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AS A POTENTIAL NONE-INVASIVE TREATMENT FOR DIABETES
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Abstract
The present work depicts the development of a self-nanoemulsifiable drug delivery system (SNEDDS) for the administration
of insulin, in which an insulin complex was formed with enzymatically modified soy phosphatidylcholine, by means of the
solvent elimination technique. In addition, sodium alginate and guar gum were added to this system to provide mucoadherence
capacities and to increase insulin protection against gastric conditions. SNEDDS were developed from mixtures of surfactant,
co-surfactant and oil phase: Cremophor EL, Labrafil M1944CS and Lauroglycol FCC, respectively: obtaining particle sizes in the
range of 27.36-50.53 nm and a monomodal distribution. Mucoadhesives were added by orbital agitation of 100 rpm and particle
sizes between 53.1-83.2 nm were obtained. Finally, nanoemulsions were submitted to an in vitro gastric simulation system,
were insulin bioavailability was increased to 46.3% in systems that included mucoadhesive coating. These results show that the
developed systems can possibly be used for the administration of insulin by oral route as a potential non-invasive treatment for
diabetes.
Keywords: diabetes, insulin, modified phosphatidylcholine, mucoadhesive polysaccharide, nanoemulsions.

Resumen
En el presente trabajo se muestra el desarrollo y estudio de un sistema de entrega de fármacos auto-nanoemulsificante (SNEDDS)
para la administración de insulina, en el que se formó un complejo de insulina con fosfatidilcolina de soya modificada
enzimáticamente, mediante la técnica de eliminación de solventes. Adicionalmente, dicho sistema fue adicionado con alginato
de sodio y goma guar como mucoadhesivos y para aumentar la protección de la insulina contra las condiciones gástricas. Los
SNEDDS se desarrollaron a partir de mezclas de surfactante, co-surfactante y fase oleosa: Cremophor EL, Labrafil M1944CS y
Lauroglicol FCC respectivamente, obteniendo tamaños de partícula de 27.36 - 50.53 nm y comportamientos monomodales. Los
mucoadhesivos se agregaron por medio de agitación orbital a 100 rpm obteniendo tamaños de partícula entre 53.1-83.2 nm. Por
último, al someter las nanoemulsiones a un sistema de simulación gástrica in vitro, se logró aumentar la bioaccesibilidad de la
insulina hasta en 46.3% en los sistemas que incluían recubrimiento mucoadhesivo. Estos resultados muestran que los sistemas
desarrollados pueden ser utilizados en la administración de insulina por vía oral como posible tratamiento no invasivo contra
diabetes mellitus.
Palabras clave: diabetes, insulina, fosfatidilcolina modificada, polisacáridos mucoadhesivos, nanoemulsiones.
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1 Introduction

Diabetes mellitus is a chronic and degenerative
disease; in 2017 approximately 425 million adults
(ages 20-79) were living with diabetes and caused 4
million deceases (International Diabetes Federation,
2017), making one of the leading causes of death.
The main treatment consists on the application
of the exogenous hormone insulin, of which
the most common forms of administration are
subcutaneous and intravenous injections (Libman,
2009). Endogenous insulin is produced and released
into the bloodstream by the pancreas, in response
to increased blood glucose levels; once in the
bloodstream it is transported to the target cells,
where insulin binds to specific membrane receptors
activating a cascade of signals that allow glucose to
enter the cell. Subcutaneously administered insulin
passes through capillaries into the bloodstream where
it is transported in the same manner as endogenous
insulin (Atkinson et al., 2014; Kanzarkar et al.,
2015). However, these are methods that can generate
complications due to the long periods in which the
injections are applied. Among the most common
aggravations are lipodystrophy that causes a decrease
in the absorption of the compound, possible infections
produced by injection punctures, and the absorption of
the hormone will depend on the site of application of
the injection (Heinemann, 2002; Nawaz et al., 2017).
An alternative to this invasive treatment is a non-
invasive oral administration strategy (Li et al., 2014;
Özer et al., 2017). It is important to note that given the
nature of the digestive tract, this administration route
suffers of an important problem of low bioavailability
due to degradation, providing this strategy with
major challenges (Al Rubeaan et al., 2016; Granillo-
Guerrero et al., 2017; Olivares-Romero et al., 2018).

