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Abstract
In the present work, the establishment of a cell suspension culture (CSC) of C. brasiliense is reported. In addition, extracts were
obtained from the CSC dry biomass and leaves of wild plant using organic solvents for the purpose of determining the total
phenolic (FET) and total flavonoid (FLT) content. Furthermore, it was evaluated the antioxidant and anti-inflammatory activity
of the obtained extracts. For the above, a CSC was established successfully, producing a maximum of 15.2 g L−1 of dry biomass
at 12 days of culture. The production of FET, FLT and antioxidant activity (DPPH or ABTS) were related with culture growth and
its maximum values were produced between 12 and 16 days of culture. The results showed that CSC yielded more FET, FLT and
showed higher antioxidative activity than the wild plant. The methanolic and acetone extracts from wild plant showed inhibition
of the edema induced by TPA in ear mice at 2 mg/ear, with 44.49 ± 10.75 % and 27.83 ± 9.59 % of inhibition, respectively, while
the dichloromethane extract of CSC showed 39.41 ± 7.74 % of inhibition at 2 mg/ear and the positive control (indomethacin)
42.30 ± 4.46 % of inhibition at 0.5 mg/ear. It is the first time that a CSC establishment of C. brasiliense has been reported and its
antioxidative and anti-inflammatory activity were demonstrated. The CSC reported here can be used as a bioresource to obtain
extracts or bioactive compounds.
Keywords: plant growth regulator; in vitro culture, medicinal plant, extracts, total phenolics, total flavonoids.

Resumen
En el presente trabajo se reporta el establecimiento de un cultivo de células en suspensión (CSC) de C. brasiliense. Además, se
realizó la obtención de extractos a partir de la biomasa seca de CSC y de las hojas de la planta silvestre usando solventes orgánicos
con la finalidad de determinar el contenido de fenoles totales (FET) y flavonoides totales (FLT). Así mismo, se evaluó la actividad
antioxidante y antiinflamatoria de los extractos obtenidos. Para lo anterior se estableció adecuadamente un CSC produciendo un
máximo de 15.2 g L−1 de biomasa seca a los 12 días de cultivo. La producción de FET, FLT y actividad antioxidante (DPPH
o ABTS) se relacionó con el crecimiento del cultivo y sus valores máximos ocurrieron entre los 12 y 16 días. Los resultados
muestran que el CSC produjo más FET, FLT y presenta mayor actividad antioxidante que la planta silvestre. Los extractos
metanólico y de acetona de la planta silvestre mostraron inhibición del edema inducido por TPA en oreja de ratón a la dosis
de 2 mg/oreja, con porcentajes de inhibición del 44.49 ± 10.75 % y 27.83 ± 9.59 %, respectivamente, mientas que, el extracto
de diclorometano de CSC mostró un porcentaje de inhibición del 39.41 ± 7.74 % a la dosis de 2 mg/oreja y el control positivo
(indometacina) inhibió un 42.30 ± 4.46 % a la dosis de 0.5 mg/oreja. Es la primera vez que se reporta el establecimiento de un
CSC de C. brasiliense y se demostró su actividad antioxidante y antiinflamatoria. El CSC reportado puede ser usado como una
opción sustentable para obtener extractos o compuestos bioactivos.
Palabras clave: regulador de crecimiento vegetal; cultivo in vitro, planta medicinal, extractos, fenólicos totales, flavonoides
totales.
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1 Introduction

Plants produce a wide variety of secondary
metabolites, of which, flavonoids, alkaloids,
glycosides, tannins, terpenoids and phenolics are the
most important bioactive compounds (Indrakumar et
al., 2012). Calophyllum brasiliense Cambess, which
belongs to the family Calophyllaceae (APGIII, 2009),
is a medicinal tree that produces phytochemicals such
as xanthones, coumarins, chalcones, flavonoids and
triterpenes with have a wide variety of biological
activities (Bernabé-Antonio et al., 2014). One of
the main importance of C. brasiliense, is because
it produces coumarins, e.g., calanolides and GUT-
70, which inhibit the reverse transcriptase of human
immunodeficiency virus type 1 (HIV-1) (Huerta-Reyes
et al., 2004a, 2004b; Kudo et al., 2013). It has also
been shown that methanolic extracts and coumarins
of C. brasiliense leaves are highly active against
Staphylococcus aureus, S. epidermidis and Bacillus
subtilis (Reyes-Chilpa et al., 2004; Yasunaka et al.,
2005). Moreover, bark hydroethanolic extracts of
C. brasiliense and the dichloromethanolic fraction
exhibited inhibitory properties against Helicobacter
pylori, both in vitro and in vivo (Souza et al., 2009).
Other studies carried out by Brenzan et al. (2007,
2008, 2012) and Honda et al. (2010) demonstrated
high antileishmanial activity of leaf extracts and
isolated compounds of C. brasiliense on Leishmania
amazonensis. The coumarins mammea A/BA, and
mixtures of mammea A/BA + A/BB, mammea B/BA
+ B/BB and mammea C/OA + C/OB, were also highly
active against human tumor cell lines (Reyes-Chilpa
et al., 2004).

