabras clave: leche de búfalo adulterada, leche de vaca, espectroscopia FTIR, red neuronal artificiales, análisis de componentes
principales.

1 Introduction

The buffalo’s milk, when compared to other species’
milk, possesses sensory features and better industrial
efficiency, due to its higher total dry matter. Although
it has a higher commercial value and its production
is being increased, not much is made regarding the

regulation of the authenticity and quality standards
of the buffalo’s milk and its dairy products, making
it difficult to control and inspect the products in the
market (Sales et al., 2017).

The buffalo’s milk availability is seasonal, making
it difficult to maintain a steady supply throughout the
year (Czerwenka et al., 2010). During the off-season,
the price of the buffalo’s milk elevates, reaching twice
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the price of cow’s milk. With that, some breeders,
suppliers and industries of dairy commit food fraud,
which usually consist on adding cow’s milk to the
buffalo’s milk and its dairy products for sale, without
specifying it on the package, compromising the
products nutritional values and causing losses to the
consumer (Bonfatti et al., 2013).

The assessment of the authenticity of the buffalo’s
milk delivered to the dairy producer is of great matter
to the consumer and the food production authorities.
Methods based on chromatography (Gonçalves et
al., 2016), electrophoresis (Fuselli et al., 2015),
immunochemistry (Dalmasso et al., 2011), mass
spectrometry (Czerwenka et al., 2010) and bio-
molecular techniques (Agrimonti et al., 2015) were
proposed to determine the authenticity of the
buffalo’s milk and its dairy products. Although
these methods provide results of high sensitivity and
selectivity regarding the possible adulterations, they
are expensive, they demand a lot of time, some
demand the use of toxic chemical reagents, complex
instrumentation and trained personnel, therefore they
are not suited for routine analysis. The development
of clean, efficient and fast analytic methods that
guarantee the authenticity of the product is necessary,
like the Spectroscopy in the Fourier’s Transform
Infrared associated with Attenuated Total Reflectance
(FTIR-ATR) (Lohumi et al., 2015; Arrieta-Almario et
al., 2018).

The FTIR-ATR comprises the interaction between
the electromagnetic radiation with the matter, able to
generate spectrum that represent the “digital print”
of a sample, to determine functional groups through
the variation of the vibrational energy of atoms and
molecules. It is considered a promising technology for
the food industry, allowing fast and non destructive
measurements. The advances in the data analysis with
the application of chemometrics methods make this
technology suited for a fast triage of large volumes
of samples and ideal for monitoring food adulteration
(Cassoli et al., 2011).

The chemometrics is a powerful tool that
transforms complex analytic data in useful
information, and techniques such as Principal
Component Analysis (PCA) and Artificial Neural
Network (ANN) have stood out as very important for
the classification and detection of food authenticity
(Souza et al., 2011).

The PCA is qualified tool that, reducing the
dimensionality of the original data, aims to develop
graphic models capable of separate samples of
interest in different groups, according to similarities

of differences (Kamal et al., 2015). The ANN
consists in computer models, its processing units
(artificial neurons) are capable of studying multiple
dependent and independent variables simultaneously,
with no necessity of previous information about the
relation between them, also providing classification
and prediction of the data (Silva et al., 2010; Goyal
et al., 2012).

The aim of this study was to detect the
addition of cow’s milk to the buffalo’s milk through
the electroscopic technique FTIR-ATR and the
chemometrics tools PCA and ANN.

