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Abstract
Pressure failure in pipelines is commonly calculated by the Darcy-Weisbach formula. To use this formula, the Darcy’s hydraulic
friction factor must be known. The best approximation for the Darcy’s friction coefficient in turbulent flow regime, is expressed
by the Colebrook-White equation. This equation can only be solved by numerical methods, because it is implicit for the friction
coefficient. There are other approximate explicit models for the calculation with different relative errors in comparison to the
Colebrook-White equation. In this work, a review of the friction factor explicit correlations is made including, for the first time
in an article of this type, 48 equations, 10 of them that had not been reported previously and other explicit equations whose
precision does not agree with previous reports or had not been included in review articles on this topic. The precision of these
equations was determined by means of the maximum relative error for Reynolds numbers and relative roughness, considered as
the equation’s application range. As a result of this work, the evaluation and selection criteria to use the explicit expressions for
the calculation of the friction coefficient in turbulent regime is offered to engineering professionals and students.
Keywords: Hydraulic friction coefficient, turbulent regime, explicit models, relative roughness, explicit correlations.

Resumen
La caída de presión en las tuberías se calcula mediante la fórmula Darcy-Weisbach. Para utilizar esta fórmula, debe conocerse el
coeficiente de fricción hidráulica de Darcy. La mejor aproximación al coeficiente de fricción de Darcy, para el flujo en régimen
turbulento, viene dada por la ecuación de Colebrook-White. Esta ecuación solo puede resolverse mediante métodos numéricos,
pues es implícita para el coeficiente de fricción. Hay varios otros modelos explícitos aproximados para su determinación con
diferentes errores relativos en comparación con la ecuación de Colebrook-White. En este estudio, se realizó una revisión de las
correlaciones explícitas del factor de fricción, y se incluyen, por primera vez en un artículo de este tipo, 48 ecuaciones, de ellas,
10 que no habían sido reseñadas con anterioridad y otras ecuaciones explicitas con cuya precisión no se concuerda con reportes
previos, o no se habían incluido en artículos de revisión sobre la temática; se determinó su precisión a través del error relativo
máximo, para los números de Reynolds y rugosidades relativas consideradas como su rango de aplicación. Como resultado del
trabajo, se brindan a los profesionales y estudiantes de ingeniería, los criterios de evaluación y selección de las expresiones
explícitas para el cálculo del coeficiente de fricción en flujo turbulento.
Palabras clave: Coeficiente de fricción hidráulica, régimen turbulento, modelos explícitos, rugosidades relativas, correlaciones
explícitas.
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1 Introduction

The determination of the hydraulic friction factor λ
value in the general case, depends on the liquid flow
regime and on the pipeline material properties. When
the flow regime is laminar or turbulent and the pipeline
is smooth, the expressions for its calculation coincide
and there are no major difficulties; but, when the
regime is turbulent, as it is commonly, and the pipeline
is rough, there is a great diversity of expressions for the
calculation of this coefficient.

The determination of the hydraulic friction factor
value λ for the general case, depends on the liquid’s
regime flow and on the pipeline’s material properties.
For the calculation of this coefficient in fluid transport
systems, which generally operate in turbulent flow
regime, there are many formulas proposed.

To calculate λ coefficient in turbulent regime,
different authors have proposed a great number of
calculation formulas. Initially it was assumed that this
coefficient was constant (for example, according to to
Dupuit, λ= 0.0025); afterwards various formulas were
obtained based in the experimental data processing
(Pérez, 2002).

Since 1945, engineers, academics and engineering
students have been using a friction factor diagram
for the pipeline flow as the type published by
Moody, 1947. This diagram is semi-empirical and
the conditions that it describes (completely developed
flow, isothermal, uncompressible, dissipative, quasi
stationary), are never enough reached in practical real
cases (McGovern, 2011). Although there has been
considerable progress in the calculation of surface
roughness, especially with the aid of computational
methods, and in the measurement and comprehension
of velocities’ distribution in the limit layers, the
diagram is still considered as a temporary solution and
has the function that Moody stated: “. . . a simple way
to estimate friction factors” (McGovern, 2011).

From the bibliographic analysis made in this work,
it is observed that there are two types of approaches
for the calculation: the implicit calculations, where
the Colebrook-White formula is predominant, and the
explicit calculations, where there is a great diversity
of expressions and disagreements with respect to their
complexity and precision, between the researchers that
have addressed the theme.

The Colebrook-White formula (Colebrook,1939),
one of the first and more frequently used expressions
to calculate the λ coefficient in turbulent regime,

is given by equation (1), where the ε/D relation
represents the pipeline’s relative roughness.

1
√
λ

= −2log10

( ε
D

3,7
+

2,51

Re
√
λ

)
(1)

The use of this formula is not convenient because
the model is implicitly defined in the friction factor
and iterations are needed for the calculation. To find
the friction factor implicitly stated in the Colebrook-
White equation, the use of numerical algorithms is
needed, which is not as rapid as approximations.
Particularly in complex and supercritical pipelines
flow systems, its use becomes difficult, and that is the
reason why its use is not recommended in practical
engineer’s calculations or by students in courses
related to fluids mechanics.

Difficulties to determine λ by means of Colebrook-
White equation, have forced many researchers over the
world (Rohsenow, Hartnett, & Cho, 1998), to make
efforts in developing explicit equations that could be
used alternatively: ones simpler and compact, easier
to memorize but with great deviations; others less
compact and complex, more difficult to memorize but
with small deviations and, some others which combine
simplicity and precision, with very reduced errors
in the friction factor compared with the calculated
value using the Colebrook-White equation (Diniz
and Souza, 2009). The explicit expressions for the
calculation of the friction coefficient in turbulent
flow, most frequently used and cited in literature, are
those of Halland and Swamee-Jain (Eq.12 and 20);
meanwhile there is an important and interesting group
of these equations (Eq. 2, 4, 5, 6, 7, 26, 29, 46, 47
and 48), that are not analyzed in the articles here
reviewed, being many of these proposals evaluated as
alternatives to the traditionally used ones.

In summary, it was observed that there is no
agreement with respect to the expressions’ complexity
and precision, there is lack of analysis of some
expressions cited in literature and also, there is
absence of calculation criteria and analysis of the
advantages and disadvantages of their use. This lack
of information leads to some degree of confusion
between technicians and students when they need to
choose the expression to use.

As a result of this study, a critical exhaustive
review of 48 explicit correlations for the calculation
of the hydraulic friction coefficient in turbulent flow
is presented, with the objective of analyzing their
complexity and precision, including some less known
explicit correlations, to provide engineer professionals
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and engineering students, a set of evaluation and
selection criteria for practical uses.