In other plants, phenolic compounds such as
flavonoids, phenolic acids, tannins and diterpenes
have been found to possess antioxidative or anti-
inflammatory activity (Nieto-Trujillo et al., 2017; de
la Mora-López et al., 2018; Gómez-Estrada et al.,
2011; Attoumani et al., 2013; Proestos et al., 2013).
In this regard, in terms of antioxidative compounds,
only two reports pertaining to C. brasiliense have been
carried out, in which, the aqueous, methanolic and
ethanolic extracts of leaves exhibited 110.56, 99.17
and 99.57 % of inhibition, respectively, at 100 mg
mL−1 (Flores et al., 2008). By other hand, has been
demonstrated that the ethyl acetate and methanolic
extracts of leaves or stem from C. brasiliense showed
important antioxidative activity (Mesa-Venegas et al.,
2010). However, only few plants have been shown

to produce phenolic and flavonoid compounds using
a plant cell culture system (Liu and Saxena, 2009;
Krishnan et al., 2014; Lugato et al., 2014).

To date, most of reports on C. brasiliense have
been carried out using the wild plants, and obtaining
antioxidants or anti-inflammatory compounds such as
phenolics, flavonoids or other type of compounds from
wild plants is not an ecologically feasible option. In
fact, in Mexico, this species is listed as a threatened
species according to the Official Mexican Standard
NOM-059-SEMARNAT-2010 (SEMARNAT, 2010)
and few studies focused on its conservation and
sustainable use have been made. Therefore, the
use of cell cultures of C. brasiliense represents a
potential option for obtaining bioactive compounds
in a renewable way. We previously demonstrated that
callus culture from C. brasiliense leaves can produce
secondary metabolites such as calanolide B, calanolide
C and apetalic acid, as well as a wide variety of fatty
acids (Bernabé-Antonio et al., 2010, 2015).

To our knowledge, however, studies of antioxidant
and anti-inflammatory activity with extracts from C.
brasiliense cell suspension cultures have not been
reported. The aim of this study was to establish a
cell suspension culture from C. brasiliense Cambess
leaves, determine the total phenolic and flavonoid
content. We also evaluate the antioxidant and anti-
inflammatory activity of cell culture extracts.

2 Materials and methods

2.1 Plant material

The leaves from wild plants of C. brasiliense
were collected in November 2014, in San Andrés
Tuxtla, Veracruz, Mexico, as previously reported
(Bernabé-Antonio et al., 2015). We used these leaves
to extraction, isolation and purification of some
compounds.

2.2 Obtaining the callus and establishing
the cell suspension cultures (CSC)

Callus cultures (Fig. 1a, 1b) from C. brasiliense
Cambess leaves were previously established in
MS (Murashige and Skoog, 1962) culture medium
supplemented with sucrose 3 % (w/v), fructose 0.5 %
(w/v), 24.84 µM of picloram (PIC) and 8.88 µM of
6-benzylaminopurine (BAP) (Bernabé-Antonio et al.,
2015).
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Fig. 1 Establishment of a cell suspension cultures from Calophyllum brasiliense leaves in MS 2 

medium containing PIC (24.84 µM), BAP (8.88 µM) and 0.5% fructose. a) leaf explants for callus 3 
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Fig. 1. Establishment of a cell suspension cultures from Calophyllum brasiliense leaves in MS medium containing
PIC (24.84 µM), BAP (8.88 µM) and 0.5% fructose. a) leaf explants for callus induction; b) callus produced from
leaf explants at 40 days of culture; c) cell suspension cultures at 12 days of culture; d) cell biomass obtained from
“c)”.

