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Abstract
Cellular Automata (CA) models can represent dynamic systems which are discrete in space and time that reflects the effect of
intrinsic parameters where individual events are considered to occur from randomness. A CA model of two agents’ chemical
kinetics has been optimized earlier using NSGA-II based on Evolutionary Algorithm (EA). But the stochastic nature of the
CA model along with its high sensitivity on the model parameters requires extensive investigation using different optimization
algorithms. For this purpose, in the current study, four more recently developed and popular optimization algorithms based on
EA, called NSGA-IIr, NSGA-IIa, AbYSS and MOEA/D, have been considered for investigation based on various performance
measuring parameters. The study also compares the performances of the algorithms for different computational efforts with an
objective to minimize the required number of objective function evaluations. Simulation results and Friedman rank statistical test
show NSGA-IIa and NSGA-IIr as the best choices to optimize the CA stochastic model across any number of objective function
evaluations. Though the choice of optimization algorithm does not change with function evaluations, higher function evaluations
improve the pseudo-pareto front for the CA optimization problem. Such results will facilitate the use of stochastic CA models to
represent complex (bio)-chemical networks.
Keywords: cellular automata, evolutionary algorithm, NSGA-IIr, biochemical kinetics, stochastic modeling.

Resumen
Los modelos de autómatas celulares (CA) pueden representar sistemas dinámicos que son discretos en el espacio y el tiempo, que
reflejan el efecto de parámetros intrínsecos en los que se considera que los eventos individuales ocurren de forma aleatoria. Un
modelo de CA de la cinética química de dos agentes se ha optimizado anteriormente utilizando NSGA-II basado en el algoritmo
evolutivo (AE). Sin embargo, la naturaleza estocástica del modelo CA junto con su alta sensibilidad en los parámetros del
modelo, requiere una investigación exhaustiva utilizando diferentes algoritmos de optimización. Para el propósito mencionado
en este estudio, se han considerado cuatro populares algoritmos de optimización desarrollados recientemente, llamados NSGA-
IIr, NSGA-IIa, AbYSS y MOEA/D; dichos algoritmos están basados en AE así como en varios parámetros de medición del
rendimiento. El estudio también compara el rendimiento de los algoritmos para diferentes esfuerzos computacionales, con el
objetivo de minimizar el número requerido de evaluaciones de funciones objetivas. Los resultados de la simulación y la prueba
estadística de Friedman muestran a NSGA-IIa y a NSGA-IIr como las mejores opciones para optimizar el modelo de CA para
cualquier número de evaluaciones de funciones objetivas. Aunque la elección del algoritmo de optimización no cambia con
las evaluaciones de funciones, las evaluaciones de funciones más altas mejoran el frente de pseudo-pareto para el problema de
optimización de CA. Dichos resultados facilitan el uso de modelos estocásticos de CA para representar redes (bio)-químicas
complejas.
Palabras clave: autómata celular, algoritmo evolutivo, NSGA-IIr, cinética bioquímica, modelado estocástico.
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1 Introduction

In a complex system model, it is difficult to choose the
properties of the system that influence the model more
to ignore other properties that influence the model
less (Chu, 2011). If a lower scale detail is considered,
it can complicate the model interpretation process,
while in a higher scale detail simplification may
ignore important properties. Note that by following
a bottom-up approach of representation, engineering
the lower scale interactions can be sufficient to obtain
higher scale properties (Bruggeman et al., 2007). For
example, modeling the biological cells as a unit and
then considering many of them together can describe
properties for a certain tissue. Cellular automata (CA)
is a candidate class of systems that can be modeled
at a mesoscale level with neighborhood-based rules
influencing target agents, but when the interacting
agents are observed together it can produce properties
at a global scale for the system (Wolframa, 1994;
Wolframb, 1994).