2 Materials and methods

An exhaustive and critical review was made of 68
research works on the subject of the calculation
of the turbulent flow friction factor, published in
English, Spanish, German, Russian and Portuguese,
in recognized indexed journals from data bases in the
field of study. The search strategy used as criterion of
inclusion, was that consulted sources had to verse on
explicit expressions for the calculation or the valuation
of their precision, which led to the identification and
analysis of 48 friction factor’s correlations that cover
a wide range of relative roughness and Reynolds
numbers. Works related with mathematical methods
for the solution of implicit equations for the friction
factor calculation and the equations that are valid only
for smooth pipelines or non-Newtonian fluids, were
excluded. From the use of documentary analysis tools
for primary information, it was assumed as a rule
of the logic of the results reported in this work, to
present the chronological order of publications with
conclusions and analytical-synthetic deductions.

3 Results and discussion

Published articles in indexed journals are the main
communication medium for the results of research
on the friction factor calculation in turbulent flow, as
they represent the 88.1% of the total consulted sources
(Table 1). Most of the articles have been published
in journals in English language, and they represent
the 77.6% of the total of consulted articles. These
articles appear in many journals, but 8 of these journals
publish the 37.8% of the total number of articles (Table
2).

Table 1. Bibliographic sources consulted.

Consulted sources Quantity

Journal articles 56
Books 8
Reports 2
Conferences 1
Book chapters 1
Non published work 1

Table 2. Journals with major number of publications
in the topic.

Journals Number of
articles

Journal of Hydraulic
Engineering

3

International Journal of Heat
and Mass Transfer

2

Journal of Petroleum Science
and Engineering

2

AIChE Journal 2
Advances in Engineering
Software

2

Journal of Fluids Engineering 2
Journal of the Hydraulics
Division

2

Industrial & Engineering
Chemistry Fundamentals

2

Table 3. Authors with major number of publications.

Authors Number of articles

Brkić, D. 4
Churchill, S. W. 2
Jain, A. K. 2
Zigrang, D. J. 2
Sylvester, N. D. 2
Offor, U. H. 2
Alabi, S. B. 2

Fig. 1. Distribution of publications per year.

There are many researchers that have published
works on the calculation of friction factor in turbulent
flow, but there are 7 authors who publish more
frequently and have written two or more articles than
other researchers on this topic (Table 3). In the last
nine decades, from 1940 to our days, there has been
an increasing research interest in this topic, especially
in the last ten years as, until 2008 there was a uniform,
nearly constant, not increasing tendency (Fig. 1).
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Table 4. Explicit expressions for the calculation of the Friction Coefficient in Turbulent Flow.

Equation 
number 

Author 
(Reference) Year Equation Application range 

(or valuation) 

1 Moody 
(1947) 1947 

6
4

1/3
10

0.0055 1 2 10x
D Re
ελ = + +

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥⎣ ⎦
 4×10³ ≤ Re ≤ 108 

0 ≤ 𝜀/𝐷 ≤ 10-2 

2 Altshul (1963)  1950 
1

1.8
0.1 7 

Re
log

Re
D
ελ

=
+

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
4×10³ ≤ Re ≤ 1x106 

1.6x10-4≤𝜀/𝐷≤2.5x10-2 

3 Altshul (1963) 1950 
0,2568

0.11
Re D

ε
λ = +⎛ ⎞

⎜ ⎟⎝ ⎠  
4×10³ ≤ Re ≤ 1x 106 

1.6x10-4≤𝜀/𝐷≤2.5x10-2 

4 Agroskin 
(1954) 1951 

1,11 6.8
1.8.

3.7
log

Re D
ε

λ
= − +

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎝ ⎠⎣ ⎦

. 4×103 ≤ Re ≤ 108 
10-6 ≤ 𝜀/𝐷 ≤ 10-2 

5 Frenkel (1956)  1951 
0,91 6.812.

3.7
log

Re D
ε

λ
⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 
4×103 ≤ Re ≤ 108 
10-6 ≤ 𝜀/𝐷 ≤ 10-2 

6 Lobaev (1956)  1956 
2

1.42

Re Dlog
λ

ε

=
⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

 
1x10-4 ≤ 𝜀/𝐷 ≤ 1×10-2 

7 Chernikin 
(1958)  1958 

1.0931 8.51.83.
3.7

log
Re D

ε
λ

⎡ ⎤⎛ ⎞= − +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
 4×103 ≤ Re ≤ 108 

10-6 ≤ 𝜀/𝐷 ≤ 10-2 

8 Wood (1966) 1966 
0.134

0.225 0.44 1.62

0.094 0.53 88 DRe
D D D

ε
ε ε ε

λ
−
⎡ ⎤⎛ ⎞⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦= + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

4×103 ≤ Re ≤ 5×107 
10-5 ≤ 𝜀/𝐷 ≤ 4×10-2 

9 Churchill 
(1973) 

 
1973 

0.91 72
3.7

log
D Re

ε
λ

⎡ ⎤⎛ ⎞= − +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
 Not specified 

10 Eck (1966)  
1963 

1 152
3.715

log
D Re

ε
λ

⎛ ⎞= − +⎜ ⎟⎝ ⎠
 4×103 ≤ Re ≤ 108 

5x10-6 ≤ 𝜀/𝐷 ≤ 10-2 

11 Jain (1976)   
1976 

0.96.943
3.715

1 2log
ReDλ

ε⎡ ⎤⎛ ⎞= − +⎢ ⎥⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦
 5×103 ≤ Re ≤ 107 

4x10-5 ≤ 𝜀/𝐷 ≤ 5x10-2 

12 
Swamee 
and Jain 
(1976)  

 
1976 

2

0.9

0.25
/ 5.74
3.7
Dlog

Re

λ
ε

=
⎡ ⎤⎛ ⎞+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 5 × 103 ≤ Re ≤ 108 
10-6 ≤ 𝜀/𝐷 ≤ 5×10-2 

13 Churchill 
(1977)  

1977 

( )

1
12 12

1.5
8 18 
Re A B

λ
⎡ ⎤⎛ ⎞= +⎢ ⎥⎜ ⎟⎝ ⎠ +⎢ ⎥⎣ ⎦

 

16

0.9
12.457 ln

7 0.27
A

Re D
ε

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟
⎢ ⎥⎜ ⎟= ⎢ ⎥⎜ ⎟⎛ ⎞ ⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠⎣ ⎦

 

1637530 B
Re

⎛ ⎞= ⎜ ⎟⎝ ⎠
 

For all flow regimes 
and relative roughness  
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Equation 
number 

Author 
(Reference) Year Equation Application range 

(or valuation) 