The cultures were incubated at 25 ± 2 °C with
a photoperiod of 16 h with white fluorescent light
(60 µmol m−2 s−1). The callus was periodically
subcultured (every 15 days) over the course of 6
months and they were used to establish the CSC.
A portion of fresh and friable callus (1.5 g fresh
weight; FW) was cultured in 125-mL Erlenmeyer
flasks containing 25 mL of complemented MS liquid
medium. The flasks were agitated at 115 rpm on an
orbital rotary shaker and incubated at 25 ± 2 °C with
a photoperiod of 16 h with white fluorescent light (60
µmol m−2 s−1). The biomass production was increased
by subsequent subcultures every 15 days for 6 months
in 500 mL flasks containing 100 mL of the same liquid
culture medium and 6 g fresh biomass.

2.3 Growth kinetics of the CSC

To determine the growth parameter of the C.
brasiliense CSC, several 125-mL Erlenmeyer flasks
containing 25 mL of culture medium were inoculated
with 1.5 g fresh cell biomass (FW). Three flasks
were harvested every three days, and the biomass was
filtered and then dried in an oven at 50 °C for 24
h. Additionally, an aliquot (4 mL) of filtrate culture

medium from each flask was obtained to determine the
total sugar level during growth. The dried biomasses
(dried weight; DW) were used to define the growth
curve over of the course of 16 days. The specific
cell growth rate (µ), defined as the increase in cell
mass per unit time, was calculated by plotting the
cell growth data in the form of a natural logarithm
versus time. This methodology yielded a straight line
over the exponential phase growth. The slope of the
linear part of the plot corresponds to the specific cell
growth rate and is defined as 1 per unit time. The
time required for the biomass to double (the doubling
time, dt) was computed from the µ experimental data.
The dried biomasses of the growth kinetics were
also used to determine the total phenolic content, the
total flavonoid content, and the antioxidant and anti-
inflammatory activities. The experiment was repeated
twice.

2.4 Determination of the total sugar
content

The filtrated culture medium of each flask from the
kinetic growth was used to determine the total sugars.
The total sugars of the culture medium were quantified
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using the phenol-sulfuric acid method (DuBois et
al., 1956). An aliquot (200 µL) of standard glucose
solutions (10-100 mg L−1) and culture media were
mixed with 200 µL of an aqueous solution of phenol (5
%) in a test tube. Next, 1 mL of concentrated sulfuric
acid was added rapidly to the mixture and the tubes
could stand for 10 min. The tubes were then vortexed
for 30 s and placed in a water bath for 20 min at room
temperature to allow for color development. Light
absorption at 490 nm was recorded on a CECIL 3000
series spectrophotometer (Cecil Instruments, United
Kingdom). The entire procedure was repeated three
times for each growth kinetic.

2.5 Extraction of total phenol and
flavonoids content

The dried biomasses (50 mg DW) of CSC obtained
from growth kinetics or wild plant leaves were finely
milled and extracted with 5 mL of methanol in
an ultrasonic bath Sonics Vibra-Cell VCX130 (Soni
& Materials, Inc, USA) equipped with a CV 188
sonotrode for 10 min. Ice was added to the bath to
keep the temperature below 35 °C. Then, vials with
samples were centrifuged at 6000 rpm for 20 min and
the methanolic extract (MeEx) were filtered. These
methanolic extracts were subsequently used for the
determination of total phenolic content, total flavonoid
content and the antioxidant activity.

2.6 Determination of total phenolic and
flavonoid content

The FET content was measured using the method
reported by Yim et al. (2012), with slight
modifications. In brief, 20 µL of methanolic extract
was mixed with 100 µL of diluted Folin-Ciocalteau
(1:1). After 3 min, 300 µL of Na2CO3 was added
to the mixture and adjusted to 2 mL with deionized
water. The mixture could stand in a dark environment
for 90 min. Absorbance was measured against a blank
reagent at 725 nm using a Spectronic GENESYS 2
UV-Vis spectrophotometer (Thermo Fisher Scientific,
Inc., Waltham, MA, USA). Gallic acid was used as a
standard for the calibration curve with a concentration
range of 80-1000 mg mL−1 (R2 = 0.99) and analyzed
as noted above. The results were expressed as mg of
gallic acid equivalent (GAE) per g dry biomass (DW)
(mg GAE g−1 DW).