Currently self-nanoemulsifiable drug delivery
systems SNEDDS have shown promising potential
in the pharmaceutical industry for the administration
of different drugs (Cavazos Garduño et al., 2014;
Dwivedi et al., 2014). A nanoemulsion is a system
composed of a continuous and a dispersed phase, in
addition to a surfactant or emulsifier that helps to
stabilize the system (Alizadeh-Sani et al., 2018).

The implementation of phospholipids
enzymatically modified with medium chain fatty acids
in nanoemulsions has shown a better stability than the
use of native phospholipids, and also an increase in
bioavailability of the encapsulated compound, most

likely because these fatty acids cause an enhancement
in permeability of the mucosal tissue (Lindmark et al.,
1998; Ochoa-Flores et al., 2017; Vikbjerg et al., 2006).
Mucoadhesives have been incorporated in different
drug delivery systems (Sakloetsakun et al., 2013);
these compounds interact with the intestinal mucosal
membrane, increasing the interaction time between
the drug and the organism. Among the most recent
applications of mucoadhesives are their incorporation
into nanoemulsions (Carvalho et al., 2010; Li et al.,
2011). Therefore, the objective of this work was to
formulate a SNEDDS with mucoadhesive coating in
order to encapsulate an insulin-phosphatidylcholine
complex; to increase the oral bioavailability of the
hormone; to develop a potential alternative for the
treatment of diabetes. In order to do so, human insulin
powder was subjected to the formation of a complex
with soy phosphatidylcholine by means of the solvent
elimination technique, it was then incorporated into
SNEDDS with sodium alginate and guar gum, its
bioavailability when passing the nanoemulsion by
an in vitro gastric simulation system was measured.
Bioavailability was expected to increase due to the
incorporation of the hormone into the SNEDDS
that function as a first protection barrier against the
organism’s environment.

2 Materials and methods

2.1 Materials

Lauroglycol FCC oil and Labrafil M1944CS co-
surfactant, for SNEDDS formation, were donated
by Gattefossé (Saint-Priest, France). Soybean
phosphatidylcholine (PC) with 95% purity was
obtained from Avanti Polar Lipids (Alabaster,
AL). Phospholipase PLA1 (Lecitase® Ultra) was
a donation by Novozymes (Barcelona, Spain) and
Duolite A568 was a gift from Rohm and Haas
(Barcelona, Spain). Octanoic acid, Cremphor EL,
recombinant human insulin, streptozotocin, mucin
porcine, bovine albumin, pepsin, lipases, sodium
alginate and guar gum were purchased from Sigma-
Aldrich (Mexico City). Glucose determination kits
(Bio-insulin®) and blood insulin (Bio-insulin®) were
purchased from Grupo MEXLAB (Mexico). HPLC
grade solvents and reagents used in this work were
acquired from Teqsiquim (Mexico City).
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2.2 Acidolysis reaction

The synthesis of enriched PC with octanoic acid,
a medium chain fatty acid (MCFA), was carried
out by an enzymatic reaction of acidolysis, using
Phospholipase A1 Lecitase® Ultra immobilized
on Duolite A568 according to the methodology
described by Esperón-Rojas et al. (2017). Briefly,
soy phosphatidylcholine was dissolved in hexane by
ultrasonication in a ratio of 4 mL solvent per gram of
phospholipid, it was carried out under the following
conditions: 50°C, immobilized enzyme concentration
of 10%, molar ratio of substrates (PC:MCFA) 1:16 and
magnetic stirring at 300 rpm for 24 h. Samples from
the acidolysis reaction were withdrawn at times 0, 4,
12, 24 and 48 h.