14 Chen (1979)  1979 

1.1098

0.8981
1 5.0452 1 5.8506 2

3.7065 2.8257
log log

D Re D Re
ε ε

λ

⎡ ⎤⎛ ⎞⎛ ⎞= − − +⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦
 

4×103 ≤ Re ≤ 4×108 
10-7 ≤ 𝜀/𝐷 ≤ 5×10-2 

15 Round (1980)  1980 
1 1.8

0.135 6.5

Relog
Re

D
ελ

⎡ ⎤
⎢ ⎥
⎢ ⎥=

⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 4×103 ≤ Re ≤ 108 
0 ≤ 𝜀/𝐷 ≤ 5×10-2 

16 Schorle and 
col. (1980) 1980 

1 5.02 14.52
3.7 3.7

log log
D Re D Re

ε ε
λ

⎡ ⎤⎛ ⎞= − − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 4×103 ≤ Re ≤ 4×108 

0 ≤ 𝜀/𝐷 ≤ 5×10-2 

17 Barr and 
White (1981) 

1981 0.70.52

4.518
1 72

3.7
1

29

Relog
log

D ReRe
D

ε
λ ε

⎧ ⎫⎛ ⎞⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠= − +⎨ ⎬⎡ ⎤⎛ ⎞⎪ ⎪+⎢ ⎥⎜ ⎟⎪ ⎪⎝ ⎠⎢ ⎥⎣ ⎦⎩ ⎭

 Not specified 

18 
Zigrang and 

Sylvester 
(1982)  

1982 
1 5,02 5,02 132 log log

3,7 Re 3,7 Re 3,7 Re
log

D D D
ε ε ε

λ
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪= − − − +⎨ ⎬⎢ ⎥⎜ ⎟

⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 

4×103 ≤ Re ≤ 108 
4×10-5 ≤ 𝜀/𝐷 ≤ 5×10-2 

19 
Zigrang and 

Sylvester 
(1982) 

1982 

  
 

1 / 5,02 / 5,02 / 5,02 / 132,0 log
3,7 3,7 3,7 3,7
D D D Dlog log log

Re Re Re Re
ε ε ε ε

λ
⎧ ⎫⎡ ⎤⎡ ⎤ ⎛ ⎞⎪ ⎪= − − − − +⎨ ⎬⎢ ⎥⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 

4×103 ≤ Re ≤ 108 
4×10-5 ≤ 𝜀/𝐷 ≤ 5×10-2 

20 Haaland 
(1983) 1983 

21.11/ 6.91.8
3.7
Dlog

Re
ελ

−
⎛ ⎞⎛ ⎞= − +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 4×103 ≤ Re ≤ 108 
10-6 ≤ 𝜀/𝐷 ≤ 5×10-2 

21 Serghides 
(1984)  1984 

( )21
2
B A

A
C B Aλ

−
= −

− +
 

( )/ 12
2

3.7
D

A log
Re

ε
= − +

⎡ ⎤⎛ ⎞
⎢⎜ ⎟ ⎥⎝ ⎠⎣ ⎦

 

/ 2.51
2

3.7
D A

B log
Re

ε
= − +⎡ ⎤⎛ ⎞

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

( )/ 2.51
2

3.7
D B

C log
Re

ε
= − +

⎡ ⎤⎛ ⎞
⎢⎜ ⎟ ⎥⎝ ⎠⎣ ⎦

 

For all the flow regimes 
and relative roughness 

22 Serghides 
(1984) 1984 

( )
22

7

8 7

4.781
4.781

2 4.781
A

A A
λ

−
−

= −
− +

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

 

7

ε 12
A 2log

3.7D Re
= − +⎛ ⎞

⎜ ⎟⎝ ⎠
 

7
8

2.51Aε
A 2log

3.7D Re
= − +⎛ ⎞

⎜ ⎟⎝ ⎠
 

Not specified 
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Equation 
number 

Author 
(Reference) Year Equation Application range 

(or valuation) 

23 Tsal (1989) 1989 

0.25680.11A
Re D

ε⎛ ⎞= +⎜ ⎟⎝ ⎠
 

0.018  then AIf A λ≥ =  
0.018  0.0028 0.85  If A then Aλ< = +  

4×103 ≤ Re ≤ 108 

0 ≤ 𝜀/𝐷 ≤ 5×10-2 

24 Robaina 
(1992)  1992 0.9

1 5.622 0.27log
D Re
ε

λ
⎛ ⎞= − +⎜ ⎟⎝ ⎠

 4×103 ≤ Re ≤ 4x107 
10-5 ≤ 𝜀/𝐷 ≤ 10-2 

25 Manadilli 
(1997)  1997 0.983

1 95 96.822
3.7

log
D Re Re

ε
λ

⎛ ⎞= − + +⎜ ⎟⎝ ⎠
 5,235×103 ≤ Re ≤ 108 

0 ≤ 𝜀/𝐷 ≤ 5×10-2 

26 
Chernikin and 

Chernikin 
(2012) 

1997 

0.251,4

0.11  
115 1

X
X

α δλ ⎡ ⎤+ += ⎢ ⎥+⎣ ⎦
 

( )1068 ;   ;     28k X
Re D

α δ α= = =  

For all flow regimes  
1.6x10-4≤𝜀/𝐷≤2.5x10-2 

27 Sousa and col. 
(1999)  1999 0.87

1 5.16 5.092
3.7 3.7

log log
D Re D Re

ε ε
λ

⎡ ⎤⎛ ⎞= − − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 4×103 ≤ Re ≤ 108 

10-6 ≤ 𝜀/𝐷 ≤ 10-2 

28 Romeo and 
col. (2002) 2002 

( )
0.9924 0.9345

1 5.0272 4.5672
3.7065 3.827

5.3326
7.7918 208.815Re

log log log A
D Re D Re

A
D

ε ε
λ

ε

⎧ ⎫⎡ ⎤= − − −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
 

3×103 ≤ Re ≤ 1.5×108 
0 ≤ 𝜀/𝐷 ≤ 5×10-2 

29 Dobromyslov 
(2004)  2004 

 

( )

( )

3.7
1.312 2

2 1
0.5

3.7

D
b log

b

lg Re
D

log

ε

λ

ε

−
+

−
=

⎛ ⎛ ⎞⎞⎜ ⎜ ⎟⎟⎝ ⎝ ⎠⎠

⎛ ⎞⎜ ⎟⎝ ⎠

 

 
( )
( )

    1 
kv

log Re
b

log Re
= +  

 2,   2      500.kv

D
If b b Re

ε
> = =  

Not specified 

30 Sonnad and 
Goudar (2006) 2006 

( )/ 1

1 0.4587
0.8686 G G

Re
ln

Gλ += ⎛ ⎞
⎜ ⎟⎝ ⎠

 