The FLT content was estimated using the
aluminum chloride method using quercetin as a
standard to prepare the calibration curve (Liu and

Saxena, 2009). Aliquots of methanolic extract (200
µL) were mixed with 1.25 mL of distilled water. Next,
75 µL of NaNO2 (5 %) solution was added, mixed
thoroughly and allowed to stand 6 min. Then, 150 µL
of an AlCl3 (10 %) solution was added and allowed
to stand 5 min. Finally, 500 µL of NaOH (1M) was
added and the volume of each reference sample was
increased to 2.5 mL using distilled water. Absorbance
was measured during the first 30 min at 510 nm and the
results were expressed as mg of quercetin equivalent
(QE) per g dried biomass (DW) (mg QE g−1 DW).

2.7 DPPH radical scavenging activity
assay

Radical scavenging activity of CSC methanolic extract
was evaluated using DPPH•+ radicals, as reported by
Yim et al. (2012). A stock solution of DPPH (0.075
mM) in methanol was prepared daily. The DPPH•+

solution (3.8 mL) was mixed with 20 µL of CSC
methanolic extract, and the mixture shaken vigorously
for 1 min and left to stand at room temperature in the
dark for 30 min. Absorbance was measured against
a blank reagent at 517 nm. The Trolox equivalent
antioxidant capacity (TEAC) was calculated from the
calibration curve using a range of 0.5-80 mM of
Trolox as an antioxidant standard. The data were
reported as M TEAC per g of dry biomass (DW) (M
TEAC g−1 DW).

2.8 ABTS radical cation discoloration
assay

Assays were performed according to the procedure
of Gong et al. (2012). A stock solution of ABTS
(7 mM) plus 2.45 mM of potassium persulphate was
prepared. The mixture could stand in the dark at
room temperature for 12 h. The working solution of
ABTS was obtained by diluting the stock solution
with methanol until an absorbance of 0.70 ± 0.02
was obtained at 734 nm. Next, 2.0 mL of ABTS
solution was mixed with 20 µL of methanolic extract,
stirred vigorously and allowed to stand for 6 min.
The absorbance was read at a wavelength of 734
nm. The results were expressed as mM TEAC per g
dry biomass (DW) (mM TEAC g−1 DW) values by
constructing a standard curve using Trolox (0.0-15.0
mM) as an antioxidant.
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2.9 Compounds isolation from wild plant

The leaves from C. brasiliense Cambess were dried at
60 °C to a constant weight and then ground to a fine
powder. A sample of 200 g of ground dry leaves was
serially macerated with acetone and methanol. Three
extraction cycles were performed for 24 h for each
solvent. The extracts were filtered, and the solvents
were removed using a rotary evaporator (Heidolph
L3, Germany) to get 3.5 g of acetonic extract (AcEx)
and 5 g of methanolic extract (MeEx). The extracts
were checked by thin layer chromatography (TLC)
(Silica gel 60 F254, Merck), visualized by means of
UV light, and sprayed with ceric ammonium sulfate.
Because more compounds were visualized in the
AcEx, this extract was subjected to normal-phase
column chromatography (CC) (silica gel 60, 9858
Merck; Darmstadt, Germany) and eluted with a n-
hexane/ethyl acetate gradient system of 1:0 to 5:5).
As result, 40 fractions of 50 mL were collected and
monitored by normal-phase TLC (Silica gel 60 F254,
Merck) and reverse-phase TLC (Silica gel 60 RP-
18 F254S , Merck). Then, fractions that showed TLC
similarity were grouped to finally obtain 3 groups, R1
(0.95 g), R2 (30 mg) and R3 (2.4 g) and checked by
normal-phase TLC. From R1 and R2 were isolated
the known compounds canophyllol and apetalic acid
from the acetone extract (AcEx) of leaves. The
pure compounds were analyzed by nuclear magnetic
resonance (NMR) in one (1H, 13C, DEPT) and two
dimensions (COSY, HSQC and HMBC).

