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Abstract

Biodiesel is an alternative fuel that can be obtained by the transesterification of vegetable oils. Spectrophotometric methods can
be used for the quantification of mixtures of oils, associated with chemometric tools, enabling the analysis of overlapping signals.
The aim of this work was to apply the multivariate calibration with PLS (partial least squares) and artificial neural network (ANN),
to estimate the concentration of esters in the transesterification of soybean oil using molecular absorption spectrophotometry as
analytical technique. The absorbance measurements were performed in a spectrophotometer UV/VIS. Synthetic solutions were
prepared with standards of the five major compounds of soybean biodiesel and the real samples were obtained by the reaction of
transesterification of soybean oil with two types of catalysts: NaOH and enzymatic method using Lipozyme® IM (Novozymes).
According to the results, all components of the reaction medium absorb in the wavelength range of 190-280 nm. The reactions
of the basic catalysis reached conversions close to 100%, whereas the enzymatic reactions reached lower conversion values. For
both methods, the calibration and validation groups were composed, respectively, by the synthetic and the real samples. Results
showed that the concentrations of esters estimated by the ANN model in the real samples are more accurate (R? 0f 0.93), showing
the great ability of the ANN in estimating the data.

Keywords: biofuels, chromatography, enzymology, spectroscopy.

Resumen

El biodiesel es un combustible alternativo que puede obtenerse mediante la transesterificacion de aceites vegetales. Se pueden
utilizar métodos espectrofotométricos para la cuantificacion de mezclas de oleos, asociados con herramientas quimiométricas, que
permiten el andlisis de sefiales superpuestas. El objetivo de este trabajo fue aplicar la calibracién multivariable con PLS (minimos
cuadrados parciales) y la red neuronal artificial (ANN), para estimar la concentracion de ésteres en la transesterificacion del aceite
de soja utilizando espectrofotometria de absorcién molecular como técnica analitica. Las mediciones de absorbancia se realizaron
en un espectrofotémetro UV/VIS. Se prepararon soluciones sintéticas con estdndares de los cinco compuestos principales del
biodiesel de soja y las muestras reales se obtuvieron mediante la reaccién de transesterificacion de aceite de soja con dos tipos
de catalizadores: NaOH y método enzimadtico utilizando Lipozyme® IM (Novozymes). De acuerdo con los resultados, todos los
componentes del medio de reaccién se absorben en el rango de longitud de onda de 190-280 nm. Las reacciones de catdlisis
bésica alcanzaron conversiones cercanas al 100%, mientras que las reacciones enzimadticas alcanzaron valores de conversién mds
bajos. Para ambos métodos, los grupos de calibracién y validacién fueron compuestos, respectivamente, por muestras sintéticas
y reales. Los resultados mostraron que las concentraciones de ésteres estimadas por el modelo ANN en las muestras reales son
mds precisas (R? de 0.93), 1o que muestra la gran capacidad de la ANN para estimar los dados.

Palabras clave: biocombustibles, cromatografia, enzimologia, espectroscopia.

1 Introduction when compared to diesel fuels: it has a higher cetane
number, contains no aromatics, almost no sulphur and
10-12% oxygen by weight (Haagenson et al., 2014;
Ozener et al., 2014; Jiménez-Pérez et al., 2015).

Biodiesel is a non-toxic, biodegradable and renewable
diesel fuel that can be used alone or in blends with According to ANP (Brazilian National Agency
petroleum diesel fuels. Biodiesel has many advantages for Petroleum, Natural Gas and Biofuels), biodiesel
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accepts low percentage of monoglycerides (1.00
max, % m/m), diglycerides (0.25 max, % m/m),
triglycerides (0.25 max %,m/m), alcohol (0.50 max,
% m/m), free glycerine (0.02 max % m/m) and total
glycerine (0.38 max % m/m) (ANP 255 authorization).
Such low values of these compounds demand an
accurate quantitative analysis, since errors could
strongly affect the fuel specification.

Accordingly, the specification of this biofuel is
fundamental in ensuring its quality and specificity. The
instrumental analysis such as gas chromatography,
for biodiesel specification, generates peaks hindering
their interpretation (Baptista et al., 2008). An
alternative to biodiesel specification is the use
of spectrophotometric methods combined with
processing data by chemometric methods, in order
to build the calibration models. This technique has
been increasingly adopted for the determination of
compounds present in multicomponent samples due to
its rapidity, low cost and reduced amount of sample
required for analysis (Silva et al. 2015). Spectroscopic
techniques associated with chemometric tools appear
as one of the most appropriate to evaluate the quality of
fuel quickly, accurately and non-destructively. These
methodologies have been used primarily combined
with spectroscopic techniques for in-line or in-
situ monitoring, for the non-destructive analysis of
samples.