( )ε
G 0.1240 Re ln 0.4587Re

D
= × × +  

4 × 103 ≤ Re ≤ 108 

10-6 ≤ 𝜀/𝐷 ≤ 5×10-2 

31 Rao and  
Kumar (2007) 2006 

1

2
1

2
0.444 0.135

Dlog
Re

Re

ε

λ β

−

=
+

⎡ ⎤⎛ ⎞
⎢ ⎜ ⎟ ⎥⎝ ⎠⎢ ⎥
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

2

0.33
6.51 0.55
ReIn

eβ
⎡ ⎤⎛ ⎞− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦= −   

2300 ≤ Re ≤ 108 

10-6 ≤ 𝜀/𝐷 ≤ 5×10-2 
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Equation 
number 

Author 
(Reference) Year Equation Application range 

(or valuation) 

32 Buzzelli 
(2008)  2008 

2
1

1

2

2
1

2.18
1

B
B log

ReB

B
λ

+
= −

+

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎢ ⎥

⎢ ⎥
⎢ ⎥⎣ ⎦

 

( )[ ]
1

0.774 1.41

1 1.32

ln Re
B

D
ε

−
=

+
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

2 12.51
3.7

B Re B
D

ε
= +  

3×103 ≤ Re ≤ 1.5×108 
0 ≤ 𝜀/𝐷 ≤ 5×10-2 

33 

Vantankhah 
and 

Kouchakzadeh 
(2008)  

2008 ( ) 0.9633

1 0.4587
0.8686 ln

0,31
S

S

Re

Sλ ⎛ ⎞
⎜ ⎟+⎝ ⎠

=
−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

( )0.124 0.4587S Re ln Re
D
ε⎛ ⎞= +⎜ ⎟⎝ ⎠

 

4×103 ≤ Re ≤ 108 
10-6 ≤ 𝜀/𝐷 ≤ 5×10-2 

34 
Avci and 
Karagoz 
(2009)  

2009 ( )
2.4

6.4

1 0.01 1 10ln Re ln Re
D D

λ
ε ε

=
⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪− + +⎢ ⎥⎜ ⎟⎨ ⎬

⎢ ⎥⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

 
2300 ≤ Re ≤ 108 

10-6 ≤ 𝜀/𝐷 ≤ 5×10-2 

35 Papaevangelou 
and col. (2010)  2010 

( )4
2

0.9142

0.2479 0.0000947 7

7.366
3.615

logRe

log
D Re

λ
ε

− −
=

+⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 104 ≤ Re ≤ 107 
10-5 ≤ 𝜀/𝐷 ≤ 10-2 

36 Chernikin and 
Talipov (2010) 2010 𝜆 = 0,168

(𝜀𝐷)
,..,/

𝑅𝑒,...2
 

8x10-5 ≤ 𝜀/𝐷 ≤ 1x10-3 

104 ≤ Re ≤ 4x106 

37 Brkić (2011a) 2011 

.
3
= −2𝑙𝑜𝑔 109,.:2:2; + =

2.>.?
  

( )
1.1

1.816
1 1.1

Re
ln

Re
ln
ln Re

β =

+
⎡ ⎤
⎢ ⎥
⎣ ⎦

 4×103 ≤ Re ≤ 108 
0 ≤ 𝜀/𝐷 ≤ 5×10-2 

38 Brkić (2011a) 2011 

1 2.18
2

3.71
log

Re D
β ε

λ
= − +⎛ ⎞

⎜ ⎟⎝ ⎠
 

( )
1.1

1.816
1 1.1

Re
ln

Re
ln
ln Re

β =

+
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
4×103 ≤ Re ≤ 108 
0 ≤ 𝜀/𝐷 ≤ 5×10-2 

39 Fang and col. 
(2011)  2011 

21.1007

1.1105 1.0712
60.525 56.2911.613 0.234ln

D Re Re
ελ

−
⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞= − +⎢ ⎥⎨ ⎬⎜ ⎟⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

 3×103 ≤ Re ≤ 108 
0 ≤ 𝜀/𝐷 ≤ 5×10-2 

40 Ghanbari and 
col. (2011)  2011 

2.1691.042 0.91522.7311.52
7.21

log
D Re

ελ
−

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞= − +⎢ ⎥⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
 2.1×103 ≤ Re ≤ 108 

0 ≤ 𝜀/𝐷 ≤ 5×10-2 
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Equation 
number 

Author 
(Reference) Year Equation Application range 

(or valuation) 

41 Samadianfard 
(2012)  2012 

 

1
9

1
3

0.6315093 6.9298410.02275308
Re.

10 9.99701

4.781616

D

D

Re A
Re D

Re
D

A
D Re

D

ε

ε

ελ
ε

ε
ε

⎛ ⎞
⎜ ⎟− ⎛ ⎞= ⎜ ⎟+ + +⎜ ⎟⎝ ⎠⎜ ⎟+⎜ ⎟⎝ ⎠
⎛ ⎞

⎛ ⎞⎜ ⎟
= +⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟+
⎝ ⎠

 4x103 ≤ Re ≤ 108 
10-6 ≤ 𝜀/𝐷 ≤ 5×10-2 

42 Shaikh and 
col. (2015) 2015 

2
2.510.25

3.7
log

Re D
ελ

α

−
⎡ ⎤⎛ ⎞= +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

2

1.14 2log
D
εα

−
⎡ ⎤⎛ ⎞= − ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

104 ≤ Re ≤ 108 
10-4 ≤ 𝜀/𝐷 ≤ 5×10-2 

43 Brkić (2016) 2016 
2.51 1.14 2

1 2
3.71

log
Dlog

Re D

ε
ε

λ

⎡ ⎤⎛ ⎞⎛ ⎞−⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎢ ⎥= − +
⎢ ⎥
⎢ ⎥
⎣ ⎦

 104 ˂ Re ˂ 108 
10-6 ˂ 𝜀/𝐷 ˂ 5×10-2 

44 Offor and 
Alabi (2016a) 2016 

1.0921 1.975 7.6272
3.71 3.93 395.9

log ln
D Re D Re

ε ε
λ

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎛ ⎞ ⎛ ⎞= − − +⎢ ⎥⎜ ⎟⎨ ⎬⎜ ⎟ ⎜ ⎟⎜ ⎟+⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎝ ⎠⎣ ⎦⎩ ⎭
 