Canophyllol (28-hydroxy-3-friedelanone): Group
R2 obtained from acetone extract by normal-phase CC
with a n-hexane-ethyl acetate (80:20) elution system
was recrystallize in methanol and was found to be
canophyllol (18.2 mg). 1H-NMR (500 MHz, CDCl3):
δ 0.75 (3H, s, Me-24), 0.87 (3H, s, Me-25), 0.88 (3H,
d, J = 6.7 Hz, Me-23), 0.91 (3H, s, Me-26), 0.98 (3H,
s, Me-30), 0.99 (3H, s, Me-29), 1.13 (3H, s, Me-27),
1.69 (1H, ddd, J = 26.1, 13.1, 5.1 Hz, H-1a), 1.76
(1H, dt, J= 12.4, 2.7 Hz, H-6a), 1.88 (1H, dt, J= 18,
6.9 Hz, H-16a), 2.40 (1H, ddd, J = 13.7, 5.1, 1.9 Hz,
H-2a), 3.63 (2H, br s, H-28). 13C-NMR (125 MHz,
CDCl3): δ 213.0 (C3), 67.9 (C28), 59.4 (C10), 58.1
(C4), 52.4 (C8), 42.0 (C5), 41.4 (C2), 41.1 (C6), 39.3
(C13), 39.3 (C18), 38.0 (C14), 37.4 (C9), 35.3 (C11),
35.1 (C17), 34.2 (C29), 34.4 (C19), 33.3 (C22), 32.8
(C30), 31.3 (C21), 31.2 (C15), 30.0 (C12), 29.0 (C16),
28.0 (C20), 22.2 (C1), 19.1 (C27), 19.0 (C26), 18.1
(C7), 18.0 (C25), 14.6 (C24), 6.7 (C23). The data
obtained by NMR (1H and 13C) were compared with
those described by Thuy et al. (2007) and Sangsuwon

et al. (2013).
Apetalic acid: Group R1 was subjected to normal-

phase CC with a n-hexane-ethyl acetate (1:0-5:5)
obtained 36 fractions of 50 mL each one and the
fractions that showed TLC similarity were grouped to
finally obtain 7 groups, R1-1 to R1-7. Then, R1-7 (250
mg) was subjected to reverse-phase CC eluted with
acetonitrile/water gradient system (95:05 - 00:100)
to obtain 22 fractions of 20 mL each one, R-1-7-1
to R1-7-22. Fraction R-1-7-2 and R-1-7-3 obtained
corresponded to apetalic acid (58.9 mg). 1H-NMR
(500 MHz, CDCl3): δ 12.38 (1H, 5-OH), 6.60 (1H,
d, J = 10 Hz, H-6), 5.46 (1H, d, J = 10 Hz, H-7),
4.51 (1H, qd J=6.5, 3.3 Hz, H-2), 3.69 (1H, m, H-19),
2.83 (1H, dd, J= 15.1, 8.7 Hz, H-20a), 2.66 (1H, dd,
J= 15.1, 6.8 Hz, H-20b), 2.55 (1H, qd, J=7.2, 3.3 Hz,
H-3), 1.83 (1H, dddd, J = 13.1, 10.3, 8.5, 6.0 Hz, H-
22a), 1.52 (1H, m, H-22b), 1.45 (3H, s, Me-18), 1.38
(3H, s, Me-17), 1.36 (3H, d, J = 6.6 Hz, Me-15), 1.18
(2H, m, H-23), 1.14 (3H, d, J = 7.3 Hz, Me-16) and
0.86 (3H, t, J = 7.4 Hz, Me-24). 13C-NMR (125 MHz,
CDCl3): delta 201.0 (C4), 179.3 (C21), 160.5 (C14),
160.5 (C11), 157.2 (C5), 125.6 (C7), 115.6 (C6), 108.8
(C13), 102.5 (C10), 101.2 (C12), 78.1 (C2), 76.0 (C8),
44.1 (C3), 38.6 (C20), 35.4 (C22), 30.4 (C19), 28.4
(C18), 28.0 (C17), 20.7 (C23), 16.2 (C15), 13.9 (C24),
9.2 (C16). The data obtained by NMR (1H and 13C)
were compared with those reported by Plattner et al.
(1974) and Huerta-Reyes et al. (2004a).

2.10 Dichloromethane extract (DCMEx)
obtention of CSC

The dry ground biomass of CSC (49.6 g) of 12-
day growth (Fig. 2) was macerated three times with
dichloromethane for 24 h each. The dichloromethane
extract (DCMEx) was concentrated in a rotary
evaporator to remove the dissolvent.