The incorporation of octanoic acid to soybean
phospholipase was determined by gas chromatography
(GC). Esterified fatty acids were derivatized to methyl
esters by alkaline methylation (Garcia et al., 2008); 1
?L was injected into a Hewlett-Packard Model 6890
Gas Chromatograph equipped with a flame ionization
detector, using a HP-INNOWAX Polyethylene Glycol
capillary column (60 mm X 0.25 mm X 0.25 mm).
The temperature program was: an initial temperature
of 190°C for 1 minute followed by a ramp of 4°C
per minute up to a final temperature of 210°C. Total
analysis time was 30 minutes. The injection port was
maintained at 200°C and the detector at 230°C. High
purity nitrogen was used as a carrier gas at a constant
flow rate of 1 mL/min (Esperón-Rojas et al., 2017).

2.3 Preparation of insulin-PC complex

The formation of insulin complexes with native PC
and modified PC (PCM) was carried out following

the method proposed by Zhou et al. (2012), using
human insulin powder with 27 IU/mg. A mass ratio
of 1:8 insulin-phospholipid (modified or unmodified)
was used in accordance to published data where
a ratio of 1:7.5 or higher was employed, the
association of phospholipids to the insulin is near
100%. Each component was placed in a round flask
and dissolved in a proper solvent, insulin in 10 mL of
methanol acidified with 0.1% trifluoroacetic acid, and
PC/PCM in ethyl ether at a 1:9 ratio. Once dissolved
independently, they were placed in a flask and then
mixed together; afterwards, the solvents were removed
by rotary evaporation for 30 minutes in a water bath at
40 °C and under a vacuum of 850 mbar. The complex
was completely dried with nitrogen, to remove solvent
residues, and left in a vacuum for 12 hours. Finally, the
complex was collected and stored in an amber glass
bottle and refrigerated at 4°C, until added to the oil
phase of the nanoemulsion.

2.4 Preparation of the SNEDDS

First, a pre-formulation of the SNEDDS was prepared
considering the results reported by Bravo-Alfaro
(2018) and Karamanidou et al. (2015): 12 different
compositions were formulated as shown in Table 1.
In these SNEDDS, Lauroglycol FCC constituted the
oil phase, Cremophor EL the surfactant and Labrafil
M1944CS the co-surfactant. These systems were
characterized by measuring their particle size, and a
ternary phase diagram was made using the software
SigmaPlot®.

Table 1. SNEDDS compositions and formulations.

System Oil Sufactant Cremophor EL (mg) Co-Surfactant Labrafil M1944 (mg)
Lauroglycol FCC (mg)

1 100 300 150
2 100 300 250
3 100 500 150
4 100 500 250
5 100 700 150
6 100 700 250
7 300 300 250
8 300 500 250
9 500 500 250

10 500 700 50
11 500 700 150
12 500 700 250
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Table 2. Treatment experimental design.

Treatments Phospholipid Sodium alginate Guar gum

1 PC 0% 0%
2 PC 0% 0.10%
3 PC 0.05% 0%
4 PC 0.05% 0.10%
5 PCM 0% 0%
6 PCM 0% 0.10%
7 PCM 0.05% 0%
8 PCM 0.05% 0.10%

The formulations found in the emulsification zone
were selected by means of the resulting ternary phases
diagram and by having a monomodal distribution.
Monodispersity or monomodal distribution is of great
importance since narrow size distribution has been
improved to produce higher stability against droplet
coalescence: additionally, particle sizes under 400
nm are easily absorbed by organisms (McClements,
2013).

2.5 Incorporation of the complex in the
SNEDDS

To determine the solubility capacity of the complex in
the oil phase (Labarafil M1944 CS), 2.5, 5 and 10% of
the complex was tested and integrated into one of the
formulations to which particle size was measured.

2.6 Formation of SNEDDS with
mucoadhesive coating

The mucoadhesive polysaccharides were initially
dissolved in phosphate buffer pH 7. The final
system volume ratio was 1:1 polysaccharide
solution:SNEDDS; solutions were mixed at 100 rpm
at room temperature for 60 minutes. For treatments
with sodium alginate, 1 mL of 20 mM CaCl2 solution
was added. Subsequently, pH was adjusted to 5 with
HCl 0.1 M, in order to promote the absorption of
the mucoadhesive polymers; and finally, filtered using
0.45 µm PVDF membrane filter. For this experimental
stage, a 23 statistical design was carried out, of which
factors and levels shown in Table 2.