4×103 ≤ Re ≤ 108 
0 ≤ 𝜀/𝐷 ≤ 5×10-2 

45 
Beluco and 
Schettini 
(2016)  

2016 
 

21.0954 0.9695

0.3009

5.9802
3.7315

log
D Re

λ
ε

=
⎡ ⎤⎛ ⎞⎛ ⎞ ⎛ ⎞+⎢ ⎥⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎝ ⎠⎣ ⎦

 
3x103 ˂ Re ˂ 9x108 

0 ˂ 𝜀/𝐷 ˂ 9×10-2 

46 Brkić and 
Praks (2018) 2018 
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( )

( )
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For all flow regimes 
and relative 
roughness 

47 Brkić and 
Praks (2018) 2018 
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Equation 
number 

Author 
(Reference) Year Equation Application range 

(or valuation) 

48 Azizi and col. 
(2018)  2018 

2.096

0.928

8.147 1
2

3.7 1
. A BDln

Re C D

ε

λ

−

+ +
= − +

+ +

⎡ ⎤⎛ ⎞
⎢ ⎜ ⎟⎥
⎢ ⎜ ⎟⎥
⎢ ⎜ ⎟⎥

⎝ ⎠⎣ ⎦
 

( ) ( )

( ) ( )

0.01 0.1

2 3

 .  .

 .  .  .  .  .

A a ln Re b ln Re

c ln Re d ln e ln f ln g ln Re ln
D D D D
ε ε ε ε

⎡ ⎤ ⎡ ⎤= +⎣ ⎦ ⎣ ⎦

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦
 

 ( ) ( )
0.5 1.4

0.4 0.3 .  .  .B h Re i j Re
D D
ε ε− ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 

 

( ) ( ) ( )
2

0.3 2.3
 .  .  .  .  . C k ln Re l ln Re m ln n ln o ln Re ln

D D D
ε ε ε⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎡ ⎤ ⎡ ⎤= + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

 
0.695 1.67 2.6

 .  .  . D p q r
D D D
ε ε ε

= + +⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

a= 27,6174133619768 b= -25,6353346801891 
c= 0,349879778909867 d= -6,0745613327875E-03 
e= 4,47951990420369 E-04 f= -6,38574665338776E-05 
g= -4,6057036243026E-03 h= -3,18061755452957 
i= 0,329282387073743 j= -2,62873832656825E-03 
k= 0,057457596107698 l= -0,746573202915635 
m= -2,18201121395341E-03 n= 4,3570542661899E-04 
o= -3,45044088227631E-06 p= 4,43511785774609E-02 
q= -1,97409129131745 E-02 r= 0,179513508976549 

6

3 8

10 0.05

2 10 10
D

x Re

ε− ≤ ≤
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49 Azizi and col. 
(2018) 2018  

21.108

0.966

5.164
1.805

4.267
Dlog

Re

ε

λ

−

= +

⎡ ⎤⎛ ⎞⎛ ⎞
⎢ ⎜ ⎟⎥⎜ ⎟⎝ ⎠⎢ ⎜ ⎟⎥
⎢ ⎜ ⎟⎥
⎢ ⎜ ⎟⎥⎝ ⎠⎣ ⎦

 4x103 ≤ Re ≤ 108 
10-6 ≤ 𝜀/𝐷 ≤ 5×10-2 

 
Table 5. Main research work on the topic in the last ten years.  

Author (s) Description Results 
Yıldırım 
(2009) 

An extense comparison test was 
stablished for a wide range of 
relative roughness (ε/D) and 
Reynolds (Re) (1.10-6 ≤ ε/D ≤ 5.10-

2 ; 4.103 ≤ Re ≤ 1.108), that covers 
a great part of turbulent flow zone 
in the Moody Diagram. 

The majority of the approximations provide 
estimations of the friction factor with an 
absolute mean error of 5x10-4, absolute 
maximum error of 4x10-3, mean relative error 
of 1.3 % and a maximum relative error of 5.8 
%; in the complete range of values of ε/D and 
Re. The comparative analysis for the mean 
relative error profile, the classification of the 
six best adjusted equations revised, were in 
good agreement with those of the best model 
selection criterion, vindicated in recent 
literature, for the simulations made.  

Jaric and col. 
(2011)  

 

Review of the most common 
explicit correlations for the 
estimation of the friction factor in 
smooth a rough pipeline. The 

It was found that the Zigrang and Sylvester 
equation gives the most precise value of 
friction factor and that the Haaland equation 
is more adequate for manual calculations.  

Many explicit approximations of the loss of charge
coefficient with different precision and complexity
levels, have been developed -and keep developing-,
for the substitution of the Colebrook-White standard
implicit equation.

Table 4 shows in chronological order, the 48
explicit expressions found in this study with their
application range, including 10 formulas that had
not been previously described in none of the review
articles consulted. Recent expressions as the proposals
for Zeghadnia, Robert & Achour (2019) have not been
incorporated, because they consist fundamentally in
corrections of some of those already referred to in
table 4.

Explicit approximations give a relatively good
prediction of the friction factor λ and they can
reproduce with precision the Colebrook-White
equation and Moody’s diagram. Generally, models
with more complex approximations are the most
accurate (Brkić y Ćojbas̆ić, 2017).

The existing explicit models precisions have been
evaluated by three statistical criteria: the mean square
error, the percent relative error and the absolute error
(Zigrang and Sylvester, 1985; Yildirim, 2009; Jaric et
al., 2011; Winning and Coole, 2013), and additionally,
by the model of selection criteria (MSC) and the
Akaike’s information criterion (AIC). The two last
criteria were used by Romeo, Royo and Monzon
(Romeo et al., 2002) for the selection of the model.
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Table 5. Main research work on the topic in the last ten years.

Author (s) Description Results

Yildirim (2009) An extense comparison test was
stablished for a wide range of
relative roughness (ε/D) and
Reynolds (Re) (1.10−6 ≤ ε/D ≤
5.10−2 ; 4.103 ≤ Re ≤ 1.108), that
covers a great part of turbulent flow
zone in the Moody Diagram.

The majority of the approximations provide
estimations of the friction factor with an
absolute mean error of 5x10-4, absolute
maximum error of 4x10−3, mean relative
error of 1.3 % and a maximum relative
error of 5.8 %; in the complete range of
values of ε/D and Re. The comparative
analysis for the mean relative error profile,
the classification of the six best adjusted
equations revised, were in good agreement
with those of the best model selection
criterion, vindicated in recent literature, for
the simulations made.

Jaric et al. (2011) Review of the most common
explicit correlations for the
estimation of the friction factor
in smooth a rough pipeline. The
comparison of friction factor
equations with Colebrook-White
equation, was expressed by
means of the mean relative
error, the positive maximum
error, the negative maximum
error, the correlation relation
and the standard deviation For
the statistical comparison of
different equations, the Model of
Selection Criterion and the Akaike
Information Criterion were used.