2.11 Evaluation of anti-inflammatory
activity in mice

Male ICR mice (weight: 28 g) were used,
and the experiments were performed according
to the official Mexican Rule NOM-062-ZOO-
1999 Guidelines (Technical Specifications for
the Production, Care, and Use of Laboratory
Animals) and international ethical guidelines
for the care and use of experimental animals.
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Fig. 2. Growth kinetic and consumption of total
sugars of cell suspension culture from Calophyllum
brasiliense leaves during 16 days of culture. Error
bars represent standard deviation of three repeated
measurements.

The mice were maintained at a temperature of 22 ±
3 °C and a humidity of 70 ± 5 % with 12-h light/dark
cycles and food/water ad libitum. The mice were
given at least three weeks to adapt to their laboratory
environment prior to initiating the experiment. The
mice were assigned to groups of seven individuals,
and the phorbol ester 12-O-tetradecanoylphorbol-3-
acetate (TPA) (2.5 µg dissolved in 20 µL acetone)
was applied to the internal and external surfaces of
each mouse’s right ear to generate edema. Doses
of 0.5 or 1.0 or 2.0 mg/ear of acetone extract
(AcEx) and methanol extract (MeEx) from the leaves,
canophyllol and apetalic acid isolated from wild plant,
as well as the dichloromethane extract (DCMEx)
from the CSCs or indomethacin (positive control)
were dissolved in acetone and applied topically
immediately after the administration of TPA. Four
hours after administration of the inflammatory agent,
the animals were sacrificed by cervical dislocation
and circular sections of 6 mm in diameter were
obtained from both the treated (t) and the non-
treated (nt) ears, which were weighed to determine
inflammation. The percentage of inhibition was
calculated using the following expression: inhibition
% = [(∆w_treatment/∆w_control)×100]−100, where
∆w_control represents the ear-weight difference of the
group treated with TPA and ∆w_treatment represents
the ear-weight difference of the group treated with
extracts, isolated compounds or indomethacin.

2.12 Statistical analysis

All data were subjected to variance analysis (ANOVA)
followed by a Tukey’s multiple range test (p ≤ 0.05)
for antioxidant activity, total phenol and total flavonoid

contents. We used ANOVA followed by Dunnett´s
multiple comparisons (means) test to evaluate the anti-
inflammatory activity of the extracts. SAS 9.0 software
(SAS Institute Inc., 2002) was used for the statistical
analysis.

3 Results and discussion

3.1 Cell suspension culture and growth
kinetic

In previously studies, we enhanced the growth of
callus culture from leaf explants (Fig. 1b) of C.
brasiliense Cambess (Bernabé-Antonio et al., 2015).
Those friable callus (40 days old) were used in this
work to establish the cell suspension cultures (CSC)
(Fig. 1c) in MS medium using 24.84 µM PIC plus
8.88 µM BAP and 0.5 % (w/v) fructose. The growth
kinetics of the CSC was maintained until 16 days
of culture, over which it showed a typical growth
curve (Fig. 2). The adaptation phase lasted 4 days
and exponential growth was observed at 12 days
of culture. Moreover, the maximum accumulation
of dry biomass weight (DW) was 15.17 g L−1

DW and this occurred on the same day 12 (Fig.
2). The curve growth pattern was similar to that
reported by Pawar and Thengane (2009) in CSC from
Calophyllum inophyllum. However, the growth time
of C. inophyllum was up to 60 days and a low fresh
biomass weight (FW) (1.4 g L−1 FW) was produced
compared with C. brasiliense. The CSC from C.
brasiliense were slightly yellowish during the time of
maximum biomass accumulation and then and light
brown in the death phase (after 12 days). In terms
of the consumption of total sugars, a decrease was
observed in the sugar content of the culture medium as
the biomass increased; the remnants of the total sugars
were stable during the death phase (Fig. 2).

3.2 Total phenolic and flavonoid content

The production of total phenolic and flavonoids were
quantified over the course of 16 days according to
the growth kinetics of the CSC (Fig. 2). In general,
a relation linking an increase in total phenols, total
flavonoids and biomass production was observed;
nevertheless, a slight decrease was observed on
the 10th day (Fig. 3). A similar behavior was
observed in the total flavonoid content (Fig. 3).
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Fig. 3. Kinetic of production of total phenols and
flavonoids content of a cell suspension culture from
C. brasiliense leaves during 16 days of culture. Error
bars represent standard deviation of 3 replicates.