2.7 in vitro digestion simulation

This model simulates the main events that occur
during digestion, using the conditions described by
McClements and Li (2010). The simulator consisted

of two reactors: 1) simulates the mouth and stomach
conditions and 2) the small intestine conditions;
an infusion pump adds gastric fluids solutions
while stirring to provide temperature and peristaltic
movements simulations. At the end of each stage a
sample was taken and particle size was measured.
Bioavailability was calculated by determining the
amount of insulin in the final small intestine sample
by an insulin-specific ELISA test.

2.8 Statistical analysis

The results obtained from the designs were analyzed
by analysis of variance (ANOVA) and comparison
of means using Tukey´s test, with a level of
significance of p<0.05 using the statistical software
STATGRAPHICS® Centurion XVI (The Plains, VA).

3 Results and discussion

3.1 Determination of MCFA incorporation
to phosphatidylcholine

The highest percentage of MCFA incorporation
(49.69% in molar relation) was attained after 24 hours
of reaction, as shown in Fig. 1. These results are
higher than those reported by Vikbjerg et al. (2006)
of 27.3-37%, using the same fatty acid as in this
work, but by means of the enzyme PLA2. Previous
research in which PLA1 was used, like those form
Ochoa et al. (2013) and García et al. (2008) obtained
incorporation results between 37-41% in molar basis.
The difference between the data is probably attributed
to the use of a solvent medium, since in the presence
of hexane the migration of acyl groups can occur,
allowing the incorporation of the fatty acid in the sn-1
and sn-2 position of the PC molecule (Schmid et al.,
1998); this agrees with data reported by Bravo-Alfaro
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Fig. 1. Percent Molar PC incorporation, of MCFA into
PC. The reaction is first order respect to the MCFA,
this substrate must be in higher relation than the PC,
in order to promote the use of this fatty acids instead
of the free fatty acids results of the first stage of the
reaction.
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Nanoemulsión con comportamiento multimodalFig. 2. Ternary phase diagram. Dots indicate

zones of spontaneous emulsification with monomodal
behaviors. Crosses indicate areas where spontaneous
emulsification did not occur.

(2018), who obtained an incorporation of 57.44%,
under similar reaction conditions. It is also important
to note that in the present work, a smaller amount of
enzyme was used at the same reaction time than in
work of Ochoa et al. (2013), where 16% more enzyme
was used and a lesser incorporation was obtained.

3.2 Formulation of the SNEDDS

Following the SNEDDS formulations described by
Karamanidou et al. (2015), and Bravo-Alfaro (2018),
we proceeded to test those that produced smaller
particle sizes and monomodal size distribution;
12 different composition systems shown in Table

1 in the Materials and Methods section were
tested. nanoemulsions. The factors like stability,
solubilizing capacity of surfactants in water for an
efficient self-nanoemulsification, a ratio surfactant/co-
surfactant should be considered in the formulation
and selection of SNEDDS; for that, a ternary phases
diagram was obtained (Fig. 2). The ternary phases
diagram was related to the particle size distribution
and spontaneous emulsification of the formulation
systems. It was observed that the systems formed
multimodal nanoemulsions, but also the spontaneous
emulsification may pose difficulties and the systems
require more agitation. This formulation contained
the highest amount of the surfactant Cremophor
which may cause the formation of particles with
multiple sizes and the concomitant difficulty of
assembly with the other components. The SNEDDS
in the multimodal nanoemulsions area were discarded
because this distribution may produce coalescence and
low stability in the nanoemulsion.

Particle size, D90 and PDI of 9 monomodal
systems selected from the ternary phases diagram,
are shown in Table 3. These data coincide with that
reported by Bravo-Alfaro (2018). Those treatments
with the best results were selected to add the
mucoadhesive coating. For the next stage of the study,
systems 2, 6 and 9 were selected because of their
smaller particle size and PDI values (Ochoa et al.,
2016), and different compositions, which allowed us
to observe their behavior in the incorporation of
mucoadhesives.