Ultraviolet-Visible (UV-Vis) spectroscopy has
been used to determine the content of heptane-
diluted biodiesel/diesel blends in a large concentration
range. For biodiesel, the UV spectra show two
intense absorption bands along the 230-260 nm
wavelength (Silva et al. 2015). The variation in
aromatic composition in the diesel may falsify the
results, since they show an intense absorbance peak
in this spectral region. Nevertheless, the UV-Vis
spectroscopy provides easier and faster results in
routine analyses, due to the reduced time and lower
reagent consumption. Despite these methods, research
studies continually attempt to develop alternative
methods, combining low cost, fast and accurate
results. Among efforts to develop a methodology
capable of meeting all necessary requirements, the
UV-Vis spectroscopy may be a potential tool to
quantify the biodiesel content in biodiesel/diesel
blends.

Shimamoto & Tubino (2016) proposed an
alternative method for the quantitative analysis of
biodiesel in diesel-biodiesel blends. This method
is based on UV-Vis spectroscopy and applies the
univariate calibration. Authors concluded that the

alliance between the UV-Vis technique and the PLS
provides the quantification of biodiesel in blends
adulterated with vegetable oil. The UV-Vis PLS model
can recognize the difference between the biodiesel and
the vegetable oil.

The multivariate calibration 1is effectively
used in cases with the problem of overlapping
analytical signals and simultaneous determinations.
It is produced a model, based on all available
information, that can make a connection between the
entire analytical signal and the ownership interest
(concentration in many cases). Works using this
technique to predict biodiesel constituents can be
found in the literature (Vakh et al., 2014).

Another method that has found increasing
applications for multicomponent determination, in the
last few years, is the artificial neural network (ANN).
This technique is capable of handling incomplete
data and can deal with nonlinear problems. Once
trained, the ANN model can perform predictions
and generalizations at high speeds (Rajendra et al.,
2009). The ANN model approach is effective for
spectrophotometric analysis because it can be used
to solve analytical problems. Several comparative
studies on these two techniques have been conducted
using various data sets (Jamrogiewicz, 2012; Wu et
al., 2013).

Rocabruno-Valdés et al. (2015) developed ANN
models to predict the density, dynamic viscosity and
the cetane number of biodiesel, using temperature,
composition of methyl esters, number of carbon
atoms and number of hydrogen atoms as input
variables. Correlation coefficients of 0.9195-0.9940
were obtained by comparing the experimental and
calculated values, while a mean squared error (MSE)
of 1.842 x 10% was obtained in the validation stage.

Lopes et al., (2019) applied four methods for
direct classification (decision tree classifier, K-nearest
neighbors, support vector machine and ANN) to
optimize and compare the biodiesel samples according
to their compliance to viscosity, density, oxidative
stability and iodine value, having as input the
composition of fatty acid methyl esters. A comparison
between these methods of direct classification and
empirical equations distinguished positively the direct
classification methods in the problem addressed.

Hosseini & Pierantozzi (2019) studied the
molecular thermodynamics and the ANN modeling
of surface tensions of several fatty acid esters and
biodiesels. The selected ANN architecture was a
two hidden layer network with nine neurons each,
with three input parameters. The model confirmed
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its validity for the surface tension of fatty acids and
biodiesel, giving an excellent result in the database of
the pure fluids containing 137 points.

Thus, the aim of this paper was to apply the PLS
and the ANN models to estimate the concentration of
esters in the transesterification of soybean oil, using
molecular absorption spectrophotometry as analytical
technique. Synthetic solutions were prepared with
standards of the five major compounds of soybean
biodiesel and real samples were obtained by the
reaction of transesterification of soybean oil with two
different catalysts: NaOH and enzymatic method with
Lipozyme® IM (Novozymes). The lack of data in
the literature related to enzymatic biodiesel samples
justifies the purpose of this work.

2 Materials and methods

2.1 Chemicals

The synthetic samples for the gas chromatographic
(GC) analyzes were prepared from the authentic
standards of ethyl esters of soybean biodiesel (ethyl
palmitate, ethyl linoleate, ethyl linolenate, ethyl oleate,
ethyl stearate) and methyl palmitate as internal
standard. All reactants were purchased from Sigma
Aldrich.