It is likely that the decrease in total phenols
and flavonoids of CSC from C. brasiliense during
the exponential growth phase was since the cells
could divert their metabolism to growth in biomass
or to the biosynthesis of another group of secondary
metabolites. Furthermore, it is known that in most
plant cell cultures the largest amounts of secondary
metabolites are accumulated in stationary-phase
cultures (Ramawat and Mathur 2007).

In the present study, it was observed that during the
growth kinetic of the CSC, the maximum production
of total phenols (57.3 mg GAE g−1 DW) occurred
at 16th day and the total flavonoids (271.8 mg QE
g−1 DW) at 12th (Fig. 3); moreover, the production
of these compounds was higher by 76.7 and 72.2%,
respectively, compared to the leaves of wild plants
(Table 1). This finding suggests the cell cultures of
C. brasiliense retain the ability to produce secondary
metabolites as reported in callus culture from C.
brasiliense leaves (Bernabé-Antonio et al., 2015;
2010). Other studies have reported the biological
activity of some flavonoids and phenolic compounds
(e.g. catechin, epicatechin, gallic acid, protocatechuic
acid) and extracts, but obtained from wild plants of C.
brasiliense, which possess antibacterial, antiviral, anti-
inflammatory, anticancer and antiallergic activities
(Pretto et al., 2004; Souza et al., 2009). Similarly, in
other species such as Salvia hispanica L. high amounts
of total flavonoid content (268 mg QE/mg extract)
have also been found. (Rivera-Cabrera et al., 2017).

3.3 Antioxidant activity of extracts

Phenolic acids and flavonoids are of special
interest due to their excellent ability to scavenge

free radicals (Bravo, 1998; Breyer et al., 2007).
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Fig. 4 Kinetic of antioxidant activity of cell suspension culture extracts from C. brasiliense during 38 
16 days of culture. Error bars represent standard deviation of 3 replicates.  39 
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Fig. 4. Kinetic of antioxidant activity of cell
suspension culture extracts from C. brasiliense during
16 days of culture. Error bars represent standard
deviation of 3 replicates.

The antioxidant activities of MeEx from cell
suspensions of C. brasiliense exhibited significant
differences (p≤0.05) compared with those determined
in wild plants. Moreover, the antioxidant activity of
extracts from wild plants was lower to that detected
in the cell cultures (Table 1). On the other hand,
the antioxidant evaluation of cell suspension extracts
demonstrated an increase in antioxidant activity on
DPPH or ABTS radicals positively related with
an increase in total phenols and/or total flavonoid
contents produced during the growing time of the
C. brasiliense cell suspension (Fig. 2, 3). Moreover,
the maximum antioxidant activity of CSC extracts
on ABTS (561.7 mM TEAC g−1 DW) and DPPH
(130.5 M TEAC g−1 DW) radicals occurred at 14
and 16 days, respectively (Fig. 4). Other studies
have reported antioxidant activities of leaf extracts
from C. brasiliense as being 8,492 µM TEAC g−1

extract for ABTS and 2,651 µM TEAC g−1 extract
for DPPH (Mesa-Venegas et al., 2010). Recently, it
was demonstrated that extracts of C. brasiliense leaves
obtained from a supercritical extraction had a higher
antioxidant activity associated with a considerable
amount of total phenolics extracted (Gonçalves et al.,
2013). The production of these secondary metabolites
can be enhanced for commercial purposes. In fact,
Ali et al. (2013) established a CSC of Artemisia
absinthium L. in which antioxidant compounds (i.e.,
gallic acid, caffeic acid and catechin) were produced;
in CSC of Marchantia linearis Lehm & Lindenb
flavonoids (quercetin, luteolin and apigenin) were also
detected (Krishnan et al., 2014).
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Table 1. Content of total phenols, total flavonoids and antioxidant activity of methanolic extracts from Calophyllum
Brasiliense leaves.

Plant resource

Determinations Cell suspension cultures* Wild plants

Total phenols (mg GAE g−1 DW) 57.26 ± 1.3 a 32.4 ± 0.9 b
Total flavonoids (mg QE g−1 DW) 271.75 ± 8.0 a 157.8 ± 7.4 b
DPPH (M TEAC g−1 DW) 130.54 ± 1.9 a 96.3 ± 3.9 b
ABTS (mM TEAC g−1 DW) 534.53 ± 15.3 a 193.7 ± 3.4 b
Means ± standard deviation followed by the same letter within a row are statistically similar at p≤0.05
level according to Tukey’s multiple range test. Values are means of triplicate determinations. *At 16
days of culture.