3.3 Incorporation of the insulin-
phospholipid complex in SNEDDS

Solubility of the complex in the oil phase was
tested at 2.5, 5 and 10%. This test was performed
in system 2, unlike that reported by Bravo-Alfaro
(2018), where solubility was found up to 10%,
although the particle size increased with the percent
of incorporated complex, sizes were obtained below
100 nm with monomodal distribution. This difference
can be attributed to the method by which the complex
was prepared, since in Bravo-Alfaro (2018) it was
by freeze-drying, having to use several freezing
cycles to achieve the final complex, which allowed
a larger size. Although the particle size did not
differ significantly, greater sedimentation and less
repeatability in distribution was observed. It was
determined that the 2.5% complex was the one to be
used as it produced the smallest particle size.
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Table 3. SNEDDS particle size.

System Average size (nm) D90 (nm) PDI

1 23.53 ± 0.92 27.36 ± 0.39 0.17 ± 0.05
2 27.90 ± 1.07 33.95 ± 1.98 0.08 ± 0.01
3 22.43 ± 0.61 25.11 ± 0.27 0.23 ± 0.02
4 21.59 ± 0.86 26.03 ± 0.94 0.12 ± 0.03
5 21.85 ±1.02 24.1 ± 0.43 0.37 ± 0.03
6 18.56 ± 0.51 22.43 ± 0.87 0.10 ± 0.01
7 43.71 ± 1.52 50.53 ± 3.17 0.13 ± 0.01
8 26.97 ± 1.72 31.43 ± 2.68 0.17 ± 0.03
9 33.66 ± 1.37 39.68 ± 2.76 0.11 ± 0.02

Data Mean ± SD (n=6).

Table 4. Particle sizes for systems with mucoadhesives.

Treatment Average size (nm) D90 (nm) PDI

S2 T1 27.90 ± 1.07 33.95 ± 1.98c 0.08 ± 0.01a

S2 T2 80.70 ± 0.36 83.2 ± 1.82a 0.10 ± 0.01a

S2 T3 57.10 ± 2.31 67.06 ± 2.72a 0.16 ± 0.02b

S2 T4 47.50 ± 0.19 53.1 ±2.09a 0.20 ± 0.01b

S6 T1 18.56 ± 0.51 22.43 ± 0.87c 0.10 ± 0.01a

S6 T2 31.80 ± 5.32 24.6 ± 1.71a 0.49 ± 0.015c

S6 T3 21.54 ± 0.21 25.7 ±0.26a 0.15 ± 0.01b

S6 T4 23.04 ± 0.13 26.33 ± 0.12a 0.22 ± 0.01b

S9 T1 33.66 ± 1.37 39.68 ± 2.76c 0.11 ± 0.02a

S9 T2 117.93 ± 1.21 3271 ± 2759.82b 0.26 ± 0.02b

S9 T3 97.64 ± 5.04 155 ± 39.05b 0.23 ± 0.01b

S9 T4 103.23 ± 1.47 100.66 ± 5.86b 0.23± 0.01b
3 selected SNEDDS were used to represent particle size. Data mean ± SD
(n=6). Letters represent significant difference (p<0.05).

3.4 Incorporation of mucoadhesives in
SNEDDS

According to Table 2, different treatments were
assessed in the 3 selected systems from section
3.2; treatments 1-4 have a representative behavior
of the treatments (data not shown). An increase
in size can be observed in comparison to the free
systems depicted in Table 4; this increase is attributed
to the coating generated when mucoadhesives were
added to the nanoemulsion oil particle surface;
consistent with the data reported by Choi et al.
(2011). System 6 (S6) did not show a considerable
increase in average size or D90, meaning that this
system did not achieve polysaccharide incorporation,
possibly because of its composition, containing a high

quantity of Cremophor EL, which generates different
interactions or repulsions between the carboxyl groups
in polysaccharides and the particle surface. Data
corresponds to the report by Guzey and McClements
(2006); for this reason S6 was discarded. System 9
(S9) was also discarded because it produced particle
sizes and D90 values around 100 nm and small coated
particle sizes.