In recent decades, there is an extensive use of
CA encompassing various fields of research ranging
from pattern recognition in geological science (Kier
et al., 2005; Seybold et al., 1997; Li and Gar-On,
2002; Gong et al., 2015) to crystallization in material
science (Raabe, 2004; Popova, et al., 2015) and from
cell population dynamics in biochemical engineering
(Galbusera et al., 2007; Anitha and Peter, 2015) to
image representation in bioinformatics (Xiao et al.,
2005; Tsai et al., 2015). In Kar et al. (2010), a
stochastic CA model represents two agent chemical
interactions such as enzyme-inhibitor based reactions
where the target agent interacts with another agent
from its neighborhood based on some pre-defined
probabilistic rules. It shows that the application of
probabilistic rules in random order mimic the model
best as a natural system. A sensitivity analysis
was performed studying the various probabilistic
parameters of the model identifying the model
parameters that may cause larger perturbations in Kar
et al. (2014). Results from the sensitivity analysis
indicated the transition probabilities, specifically the
probabilistic rules governing the transformation of
the agents to different forms to be influential to the
final model characteristics. The random movement
of agents, hence representing diffusion as in natural
systems, are also observed to play a crucial role in the
effectiveness of the interactions.

However, due to the inherently stochastic nature of

the model, it is unrealistic to be able to mathematically
predict the model output for a set of specific input
parameter values. Also, the representational automata
model is expected to attain multiple goals, predefined
by the representing chemical kinetic equations.
For the same, search techniques are required that
can optimize the input parameters while satisfying
multiple targeted goals. For this reason, optimization
using a metaheuristic approach like Genetic Algorithm
(GA) to fine tune the model parameters are
considered, which can attain a predefined state
representing specific two-agent chemical reactions
(Kar et al., 2014). A commonly used Multi-
objective Evolutionary Algorithm (MOEA) namely
NSGA-II (Deb et al., 2002) was used for this
study. NSGA-II is a non-dominated sorting based
elitist MOEA used for multi-objective optimization
problems with the flexibility of defining constraints.
Two conflicting objective functions, one being
minimizing the initial speed of reaction and the
other being minimizing the distance between the
final state and the desired state of the model,
were successfully optimized NSGA-II. As mentioned
in Kar et al. (2014), MOEAs are used to solve
optimization problems having multiple conflicting
objective functions based on certain ranges of variable
values and constraints. Studies have indicated that
different MOEAs provides different quality of results
even for the same optimization problem (Zitzler et
al., 2003; Radziukynienė and Z̆ilinskas, 2008). Such
comparative studies for different MOEAs rarely exist
for stochastic problems and is the focus of the present
study. Hence, a comparative analysis is performed
between five different popular MOEAs namely, non-
dominated sorting genetic algorithm II (NSGA-
II), two modified versions of NSGA-II: NSGA-II
random (NSGA-IIr) and NSGA-II adaptive (NSGA-
IIa), multi-objective evolutionary algorithm based on
decomposition (MOEA/D) and archive-based hybrid
scatter search (AbYSS) algorithms as an attempt to
find the most effective algorithm for the stochastic CA-
based optimization problem.

2 Model description

The Cellular Automata (CA) model used in this study
has been developed and validated in earlier works (Kar
et al., 2010; Kar et al., 2014; Dutta et al., 2015). The
model representation is made in a two-dimensional
grid with periodic boundary conditions and the
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consideration of a von-Neumann neighborhood. Rule
application is considered as continuous, because how
small the time difference be, each event occurs in
a unique instance of time. The parameters namely,
size of CA grid, the percentage composition of the
interacting agents, probabilistic interaction rules and
their threshold values, number of update iterations
are considered as the input parameters of the model.
The concentration of different interacting agents after
completion of target update iterations is considered to
define the resultant state of the model.