It was found that the Zigrang and Sylvester
equation gives the most precise value of
friction factor and that the Haaland equation
is more adequate for manual calculations.

Brkić (2011b) This article shows a review of
the existing explicit approximations
comparisons with the Colebrook-
White equation.

The majority of the available approximations
of the Colebrook-White equation, are
very precise. The exceptions are the
approximations made by Round, Eck,
Moody, Wood, Rao and Kumar. The
mean error of nearly all the explicit
approximations of Colebrook-White
relation is up to 3%.

Salmasi et al.
(2012)

The performance of the explicit
formulations for the friction
factor and the techniques of
artificial intelligence (AI) are
studied. The AI techniques used
include artificial neuronal nets
(ANN) and genetic programming
(GP). Tests included Re and
ε/D transformations, using a
logarithmic scale.

This study shows that some of the explicit
formulations for the friction factor induce
to improper errors, but some of them have
god precision The ANN formulation for
the resolution of the friction factor is less
successful than the GP formulation.
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Winning and
Coole (2013)

28 explicit equations for the
friction factor are revised, their
precision with respect to implicit
Colebrook-White equation and
their relative calculation efficiency
are analyzed. For the revision,
ranges of Reynolds numbers 4.103
≤ Re ≤ 4.108 and pipeline relative
roughness 10−6 ≤ ε/D ≤ 10−1,
were selected.

2D and 3D contour graphics were generated
which show the range and magnitude of the
relative precision percent in the whole range
of points for each explicit equation.

Dobrnjac (2012) Precision and complexity of
15 explicit approximations to
the Colebrook-White equation
for the determination of the
friction factor were studied. The
maximum relative error for each
approximation was determined and
the complexity was valued.

It is demonstrated that the approximations
obtained by adjusting Moody Diagram
made with C-W formula and Nickuradse
measurements, are not successful in the
transition flow zone and cover only the
turbulent flow above Re=4000. Studies
that have eliminated these problems and
determine a function of commutation
formula for the friction coefficient for all
Reynolds numbers Re (0 ≤ Re ≤ 108) and
all relative roughness values, are described.
This formula is more precise than C-W
formula and then all the other previously
published equations..

Mohsenabadi et al.
(2014)

Report of 29 explicit relations
from different researchers which
are proved in precision.

It is confirmed that the relations of Serghides
(1984), Vatankhah and Kochakzadeh (2008)
and Buzzelli (2008), with a relative error
below ± 0.05 % for different Reynolds
numbers and relative roughness, give the
best results. Goudar and Sonnad (2008) and
Avci and Karagoz (2009), show the highest
level of error in comparison to C-W relation.

Asker et al. (2014) Various correlations of friction
factors are revised. The relative
error is evaluated for different
Re values and relative pipeline
roughness. Statistical analysis is
done for each correlation.

It was found that in some of this correlations
the percent error is so small that they can
be used directly in place of the Colebrook-
White equation.

Anaya et al. (2014) Various mathematical models that
describe explicitly the friction
factor with respect to Colebrook-
White equation and the Kármán
number were evaluated. The
evaluation was made for a relative
roughness value of (ε/D=0.001)
and Reynolds numbers between
4.103 and 108.

The use of Pavlov (Frenkel) correlation is
recommended.
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Lipovka
and Lipovka
(2014)

A comparative analysis was made
of existing formulas for the Darcy’s
friction factor in turbulent regime
and Colebrook-White resolved by the
Clamon1 method. The absolute mean
square deviation is shown in graphics

It is concluded that the Clamond method
gives the major precision for all the ranges
of ε/D. The second place is occupied by the
Goudar and Sonnad equation.

Offor and
Alabi (2016b)

The performances of explicit
models not based in AI (artificial
intelligence) were compared with
performances of models based in AI.

The genetic algorithm optimizes the model´s
explicit parameters, with improvements of
0.12 % to 0.0026 %, according to the
index of maximum relative error. Although
the genetic programming produces explicit
analytical formulas for the determination of
output parameters, it was found that they are
extremely inaccurate with errors up to 7 % in
some models.(Lipovka & Lipovka, 2014)

Lukman and
Oke (2018)

Precision of explicit friction factor
formulas were evaluated using the
relative error, the selection criterion
model (SCM) and the Akaike
information model (AIM) and were
compared with the Colebrook-White
formula for Re between entre 4.10−3

y 1,704.108 y ε/D entre 10−7 y 0.052,
using Microsoft Excel -Solver.

Formulas with lowest relative error are:
Shaikh et al. (0.03%); Serghides (0.70
%); Buzzelli (0.70 %); Vatankhah and
Kouchakzadeh (0.71 %); Romeo et al. (0.71
%); Sounnad and Goudar (0.71 %); Swamee
and Jain (0.73%); Barr and White (0.73
%); Manadilli (0.73 %); Churchill (0.74 %);
Fang et al. (0.75 %); Chen (0.76 %); Barr
and White (0.77%); Evangelids et al. (0.80
%); Zigrang and Sylvester (0.84 %); Eck
(0.86 %); Brikic (0.93 %); Jain (0.86 %);
Haaland (1.52 %); Wood (3.48 %); Ghanbari
et al. (2.17 %).

Pimenta et al.
(2018)

29 explicit equations found in
literature were analyzed and λ was
determined by means of Re in the
range of 4.103 ≤ Re ≤ 108 and
relative roughness (ε/D) of 10−6

≤ ε/D ≤ 5.10−2. The performance
index and the relative error of
formulations were analyzed in
relation to the Colebrook-White
equation.

The analysis found 7 equations with
an excellent performance and high
precision, standing out the Offor and
Alabi formulation, which can be used as
alternative to the standard Colebrook-White
equation.

1The Clamond method is a special algorithm of iterative calculation of λ, which gives accuracy close to limits of computer type double after two
iterations. It requires calculation of logarithm once for initial estimation and one time per iteration. (Lipovka and Lipovka, 2014)

The Akaike’s information criterion (AIC) is a
measure of the relative quality of a statistical model
for a set of data. The AIC provides a medium for
the model selection. AIC manages a balance between
the model’s adjustment goodness and the model’s
complexity. According to this criterion, the most
appropriate model is the one that has the smaller
value of the AIC. Meanwhile, the model of selection
criterion (MSC), is derived from the Akaike’s

information criterion and allows a direct comparison
between models with a different number of parameters
(PN). For this criterion, the most appropriate model
is the MSC, bigger, as it propitiates maximizing
the model’s content of information (Romeo, Royo
& Monzón, 2002); while the MSE provides a good
indication of the global maximum percent precision of
the explicit equation. The peaks in the data are only
visualized with the error.
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Table 6. Precision of the analyzed formulas as reported by previous research.