2 Materials and methods

2.1 Samples

Samples of raw whole milk of buffalo (Murrah) and
cow (Dutch x Zebu) milk were obtained for 45
consecutive days and 9 combinations with rising levels
of addition of cow’s milk to the buffalo’s (10% to
90%) with 10% interval and the reference samples
of buffalo and cow (0% and 100% respectively) were
prepared, 45 repetitions were performed, totalizing
495 experimental units. Was realized the additions
from 10% because it is considered that fraud in the
industry does not occur in such low percentages and
frauds involving milk mixtures of different species
normally occur from 10% (Nicolaou et al., 2010). 1.0
mL aliquots were stored in eppendorfs and frozen at
-20 ± 2 °C for 48 h and freeze-dried for 24 h in a
FreeZone 4.5 L bench freeze-drier, at -48 ± 2°C and
vacuum bomb of 86 L/min (Labconco, Kansas City,
MO, USA), obtaining samples of around 0.4 g each.
The composition analysis of the cow and buffalo milks
were made according to the Association of Official
Anlytical Chemists - AOAC (1995).

2.2 Spectroscopic Analysis (FTIR-ATR)

The Fourier Transform Infrared Spectroscopy
associated with Attenuated Total Reflectance (FTIR-
ATR) was used for obtaining the spectrum in the
region between 4,000 cm−1 and 600 cm−1, with
resolution of 4.0 cm−1, 64 scans, with acquisition time
of approximately 30 s (Agilent Cary 630, Danbury,
CT, USA). A background spectrum reading was made
before each collection, in standardized conditions.
The samples were previously freeze-dried, for in this
equipment the water bands overlap with the bands
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of the functional groups of the milk, compromising
the reading of the peaks. The freeze drying increases
the concentration of the components of the milk,
facilitating the interpretation of the results due to the
lesser influence of humidity.

The peaks, the functional groups found and
wavenumber range in which the samples were
analyzed, were identified in the literature (Pappas et
al., 2008; Nicolaou et al., 2010; Subramanian et al.,
2011; Santos et al., 2013; Jaiswal et al., 2015).

2.3 Chemometrics analysis

The classification, quantification and prediction of the
samples of buffalo’s milk mixed with cow’s milk were
performed using techniques of pattern recognition:
PCA and ANN, which used the peak data obtained
by the FTIR-ATR analysis. The PC number was
determined considering the criterion of interpretable
factors and the Kaiser’s criterion, which select the first
PC that represent more than 70% of the variance of
the original data and presents eigenvalue bigger than
one, respectively (Ferreira, 2011). Scatter charts were
plotted and groups of similar samples were formed
through visual examination. The object of PCA was to
reduce the dimensionality of the data set, preserving
its variance and transforming them in new non related
variables, the principal components (PC), as well
as find similarities between the samples and group
them. The grouping of the reference samples (0% and
100%) and mixed samples were verified. Therefore,
the data were standardized (µ = 0, σ = 1) and the
PC obtained using the statistical software Statistical
Analysis System (SAS)® Studio.

The PC number was determined considering the
criterion of interpretable factors and the Kaiser’s
criterion, which select the first PC that represent
more than 70% of the variance of the original data
and presents eigenvalue bigger than one, respectively
(Ferreira, 2011). Scatter charts were plotted and
groups of similar samples were formed through visual
examination.

The ANN was used to separate and sort the
groups of reference samples (0% and 100%), the
samples of buffalo’s milk with low level of addition of
cow’s milk (10% to 20%), medium level of addition
(30% to 40%) and high level of addition (50%
to 90%), as well as to predict the content of the
samples of buffalo’s milk added with cow’s milk
using the software Java Neural Network Simulator,
JavaNNS, version 1.1 (Wilhelm-Schickard-Institute,
WSI, Tübingen, Alemanha) (Fischer et al., 2001). The

absorbance data of the spectrum were randomized and
divided in two groups: training (80% of the data)
and validation (20% of the data). The randomization
and distribution of the data occurred on each group,
consisting of 6 samples for training and 9 for
validation, so that the number of data were the same
for all groups, totalizing 225 samples for this analysis.

The ANN are configured in a mathematical
algorithm that relates the inputs and outputs of
the net and has the capability to perform the
learning through its interactions. They were composed
of artificial neurons interconnect with 15 input
neurons (corresponding to 15 variables/15 peaks), 2
hidden layers, and 1 output formed by 5 neurons,
corresponding to the groups of 0%, 100% and to those
with levels of addition.