System 2 (S2) was employed to perform digestive
tests adding the PC and PCM complex, this system
was chosen because it required the lowest surfactant-
cosurfactant ratio and had a low PDI value, ensuring
less dispersed particle sizes. Treatments 4 and 8
were rejected because they produced bimodal size
distributions, in which the second peak (2000 nm)
represents 3% of the measurements.
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Fig. 3. Change in the particle size distribution in an
in vitro digestive simulation system for T3 treatment,
with sodium alginate: A) Mouth, B) Stomach, C)
Small intestine.

3.5 Evaluation of the bioaccessibility in an
in vitro digestion simulation

The treatments, excluding 4 and 8, were subjected
to the conditions described in the methodology
(section 2.7). In all treatments a change in particle
size was observed after passing through each phase.
In the mouth stage, micrometer-size particles were
observed. It has been suggested that these particles
are aggregates that are formed by the interaction with
mucin that is present in this phase (Zhang et al.,
2017). In the stomach stage, the particle size also
increased; although not significantly, and aggregates
were also observed. In this case that may occur by
the interaction with the enzymes and salts present,
some particles can be affected by the environmental
conditions and produce the rupture and free the
insulin, which is hydrolyzed by pepsin and denatured
by the pH. The largest increase in size occurred in the
small intestine stage, where sizes up to 1500 nm were
attained in treatments where one of the mucoadhesives
was used. This increase has been associated with
the activity of the enzymes, pH value and peristaltic
movement in mucoadhesives, causing the structure
to be lost and triggered the release of oily particles.

Figure 4. 

 

Fig. 4. Treatment bioaccesibility in in vitro assays.
Value mean ± SD. n=3. Letters determine significant
difference (p <0.05).

Also, the basic pH would cause the dissociation of
the insulin-PC complex (Li et al., 2011; McClements,
2015; Zhang et al., 2017). In the treatments that did not
include mucoadhesives (T1 and T5), the particle size
increased to 66-230 nm in the small intestine stage.
Fig. 3 shows the change in particle size distribution
in a system with sodium alginate. The percent of
bioaccessibility calculated with the sample taken at the
end of the small intestine phase is shown in Figure
4, where it can be observed a significant difference
that may be caused by the mucoadhesive, with greater
bioavailability in the treatments that used any of the
mucoadhesives. The obtained values were between 40-
46.3% with respect to the amount of insulin present
in the initial phase. This value was higher than
that reported by Sakloetsakun et al. (2013), who
reported that after 4 hours only 10-8% of insulin
remained. This means that the developed system better
protected insulin from gastric conditions, and suggests
the possibility using these systems as reliable insulin
delivery strategies.

In an in vivo scenario, the nanoemulsion droplets
and their digestion products can be absorbed once
in the gastrointestinal tract; hence, exact absorption
points have not been completed established, different
authors have hypothesized that absorption is carried
out by epithelial cells and M-cells and are highly
particle size dependent. Also, nanoparticles could be
the appropriate size to pass between epithelial cell
tight junctions or absorbed by passive or active cell
membrane transport (McClements & Rao, 2011).

Conclusions

Insulin was successfully incorporated into SNEDDS
through a complex with native soy PC and PC
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modified with octanoic acid. It was demonstrated that
the SNEDDS developed with the insulin complex
and the mucoadhesive polysaccharides coating can
protect the protein from the degradation caused
by gastric conditions, including enzymes such as
pepsin. Additionally, it was observed that systems
including mucoadhesives achieved higher levels of
bioavailability compared with free insulin systems.
It was determined that the T7 treatment displayed
the best profile regarding resistance when exposed to
the gastrointestinal simulations. These results propose
that SNEDDS systems with mucoadhesives can be
considered as viable oral insulin delivery systems.
However, further research is required in order to
characterize by microscopy these nanoemulsion and
determine their pharmacokinetic parameter using in
vivo models to further assess their application in
diabetic patients.

Acknowledgements

The authors wish to thank CONACYT for scholarship
number 621437 for the first author and the financial
support through the grant number 250784.

Nomenclature

SNEDDS self-nanoemulsifying drug delivery
system

PC native soy phosphatidylcholine
PCM modified soy phosphatidylcholine
GC gas chromatography
IU international units of insulin
MCFA medium chain fatty acids
D90 percentile 90 of the particle size

distribution
PDI polydispersity index
S system
T treatment
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