Eq. [#] Author Relative
mean error
[%]

Relative
máximum
error [%]

Computational
efficiency (Winning y
Coole, 2013)

1 Moody (1947) 4.76-7.52 21.5 2
2 Altshul (1963) 16.5*
3 Altshul (1963) 11.45-16.42 21.5* 1
4 Agroskin (1954) 2.3*
5 Frenkel (1956) 2.8*
6 Lobaev (1956) 31.0*
7 Chernikin (1958) 4.75*
8 Wood (1966) 3.65-3.88 23.8 3
9 Churchill (1973) 0.08-0.48 2.2 7

10 Eck (1966) 1.50-2.23 8.2 4
11 Jain (1976) 0.18-0.86 2 10
12 Swamee and Jain (1976) 0.04-0.93 2 8
13 Churchill (1977) 0.74 2.2 11
14 Chen (1979) 0.07 0.4 19
15 Round (1980) 3.71-4.47 10.9 6
16 Schorle et al. (1980) 0.13-0.32 0.8 13
17 Barr and White (1981) 0.06 0.3 21
18 Zigrang and Sylvester (1982) 0.00061-0.84 1 15
19 Zigrang and Sylvester (1982) 0.02 0.1 23
20 Haaland (1983) 0.21 1.4 14
21 Serghides (1984) 0.06 0.1 20
22 Serghides (1984) 0.04 0.4 17
23 Tsal (1989) 8.89-16.16 37.5* 5
24 Robaina (1992) 0.84 2.4*
25 Manadilli (1997) 0.03-0.74 2.1 18
27 Sousa et al. (1999) 0.1*
28 Romeo et al. (2002) 0.06 0.1 27
29 Dobromyslov (2004) 10.7
30 Sonnad and Goudar (2006) 0.17 0.8 9
31 Rao and Kumar (2007) 13.27-16.15 82 24
32 Buzzelli (2008) 0.005 0.1 25
33 Vantankhah and Kouchakzadeh

(2008)
0.36-0.71 7.6* 8

34 Avci and Karagoz (2009) 1.18-1.72 4.7 12
35 Papaevangelou et al. (2010) 0.23 0.9 28
36 Chernikin and Talipov (2010) 46.0*
37 Brkić (2011a) 0.12-0.72 2.3 26
38 Brkić (2011a) 0.12-0.48 2.3 22
39 Fang et al. (2011) 0.06 0.4 16
40 Ghanbari et al. (2011) 2.17 3.0*
41 Samadianfard (2012) 0.08 7
42 Shaikh et al. (2015) 0.03 10.2
43 Brkić (2016) 0.49-3.87 8.9*
44 Offor and Alabi (2016a) 0.0025 0.2*
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Eq. [#] Author Relative
mean error
[%]

Relative
máximum
error [%]

Computational
efficiency (Winning y
Coole, 2013)

45 Beluco and Schettini (2016) 4.3*
48 Azizi et al. (2018) 1.6*

Source: (11, 23, 29, 34, 47, 65, Authors) *For the ranges of Reynolds numbers and relative roughness declared in the table 4.

Observation: Expressions 26, 46 and 47 are not included for being valid for all flow regimes.

Some of the explicit equations have very high
errors in a small range of input values, generating
peaks that, although being obvious in graphics, could
not be so easily identified in data tables and, certainly,
cannot be recognized if MSE and maximum relative
percent error, have not been reported (Winning and
Coole, 2013). These criteria were used by Genić et
al. (Jaric et al., 2011) and Yildirim (2009) in the
comparison of various explicit models.

Brkić (2011a) based on the maximum relative
percent error criterion, classified existing explicit
models as: extremely precise: with error ≤ 0.14%,
very precise: error up to 0.5%, moderately precise:
error up to 1.5%, less precise: error up to 5%, not
recommended: error up to 25% and extremely inexact:
error ≥ 80%.

The first review on the precision of λ explicit
formulations was done in April of 1985 by Gregory
and Fogarasi (1985). A second review was made
in June of the same year by Zigrang and Sylvester
(1985), using the same boundary conditions as used
by Serghides (1984). This study was very similar to
the one made by Gregory and Fogarasy in relation to
the explicit equations revised, with the exception of
the rejection of the Wood equation (Wood,1966) and
the inclusion of Chen equation (Chen,1979). Goudar
and Sonnad (2007, 2008) made other two revisions.

Table 5 shows the main research works done in
the last 10 years, on precision and complexity of the
different explicit expressions. It is necessary to point
out that, all the work of review on the precision of
explicit equations for the calculation of the friction
factor, has been done for extremely broad ranges of
Reynolds numbers and relative roughness, which are
not found in common practice.

Yildirim (2009) made another study based in the
same matrix of values used by Goudar and Sonnad.
Brkić (2011b) made a revision of 20 equations and
in the same year another revision of 16 equations in
the same range of values as the ones of Goudar and
Sonnad and Yildirim, was made. These studies were
made with a very large matrix of a million points,
which introduced the Altshul equation, cited by Jaric

et al. (2011). This revision, as the work of Romeo et
al. (2002) used the Selection Criteria Model (SCM)
and the Akaike Information Criteria (AIC), to make
a statistical comparison of the relative computational
efficiency that concluded in the recommendation
of using Zigrang and Sylvester (1982) equation.
Beluco and Schettini (2016) analyzed six classic
approximations of Colebrook-White equation and they
also propose a generic model for this category, which
results equally complex for reiterative calculations in
the solution of fluid mechanics problems. Jaric et al.
(2011) stated that the Zigrang and Sylvester equation
(Zigrang and Sylvester, 1982) gives the most accurate
value of the friction factor and that the Haaland (1983)
equation, with similar complexity as the Swamee
and Jain equation (1976), is the most appropriate for
manual calculations. Pimenta et al. (2018) conclude
that the equations (Chen, 1979) and those of Sonnad
and Goudar (2006), Buzzelli (2008), Vantankhah and
Kouchakzadeh (2008), Fang et al. (2011) and Offor
and Alabi (2016b), have high precision in comparison
to the Colebrook-White approximation.

Table 6 shows the mean and maximum relative
error of the expressions reported by different authors
cited in previous reviews, in respect to Colebrook-
White equation.

Table 6 also shows the calculated errors for the
formulas reported for the first time by this review
and other recalculated values in which there is no
agreement with previous reports or had not been
reported (equations 2, 3, 4, 5, 6, 7, 23, 24, 27, 33, 36,
40, 44 and 45).