The signals received by the output neurons
performed calculations for the generation of
information, without previous knowledge of the
relation between them and the bond strength, which
was related to the weights applied during the learning
stage. In the two hidden layers 0 to 50 neurons were
tested, totalizing 10 different settings, 200 interactions
being used until the best architecture be chosen.

The supervised methodology multilayer
perceptrons (MLPs) with feed-forward connections
with parameters from -1 a 1. The training algorithm
was the Resilient Propagation, improved version of
the Backpropagation, which makes the convergence
process more efficient (Silva et al., 2010) and the
activation function used was a hyperbolic tangent
(tanh).

The choice of the best setting for the classification
was based on the number of interactions, of hidden
layers, in the maximization of the classification
rate and minimization of the Root Mean Square
Errors (RMSE) in the training and validation stages,
expressed by the Eq. (1)

RMS E =

√√
1
n

n∑
i=1

(xd − xp)2 (1)

Where: n is the number of pairs of data and xd
and xp are the experimental data (also called desired
values) and predicted data, respectively. The data
were classified according to the classification rate, the
bigger the classification rate, better the capability of
the network in differentiate and sort the groups (Rai et
al., 2005).

The generalization capability of the network was
verified to predict the cow’s milk percentage added
to the buffalo’s milk. The predicted values by the
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model and the experimentally obtained were used to
achieve the correlation coefficient in the validation
stage and observed its significance through the test F
(p < 0.0001). The choice of the optimal number of
hidden layers and its neurons was based on the net
that displayed the smaller RMSE value and the biggest
correlation coefficient.

3 Results and discussion

3.1 Spectroscopic Study (FTIR-ATR)

15 absorption peaks important in the spectral region
between 4,000 cm−1 to 600 cm−1 were identified
through FTIR-ATR, and its maximal absorbances
correspond to the vibrations of the functional groups
present in the milk (Figure 1) (Pappas et al., 2008;
Santos et al., 2013; Botelho et al., 2015).

The spectrum of the buffalo’s reference samples
(0%) and cow’s (100%) presented minor differences,
evidenced in large part, by more intense absorptions in
the peaks of the buffalo’s milk. According to Nicolaou
et al. (2010), the degree of absorption of the peaks
correlates to the quantity of the component present in
each type of milk, fatty acids, proteins (amides I and
II) and carbohydrates (lactose). For each sample, the
replicates presented similar behavior in the spectra,
for the milks of different species have the same
components, the difference is the quantity of those,
causing the absorbance intensity to be different. The
similarity of the peaks justifies the use of chemometric
analysis to separate and differentiate the formulations.

Figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Spectrum obtained by FTIR-ATR of buffalo’s
milk (0%), cow’s milk (100%) and buffalo’s milk
added with different levels of cow’s milk (10% to
90%) in the spectral region between 4000 cm−1 and
600 cm−1.

Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1,147-1,149 cm-1 

1,019-1,133 cm-1 

1,240-1,250 cm-1 

768-780 cm-1 
890-893 cm-1 

Fig. 2. Spectrum obtained by FTIR-ATR of buffalo’s
milk (0%), cow’s milk (100%) and buffalo’s milk
added with different levels of cow’s milk (10% to
90%) in the spectral region between 699 cm−1 and
1300 cm−1.

According to the data found in this work, for
the composition the buffalo’s milk presented higher
content of its main components (8.84% of fat, 4.27%
of protein and 5.37% of lactose) when compared to the
cow’s milk (3.95% of fat, 2.85% of protein and 3.89%
of lactose) and these differences were observed on to
the absorption of its respective functional groups.

Most of the generated peaks refer to the fat bonds
vibrations, such as the peaks of the wavenumber
region 3,278 cm−1, 2,919-2,922 cm−1, 1,742-1,746
cm−1 and 2,851-2,855 cm−1 due to the presence of O-
H, CH2 and C-O, respectively, which were displayed
more intensely on the buffalo’s samples, considering
that the samples were previously freeze-dried and the
peaks were not influenced by the presence of water
(Ménard et al., 2010).