The real samples were obtained from the
transesterification reactions, using as substrates the
commercial soybean oil (Soya), without any prior
treatment, and ethanol (Merck 99.9% purity). In
the alkaline catalysis reactions, it was used sodium
hydroxide (Quimex, 97% purity) as catalyst, along
with sulfuric acid (Quimex, 10%), sodium chloride
(Quimex), heptane (Quimex, 99.9% purity) and
sodium sulfate anhydrous (Nuclear). In addition,
for the enzymatic catalysis method, it was used
Lipozyme® IM (Novozymes) as catalyst and n-

hexane as solvent (Merck 99.9% purity). Finally, the
samples for the uptake measurement were prepared
using heptane (Merck 99.9% purity) as solvent and
also ethyl alcohol (Merck 99.9% purity).

2.2 Sample preparation

Synthetic samples were prepared using authentic
standards of ethyl esters of soybean from biodiesel
in a solution of n-heptane and ethyl alcohol in the
volumetric ratio of 1:1. The solutions were prepared
at different concentrations of ethyl esters, and different
proportions between them, as presented in Table 1.

According to Ndiaye et al. (2006) the fatty acid
content of a commercial soybean oil is 11.2% (+ 0.08)
palmitic acid, 3.45% (+ 0.01) stearic acid, 23.41% (+
0.27) oleic acid, 54.21% (= 0.30) linoleic acid and
6.75% (+ 0.01) linolenic acid.

The real samples were obtained by the
transesterification reaction of soybean oil in ethanol
as described in detail by Oliveira et al. (2004). For the
alkali catalyst, the reaction temperature was held at 70
°C, with an oil:ethanol molar ratio of 1:9 and 0.5%
(w/w) of NaOH, during 20 min (reaction time). For
the enzymatic catalyst, the reaction temperature was
held at 35 °C, with an oil:ethanol molar ratio of 1:3,
10% (w/w) of distilled water, 20% (w/w) of enzyme
and a ratio of solvent (n-hexane) to oil of 1:40 (w/w),
during 8 h (reaction time).

2.3  Measurements

Absorbance measurements were performed in a
spectrophotometer (Agilent Model 8453), in the
wavelength region between 190-800 nm, using a
quartz cuvette (Helmann) of 3.5 ml and the moisture
of heptane/ethanol of 1:1 (v/v) as blank solution.

The original concentration of the samples was
determined by gas chromatography as described by
Silva et al. (2007).

Table 1. Proportions in mass of ethyl esters used in the preparation of synthetic solutions.

Ester Fraction-1 (%) w/w  Fraction-2 (%) w/w  Fraction-3 (%) w/w  Fraction-4 (%) w/w
ethyl palmitate 10 10 10 10
ethyl stearate 6 6 6 5
ethyl oleate 20 23 23 20
ethyl linolenate 9 11 9 7
ethyl linoleate 55 50 52 58
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Table 2. Samples of calibration and validation for the three compositions used in this work.

Setting Calibration Number of  Validation = Number of
Calibration Validation
Sample Sample
1 S1 to S26 26 R1to R22 22
2 S1 to 33 R1 to RS; 15
S26;R6;R10;R14; R7 to
R15;R17;R18;R21 R9;R12;R13;R16;
R19;R20;R22
3 S1to 34 R1 to RS; 14
S26;R6;R10;R14; R7 to
R15;R17;R18;R20;R21 R9;R12;R13;
R16;R19;R22

R - Real sample; S - Synthetic sample

Samples for the quantification of ethyl esters of
soybean biodiesel were prepared at concentrations
of 2000 mg.L~!, using methyl palmitate as internal
standard at a concentration of 500 mg.L~!. The
concentration of the original samples obtained by gas
chromatography varied between 21.70-100 g.mL™".

2.4  Chemometric and ANN models

The ANN model approach used in this work was a
MultiLayer Perceptron type with a bias and an inner
layer with four inputs and one output. After several
preliminary tests, the absorbance measurements of
wavelengths at 202, 203, 204, 211 nm were used as
inputs, being the ester content used as output of the
reaction. The hyperbolic tangent activation function
was applied in both inner and output layers. The input
and output data were normalized within the range of
[-1,1]. Also, the range of 3 to 18 internal units was
investigated in order to define the best neural network
architecture.

From the conventional chemometric tool, it was
made a principal component analysis (PCA) with the
software Unscrambler 6.11, where it was investigated
the range of up to 15 principal components from
the calibration group. After choosing the number of
principal components, a model PLS1 (one output)
was developed from the calibration group. Finally, the
model validation was performed with the validation
group.