From the analysis made, which is shown in
Table 6, three tendencies in the development of these
expressions can be observed: the first one, is the use of
algebraic equations (1, 3, 8, 26, 36, 41); the second
one, is the use of expressions that include base 10
logarithm -the most abundant- (equations: 2, 4, 5, 6, 7,
9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 27, 28, 29, 31, 35, 40, 42, 43, 45, 48); and the third
one, those which use the natural logarithm (equations:
13, 30, 32, 33, 34, 37, 38, 39, 44, 46, 47).
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Table 7. Equations with relative errors below 5% for turbulent flow in pipelines with relative roughness
(10−6 ≤ ε/D ≤ 5× 10−2) and Reynolds numbers (10−6 ≤ ε/D ≤ 5× 10−2), ordered according to their precision.

48 Azizi and col. (2018)  1.6*  
Source: (11, 23, 29, 34, 47, 65, Authors)  

* For the ranges of Reynolds numbers and relative roughness declared in the table 4.  
Observation: Expressions 26, 46 and 47 are not included for being valid for all flow regimes. 
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* The Swamme-Jain equation shows a maximum relative error of 3.12% in this range, for the rest of 
the equations, it is shown in Table 6. 
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* The Swamme-Jain equation shows a maximum relative error of 3.12% in this range, for the rest of the equations, it is shown in Table 6.
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Table 8. Valid equations (relative errors less than 5%) for turbulent flow in smooth pipelines or pipelines with low
relative roughness (0 ≤ ε/D ≤ 5× 10−2) and Reynolds numbers (4×103 ≤ Re ≤ 108), ordered according to their

precision.
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Figure 1. Distribution of publications per year. 
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Figure 2. Relative error of explicit expressions selected in accordance to the Colebrook equation 
(épsilon representa el valor de ε/D). 

Fig. 2. Relative error of explicit expressions selected in accordance to the Colebrook equation (épsilon representa el
valor de ε/D).
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In table 7 appear the 11 equations that have relative
errors lower than 5% valid for turbulent flow in rough
pipelines (10−6 ≤ ε/D ≤ 5 × 10−2) and Reynolds
numbers in the range 4× 103 ≤ Re ≤ 108, which have
been ordered according to their precision. Equations of
Sousa et al. (1999), Serghides (1984) and Sonnad and
Goudar (2006), have a relative error lower than 1% and
are the most precise ones; among these, the equation
of Sousa et al. (1999), is the less complex one.

Meanwhile, for smooth pipelines or pipelines with
low relative roughness (0 ≤ ε/D ≤ 5× 10−2), there are
10 equations with relative errors lower than 5% which
are valid for turbulent flow and Reynolds numbers
(4×103 ≤ Re ≤ 108) (table 8). The equations of Romeo
et al. (2002), Buzzelli (2008), Offor and Alabi (2016a),
Fang et al. (2011) y Schorle et al. (1980), have a
relative error lower than 1% and are the most precise
ones; but nevertheless, they are quite complex, except
the Schorle et al. (1980) equation, whose complexity
is relatively low.

The main conclusion on the precision of explicit
expressions for the calculation of hydraulic friction
coefficient in turbulent flow is, that the relative error
is not uniformly distributed in the Reynold number´s
domain (Re) and the relative roughness (ε/D) (Brkić
and Ćojbas̆ić, 2017). In figure 2 the formulas of
Agroskin (Eq. 4), Frenkel (Eq. 5), Altshul simple
(Eq. 3) and Altshul logarithmic (Eq. 2), result vey
imprecise for high values of relative roughness; but
nevertheless, for relative roughness values lower than
1×10−2, the two first formulas have significantly
lower error and give acceptable results for engineering
calculations.

On the other hand, the behavior of equations of
Chernikin (Eq. 7) and Robaina (Eq. 24), is different,
because the major values of relative error are observed
in pipelines with small values of relative roughness
(Fig. 2).

The great majority of the most recognized
authors in fluid mechanics, do not agree in the
recommendation of an equation for the calculation
of λ in turbulent regime. Çengel and Cimbala (2017)
state that for the explicit approximate relation given
by Haaland (1983), results are in the 2% of the ones
obtained by the Colebrook-White equation and less
than 1% with respect to the equation of Churchill
(1977).

Mott and Untener (2015) consider the Swamee
and Jain (1976) equation, as it allows the direct
calculation of λ value for turbulent flow and gives
values that are in ±1% into the range of relative
roughness: ε/d = 0.01 a 1.10−6 and for Reynolds

numbers of 5.103 a 108. This is virtually all the
turbulent zone of the Moody diagram. The authors
state that, although the equations of Agroskin (4),
Frenkel (5) and Robaina (24), have similar complexity
to the equations of Haaland y Swamee-Jain , which
are the most frequently used in Western countries
for practical calculations; their precision, lower to
these last ones, does not merit its use. Equations of
Sousa et al. (27) and Offor and Alabi (44), are very
precise, but their use is not recommended owed to their
complexity. Because of its simplicity, the possible use
of the simple algebraic equation of Altshul (Eq. 3),
should be evaluated for the common ranges that are
used in practical cases, although for wide ranges of
Reynolds numbers and relative roughness, it shows a
high imprecision.

Conclusions

1. In this study the explicit equations proposed by
different researchers, to approximate the values
obtained by the Colebrook-White implicit
equation were identified and compiled, as well
as the precision reported in the literature and
the relative computational efficiency of more
than 45 explicit relations, and it was confirmed
that there is discrepancy in the data given
by different authors about the precision and
complexity of these equations. From these
results, it is recommended to use the equations
of Haaland and Swamee-Jain, because of their
acceptable precision and medium complexity.

2. In this research, the relative maximum error
of various explicit equations not included in
previous reports, was determined and the same
error of other equations that had been studied
previously, was adjusted. It was confirmed
once again that, the higher the precision in
comparison to the Colebrook-White equation,
higher will be the complexity of the expressions.
Likewise, the relative error varies for the
different values of relative roughness and
Reynolds numbers.

3. The work developed on the explicit equations
precision has been done for an extremely
wide range of Reynolds numbers and relative
roughness, which are not of common use in
the engineers practice and in the study of Fluid
Mechanics, so it is necessary to determine the
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precision of explicit equations for a smaller
range of Re and relative roughness, and on this
base, propose which of these equations could be
more adequate to be used in practical cases.
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Nomenclature

Re: Reynolds Number, dimensionless
D: Interior pipeline diameter, m

Greek symbols
λ: Friction factor or Friction Coefficient,
dimensionless
ε Pipeline absolute roughness, m
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