The peaks related to proteins and carbohydrates
appear, in a smaller proportion than the other peaks,
and this difference of intensity happened especially
in the peak region of 1,147-1,149 cm−1, related to
the bonds C-O/C-C/C-O-O/CH of the carbohydrate
(Pappas et al., 2008) that showed a larger energy
absorption than the others (Figure 2). The peaks
referring the vibration of the protein bonds in the
region between 699-703 cm−1 (N-H), 1,240-1,250
cm−1 (C-N/N-H) were more intense for the buffalo’s
samples (0%) (Jaiswal et al., 2015), also as the
other peaks referring the carbohydrates (1,019-1,133
cm−1 and 890-893 cm−1) and the fat (768-780 cm−1),
confirming what the literature addresses regarding the
relation between the degree of absorption and the

14 www.rmiq.org



Silva et al./ Revista Mexicana de Ingeniería Química Vol. 19, No. 1 (2020) 11-20

components content of each type of milk (Nicolaou et
al., 2010).

The spectrum of the samples with addition of
cow’s milk showed slight variations of absorbance,
barely perceptible, both on the samples with smaller
addition (10%) and with bigger addition (90%) (Figure
2). With the increase of the addition levels, the samples
showed behavior similar to the cow’s samples (100%)
and the samples with low levels of addition tended to
the buffalo’s samples (0%) spectrum.

Nicolaou et al. (2010) verified differences present
between the spectrum of the milks of goat, sheep and
cow through the appearance of more intense peaks for
the sheep’s milk in the region of 2,927 cm−1 related to
the fat (CH2 e C-O), justifying the bigger absorption
of the goat for its fat content compared to the other
studied, which as similar to the result of this study.

3.2 Chemometrics analysis: PCA and ANN

The PCA was used to discriminate the buffalo’s and
cow’s milk samples (0 and 100%) and verify the
influence of the levels of addition of cow’s milk
in the groups separation (Figure 3). Considering
Kaiser’s criteria and interpretable factors, the three
first principal components capable of explaining
between 78-86.45% of the variability of the original
data were chosen.

Based on Pearson’s correlation coefficients and
on the correlation probability (0.65-0.7), the PC1
(44.59%) presented correlation with the variables
corresponding to the fats (3,278 cm−1, 1,458 cm−1,
1,376 cm−1, 768 cm−1), to the proteins (1,647
cm−1, 1,541 cm−1, 1,241 cm−1 e 700 cm−1) and
carbohydrates (1,023 cm−1, 892 cm−1). The PC2
(25.58%) showed itself highly correlated with most
of the variables related to the fat (2,919 cm−1, 2,081
cm−1, 2,851 cm−1, 1,742 cm−1, 1,148 cm−1, 1,541
cm−1), while the PC3 (16.52%) presented significant
correlation with some variables of fat (1,742 cm−1,
2,919 cm−1, 2,851 cm−1). A pattern of grouping of the
samples of buffalo’s milk (0%) and cow’s (100%) with
the appearance of two homogeneous groups with little
dispersion between them was noted (Figure 2).

Velioglu et al. (2017) discerned samples of
cow’s and buffalo’s milk using the first two PC
scores (99.91%) of the spectrum obtained through
spectroscopy by graphic dispersion. Mabood et al.
(2017) differentiated samples of goat’s, cow’s and
camel’s milk through NIR spectroscopy analysis, also
using the PCA, separating 54 studied samples.

As addition levels increased, samples of buffalo
milk with addition of cow’s milk were grouped
showing less dispersion between groups. Despite the
difficulty in the separation of the smaller levels of
addition, it was possible to observe the formation of
a third group located between the reference samples
(0% and 100%) from 40% of cow’s milk added to the
buffalo’s milk (Figure 3).