Table 2. Inhibitory activity of extracts, fractions and pure compounds from wild plants and CSC of Calophyllum
brasiliense, on 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced mouse auricular edema.

Treatment Sample Dose (mg/ear) Edema Inhibition (%) p
(mg)

Control (TPA) - - 11.92 ± 1.54 - -
Wild plant MeEx 2 6.61 ± 1.28 44.49 ± 10.75 <0.0001

AcEx 2 8.60 ± 1.14 27.83 ± 9.59 <0.001
Canophyllol 1 8.72 ± 0.67 26.82 ± 5.67 <0.001
Apetalic acid 1 7.94 ± 1.18 33.37 ± 9.97 <0.0001

CSC DCMEx 2 7.22 ± 0.92 39.41 ± 7.74 <0.0001
Indomethacin - 0.5 6.87 ± 0.53 42.30 ± 4.46 <0.0001
Values are means ± standard deviation of seven determinations. CSC: cell suspension cultures; MeEx:
leaves methanolic extract; AcEx: leaves acetone extract; DCMEx: dichloromethanolic extract

3.4 Anti-inflammatory activity in the TPA
model

In auricular edema, we employed the phorbol ester
TPA (2.5 µg/ear) as a substance capable of causing
local inflammation characterized by vasodilatation,
cellular infiltration and erythema during the first 3
or 4 h after application of the toxic agent (Gábor,
2000). In the negative control group, the maximum
level of edema as 11.92 ± 1.54 mg (100 %), which
was evaluated as an increase in the weight of
the auricular edema. Statistical analysis indicated
that the treatments exhibited a significant reduction
in the formation of edema compared with the
negative control (F0.05=100.73; <0.0001; Dunnet
test0.05=1.45). In this assay, indomethacin (positive
control) showed 42.30 ± 4.46 % of inhibition at
0.5 mg/ear and the methanol (MeEx) and acetone
(AcEx) extracts from leaves of C. brasiliense wild
plants inhibited edema formation at a dose of 2.0
mg/ear; the largest effect was obtained with MeEx
that showed 44.49 ± 10.75 % of inhibition while
AcEx showed 27.83 ± 9.59 % of inhibition (Table

2). It has been reported that the juice of C. inophyllum
fruits inhibits the activities of 5-lipoxygenase (5-LOX)
and cyclooxygenase (COX) enzymes, which produce
leukotrienes and prostaglandins (inflammatory
mediators), respectively, from arachidonic acid
(Fylaktakidou et al., 2004; Zakaria et al., 2014).
The inhibition of auricular edema by isolated
compounds apetalic acid and canophyllol was
significant with 33.37 ± 9.97 % and 26.82 ± 5.67
% of inhibition, respectively. Also, in other works
the anti-inflammatory compound jacareubin y 6-
desoxijacareubin were isolated from C. brasiliense
and C. inophyllum (Gopalakrishnan et al., 1980). The
anti-inflammatory activity of DCMEx (39.41 ± 7.74
% of inhibition at 2 mg/ear) from the cell suspensions
is similar than that obtained from the leaf methanolic
extract (MeEx) of wild plants (Table 2). In recent
studies, extracts of cell suspension cultures and wild
plant of Buddleja cordata exhibited values of 61.72
and 26.10 % antiinflammatory inhibition, respectively,
at doses of 2 mg extract/ear, which showed statistically
significant. (Gutiérrez-Rebolledo et al., 2018).
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Conclusions

The establishment of a cell suspension culture of
C. brasiliense is reported for the first time. MS
culture medium supplemented with 24.84 µM PIC,
8.88 µM BAP and 0.5% fructose was suitable to
establishment the cell culture. The production of
phenolic compounds and total flavonoids is associated
with the growth of culture, and these with the
antioxidant activity. Cell culture extracts exhibited
more FET, FLT and higher antioxidant activity than
the wild plant. Regarding anti-inflammatory activity,
the dichloromethane extract of CSC showed similar
inhibition on auricular edema formation that the
methanolic and acetone extracts of wild plant. Cell
suspension cultures of C. brasiliense are the beginning
for future studies to produce antioxidant and anti-
inflammatory compounds.
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