For both models applied in this work, it was
used the first derivative method. The derivative
spectrophotometry is an analytical technique of
great utility for extracting both qualitative and
quantitative information from spectra composed of

unresolved bands. For a single-peak spectrum, the
first derivative is a plot of the absorption gradient
dA/dA as a function of the wavelength and features
a maximum and a minimum in the vertical distance
between these, which is the amplitude. The parameter
amplitude is proportional to the analyte concentration;
theoretically, dA/dA is zero at Amax for the band in the
normal spectrum (Mark and Workman Jr, 2003).

The Root Mean Square Error of Prediction
(RMSEP) from an independent test set was used
as the measurement of the ANN and PLS models
performance, as described by Eq. 1:

Y, -Y; 2
RMSEP = >(Ypre — YREF) 0
N7EesT

where Ny is the number of samples in the test set,
Yrer is the actual value and Y. is the predicted
value provided by the ANN and PLS models.
All computations were performed with Fortran 90
Software.

Validation and calibration groups were built by
means of the preparation of 48 samples, consisting by
real and synthetic samples, as presented in Table 2.
The detailed compositions of samples can be find at
the appendix, in Tables 5 and 6.

3 Results and discussion

3.1 Absorption spectrum

Fig. 1 depicts the absorption spectrum of soybean
ethyl esters (biodiesel).

126 WWW.rmiq.org



Brusamarello et al./ Revista Mexicana de Ingenieria Quimica Vol. 19, No. 1 (2020) 123-132

- - Stearate
— Linoleate
2 —— Linolenate
+ Oleate
—— Palmitate

Absorbance

0
190 200 210 220 230 240 250 260 270 280 290 300 310
Wavenumber (nm)

Fig. 1. Absorption spectra of soybean ethyl esters.
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Fig. 2. Absorption spectra of synthetic solutions in the
Fraction-1 of components at different concentrations.

According to this figure, all components of the
biodiesel absorb in the same wavelength region. The
components of this reaction medium absorb in the
range of 190-280 nm, as pointed out in the work of
Dantas et al. (2011). This result indicates the difficulty
in interpreting the obtained data due to the overlap of
peaks. Such behavior justifies the use of chemometric
tools for the analysis of soybean oil transesterification.

Fig. 2 report the absorption spectrum of the
synthetic solutions at different concentrations (25-100
mg.L™!) using Fraction-1 of components, previously
given in Table 1. It is visible that the solutions
absorbance is proportional to the concentration, i.e.,
the higher the concentration, more of a particular
wavelength is absorbed.

Fig. 3 depicts the spectrum of synthetic solutions
for the concentration of 75 mg.L~! in the four
prepared fractions, previously given by Table 1. This
concentration was selected due to the absorption
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Fig. 3. Absorption spectrum of synthetic solutions at
a concentration of 75 mg.L~! in the four prepared
fractions.

100 mg.L~!. These results demonstrate that different
fractions in synthetic solutions result in insignificant
changes in the absorption spectrum.

Fig. 4 reports the absorption spectrum of the real
samples, obtained by the transesterification process
with (a) the basic catalyst and (b) the enzymatic
catalyst, at different reaction times. Firstly, it can be
seen a considerable difference between the reaction
times by using the two catalysts. This difference can
be related to the higher conversion achieved with the
basic catalyst: according to the gas chromatography
analysis, after only 2 min of reaction, 93% of the ethyl
esters were detected for this sample.

According to Fig. 4a, the absorption curves for
the reaction with the basic catalyst are quite similar,
even at different reaction times. The small difference
between the curves is due to the high achieved yield, as
previously described. In addition, according to Fig. 4b,
for the reactions with the enzymatic catalyst, despite
the low conversions for shorter reaction times, the
absorbance curves did not show major differences.

3.2 Performance of PLS and ANN method

In Tables 3 and 4 are reported, respectively, the
RMSEP values for the PLS and ANN models, with
the normal range and the derivative spectrum. It
seems that using the derivative spectrum, there is a
substantial improvement in finding a more reliable
model, for both PLS and ANN methodologies. As
the RMSEP value approaches 0 (zero), there is an
increase in the reliability of the model in predicting
the concentrations of the samples.

127



128

Brusamarello et al./ Revista Mexicana de Ingenieria Quimica Vol. 19, No. 1 (2020) 123-132

Table 3. RMSEP values in the used settings with PLS method.

RMSEP Setting 1~ Setting 2 Setting 3
Normal spectrum 33.55 31.75 16.37
Derivative spectrum 31.84 11.17 9.86

Table 4. RMSEP values used in the settings with ANN method.