With the increase of cow’s milk added to buffalo
milk, the samples showed a similar behavior to that
of cow’s milk, reason that no third group was formed
between the samples containing 60% to 90% addition,
since these showed similar behavior to cow’s milk.
In contrast, with lower levels of cow’s milk addition,
the samples resembled buffalo milk, making it more
difficult to detect adulteration. Carvalho et al. (2015)
also reported that in their study with samples of
powdered milk added with whey, with smaller levels
of serum addition (1% to 6%) presented the spectros
with behavior similar to the samples with no addition,
due to the small serum contend and the similarity of
the composition between the studied samples.

It was possible to observe that the components
PC2 and PC3, which presented correlation with most
of the variables referring to fat, influenced in the
separation of the samples depending on the levels of
addition, as shown in Figure 4, the vertical separation
between the samples can be verified, in which those
with higher cow’s milk content (90% and 100%)
separated from the others due to the influence of
PC2, and the horizontal separation (0%, 10%, 20%),
presented in different quadrants of the others (30%,
40%, 50%, 60%, 70%, 805) due to influence of PC3.
Considering that the PCA is a triage analysis, it was
possible to separate the samples in groups to perform
the subsequent ANN analysis: buffalo’s (0%), cow’s
(100%), group with low level of addition (10% to
20%), medium level of addition (30% to 40%) and
high level of addition (50% to 90%).

For the ANN, the net with the best setting had
fifteen neurons on the input layer, fifty neurons on the
first hidden layer, twenty neurons on the second hidden
layer and five neurons on the output layer with RMSE
of 0.23, 95.55% of classification rate and 100% to the
reference samples, with medium level of addition of
cow’s milk to the buffalo’s milk (30% to 40%) and
high level (50% to 90%) (Table 1).

The group containing samples with low level of
addition (10% to 20%) presented smaller classification
rates for most of the tested architectures, when
compared to the other groups, making it possible
to predict the complexity of the separation of the
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Fig. 3. Graphic of scatter of the samples of buffalo’s milk (0%) and cow’s milk (100%) (a) and buffalo’s milk added
with different levels of cow’s milk 10% (b), 20% (c), 30% (d), 40% (e), 50% (f), 60% (g), 70% (h), 80% (i), 90%
(j).
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Table 1. Setting of the tested Artificial Neural Network, Root Mean Square Error (RMSE), and classification rates
(%) of the buffalo’s milk (0%), cow’s milk (100%), of the group of samples with low level of addition of cow’s

milk to the buffalo’s milk (10% a 20%), with medium level of addition of cow’s milk to the buffalo’s milk (30% a
40%), with high level of addition of cow’s milk to the buffalo’s milk (50 a 90%) and total classification rate (T).

NIL 1ª HL 2ª HL NOL RMSE
Classification rate (%)

0% 100% Low Mid Hight T

15 50 50 5 0.32 100 100 55.55 88.88 100 88.88
15 50 40 5 0.17 88.88 100 100 88.88 100 95.55
15 50 30 5 0.2 100 100 77.77 88.88 100 94.33
15 50 20 5 0.23 100 100 77.77 100 100 95.55
15 50 10 5 0.3 88.88 88.88 88.88 88.88 88.88 91.11
15 50 0 5 0.47 88.88 100 55.55 77.77 77.77 80
15 40 0 5 0.5 55.55 88.88 77.77 77.77 100 80
15 30 0 5 0.54 66.66 77.77 77.77 77.77 77.77 75.55
15 20 0 5 0.57 88.88 100 44.44 88.88 77.77 80
15 10 0 5 0.57 77.77 100 33.33 77.77 66.66 71.1

NIL=Neurons of the input layer /HL = Hidden layer / NOL = Neurons of the output output / RMSE=

Root Mean Square Errors.

Table 2. Settings of the neural networks tested for the prediction and the predictive coefficients.

NIL 1ª HL 2ª HL NOL RMSE Correlation (R2)

15 50 50 5 0.32 0.911
15 50 40 5 0.17 0.903
15 50 30 5 0.2 0.92
15 50 20 5 0.23 0.971
15 50 10 5 0.3 0.803
15 50 0 5 0.47 0.701
15 40 0 5 0.5 0.702
15 30 0 5 0.54 0.66
15 20 0 5 0.57 0.754
15 10 0 5 0.57 0.708

NIL=Neurons of the input layer /HL = Hidden layer / NOL
= Neurons of the output output / RMSE= Root Mean Square
Errors.

adulterated buffalo’s samples, especially with low
content of cow’s milk.

The detection of mixtures of buffalo’s and cow’s
milk, especially with low percentages of cow’s milk,
turned out to be more complex than the differentiation
of the reference samples (0% and 100%), for these
are similar compositions in their qualitative aspects,
as it happened with the differentiation of the samples
of cow, goat and sheep in the study of Nicolaou et
al. (2010). When it is not detected, the fraudulent
addition of cow’s milk to the buffalo’s milk harms
the final quality of the product and its dairy products,
generating a nutritional and economic loss for the
consumer (Gonçalves et al., 2016).

The ANN have been implemented on studies of
milk adulteration with replenishers and with addition
of other species (Balestrieri et al., 2001; Valente et
al., 2014). However, one of the obstacles found for
this and others techniques is the similarity between
the milk samples of certain species, which make their
classification in lower levels of adulteration difficult.
This technique is set in a non linear system, capable
of separating data that would not be separable linearly
and has the advantage of being capable of learning and
improving the performance of new data, which allows
the generation of a model with great importance in
the detection of mixtures between cow’s and buffalo’s
milks.
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Figure 4. 
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Fig. 4. Graphic of mean values of the scores of the
samples of buffalo’s milk (0%) and cow’s milk (100%)
and buffalo’s milk added with different levels of cow’s
milk (10% a 90%)
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Fig. 5. Experimental values versus predicted values by
the net of the samples of the buffalo’s milk (0%), cow’s
milk (100%), and buffalo’s milk added with different
levels of cow’s milk (10%, 20%, 30%, 40%, 50%,
60%, 70%, 80%, 90%).

To predict the addition of the cow’s milk content
to the buffalo’s milk, the ANN that presented the
best setting included two hidden layers with 50 and
20 neurons, respectively, which displayed satisfactory
RMSE and correlation coefficient, of 0.23 and 0.971
(Table 2).

The net that obtained the smallest RMSE and
biggest correlation presented good capability of
prediction and/or generalization, whose scatter chart
displayed the data in ascending order and concentrated
around the tendency line with the experimental and/or
real values and the values predicted by the net highly
correlated (R

2
= 0.971), with significant correlation (p

< 0.001) according to the F test (Figure 4).
The results of this study were shown to be

important in the differentiation between the samples

of milk of the bovine and buffalo species and in
the prediction of adulterated samples to aid in the
detection of the buffalo’s milk adulteration, indicating
the PCA and ANN, associated with FTIR-ATR, as
an important non destructive tool for triage the
authenticity of the buffalo’s milk.

Conclusions

The spectroscopic analysis FTIR-ATR has been shown
to be efficient in generating important data for the
classification and prediction of the samples of buffalo’s
milk added with cow’s milk demonstrating great
potential for adulteration detection. The FTIR-ATR
associated to the chemometry is a qualitative method,
especially when combined with the PCA and ANN
chemical analysis, being able to identify the presence
of adulteration as well as the levels of addition.

The PCA allowed the summarization of the data
and the detection of the addition of cow’s milk to
the buffalo’s milk, highlighting the importance of
the variables related to the fat for the classification
and differentiation of the samples. It was observed
that the ANN can be used as an identification
and prediction tool of the studied samples, with
good classification rates, satisfactory errors and high
capability of generalization.
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