RMSEP Setting 1~ Setting 2 Setting 3
Normal spectrum 29.92 10.65 13.54
Derivative spectrum 13.88 9.13 8.77

Absorbance

Wavenumber (nm)

0
190 200 210 220 230 240 250 260 270 280 290 300 3

Absorbance

0
190 200 210 220 230 240 250 260 270 280 290 300 310

Wavenumber (nm)

Fig. 4. (a) Absorption spectrum of real samples obtained by transesterification process with basic catalyst at different
reaction times. (b) Absorption spectrum of real samples obtained by transesterification process with enzymatic

catalyst at different reaction times.
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Fig. 5. ANN versus PLS method.
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Therefore, another important result is that the
best composition group is Setting 3, for both applied
models.

An essential point related to the different
compositions of the calibration and validation groups
is the number of samples used for analysis. The higher
the number of samples used, the more representative
are the results. The difficulty to achieve better results
can be related to the lower conversions of the
real samples. In addition, loss of monoglycerides,
diglycerides and even esters may have occurred in the
samples during their handling.

Fig. 5 reports a comparison between the two
methods used in this research to predict the
concentrations of biodiesel. It is compared the best
sets of validation of both methods, Setting 3, with
derivative spectrum. This spectrum can be used
to reduce the analysis discrepancies, to resolve
overlapping bands in qualitative analysis, and most
importantly, to reduce the effects of interference from
scattering, matrix or other absorbing compounds in
quantitative analysis.
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The best obtained RMSEP results were 8.77 for the
ANN method and 9.86 for the PLS method, which are
close values. The numerical difference is not apparent;
however, according to the predictions showed in
Fig. 5, there are differences in the predictions for
each model, particularly for the enzymatic biodiesel
samples. Also, differences are especially found at
lower conversion samples. The PLS method found
difficulties to predict the samples close to the real
values; in this case, the ANN model presented better
results. Another characteristic is that the ANN has
the ability to solve nonlinear problems; thus, better
adjustments can be achieved with this model.

The results in this research reported data using
enzymatic samples, and, for this reason, it is difficult
to perform a comparison with other works found in
the literature. Although, important discussions can
be analyzed, especially about the RMSEP values
achieved by other authors (Richard er al., 2013)
where the RMSEP obtained was lower than 5%.
Also, a different spectroscopy method was used and
concentrations of biodiesel above 60% of conversion
were used. It is clear that the number of samples used
in the calibration tests is very important to achieve
good validation results. It is possible to see in Fig. 5
that the samples above 60% of conversion had good
predictions by using the ANN and PLS models.

Conclusions

In this research it was found that the composition and
the number of samples in the calibration group are
important in the performance of the studied models,
since the calibration group contains the information in
which the method use to "learn”.

The derivative spectrum was more appropriate
than the normal spectrum for both ANN and PLS
models. One reason is that the derivative spectrum
provides more "rich" information through the curve
slope, not affected by the baseline.

The multivariate calibration introduced in this
research showed to be a good tool for the feasibility
analysis with low cost and short time. It was noted
the importance and the difficulty in the preparation of
synthetic and real samples, since small experimental
errors result in accumulation of estimate errors in the
models.

The ANN model shows to be better in estimating
the ester content in the biodiesel samples, with a R?
of 0.93, in comparison to the R? of 0.91 for the

PLS method. In addition, this research was the first
attempt to use data from real and enzymatic samples
of biodiesel for applications of chemometric tools and
artificial neural networks.

In addition, this research was the first attempt to
combine data from real and enzymatic samples of
biodiesel, applying chemometric tools and artificial
neural networks for their prediction.

Nomenclature

ANN Atrtificial Neural Network

PLS Partial Least Squares

RMSEP Root Mean Square Error of Prediction
Niest Number of samples in the test set
Yier The actual value

Ypre The predicted value provided by ANN

and PLS models
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Appendix

Table 5. Concentration of real samples obtained by Table 6. Concentration of synthetic samples.
gas chromatography.

Sample Concentration (mg/L)

Sample Concentration (mg/L)

S1 10
R1 30 S2 15
R2 65 S3 20
R3 100 S4 25
R4 93.41 S5 35
RS 94.62 S6 40
R6 100 S7 50
R7 100 S8 55
R8 96.87 S9 60
R9 93.38 S10 70
R10 96.23 S11 75
R12 98.16 S12 80
R13 98.75 513 85
R14 94.88 S14 90
R15 36.74 S15 95
R16 43.15 S16 105

R17 36.15 S17 110
R18 56.65 S18 115
R19 57.93 S19 75
R20 30.94 S20 75
R21 21.7 S21 75
R22 35.63 S22 75

523 100

524 100

525 100

526 100
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