2.1 Multi Objective Evolutionary
Algorithm (MOEA)

Evolutionary Algorithm (EA) is a population-based
probabilistic optimization search technique. It is
evolutionary in nature and follows the mechanism
of Darwin’s principle of natural selection and
evolution (Fonseca and Fleming, 1993). EA uses
three biologically inspired genetic operators namely,
selection, crossover and mutation. EA starts with an
initial population generated at random. Each member
of the population is a chromosome which essentially
represents a possible solution to the search space. In
MOEA, each solution is assigned a fitness vector of
m objective functions (OFs). An OF corresponding
to an objective evaluates the fitness of a solution
which can be used to compare with the same
objective of another solution. The fitness vector of
the chromosome indicates how to fit a chromosome
is compared to others. The OFs map a chromosome
from decision variable space (genotype) to objective
space (phenotype). In the selection process, a solution
having better fitness value is selected more compared
to the solution having less fitness value. Crossover
and mutation operations are performed on the selected
chromosomes to create a new set of solutions, i.e., the
population for the next generation. A Multi-objective
Optimization Problem (MOP) can be formulated as
follows.

Minimize F(x) = ( f1(x), f2(x), . . . , fm(x)) ∈ <m

such that

gi(x) ≤ 0; i = 1,2, . . . , p
h j(x) = 0; j = p + 1, p + 2, . . . ,q

x = (x1, x2, . . . , xn)T ∈ <n ∀xl ∈ [xL
l , x

U
l ],

where x is a solution in decision space and fi<n →

<m consists of m real valued objective functions.
fk is the objective function for kth objective, qi is
the ith inequality constraint and h j is the jth equality
constraint.

In a multi-objective optimization problem, there
exists a tradeoff between the objectives due to their
conflicting nature. An improvement in one objective
causes degradation of at least one of the remaining
objectives. Hence, for a given MOP, MOEA generates
a set of optimal solutions, not a single solution. These
optimal solutions are not comparable with each other,
i.e., no one is better than the other. They are also called
non-dominated solutions, defined as follows.

Let p, q ∈ <m are two solutions of in objective
space, then p is said to dominate q (or p < q) if and
only if

a) for any objective fk, pk ≤ qk ∀k ∈ {1,2, . . . ,m}

b) ∃ at least one objective fr such that pr < qr,
where r ∈ {1,2, . . . ,m}.

p and q are said to be non-dominated to each other if
neither p < q nor q < p.

A solution x∗ ∈ <n is called pareto optimal
(global), if there is no x ∈ <n such that F(x) dominates
F(x∗). The set of all pareto optimal solutions denoted
by PS is called the pareto Set. The corresponding set
of solutions in the objective space is called pareto
Front (PF), i.e., PF = {F(x) ∈ Rm|x ∈ PS }. Different
PFs corresponding to a different type of optimization
(minimization/maximization) problems is shown in
Figure 1 by considering two objectives, f1 and f2.

Literature shows significant progress in the
development of Multi-objective Evolutionary
Algorithm (MOEA) for solving complex multi-
objective optimization problems. Objectives in MOPs
are conflicting with each other. Therefore, a single
solution that simultaneously optimizes each of the
objectives is not possible. MOEA finds multiple
equally optimal solutions that minimize two or
more objective functions (OFs) at the same time.
The performance of MOEA is evaluated as per the
convergence and the diversity of the obtained solution
set. Convergence shows how close the obtained
solution set is to the true optimal solution set of the
problem and the diversity shows how well the solution
set is evenly spread in reference to the true optimal
solution set.
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Fig. 1. Different pareto fronts (PFs) generated for different types of optimizations of a bi-objective problem:
(a) minimization of both f1 and f2 (b) minimization of f1 and maximization of f2 (c) maximization of f1 and
minimization of f2 and (d) maximization of both f1 and f2.

Several MOEAs exist in the literature, such as
Horn et al. (1994), Srinivas and Deb (1995), Zitzler
et al. (2001), Deb et al. (2002), Zang and Li (2007),
Nebro et al. (2008), Nebro et al. (2013), Coello et
al. (1999), Coello et al. (2006), Konak et al. (2006)
and Nag et al. (2015). Performances of MOEAs can
be domain specific of problems, hence extensive case
study for a variety of problem types and MOEAs
is required. In the present study, five MOEAs have
been considered: i) NSGA-II (Deb et al., 2002), ii)
NSGA-IIr (Nebro et al., 2013), iii) NSGA-IIa (Nebro
et al., 2013), iv) MOEA/D Zang and Li (2007) and
v) AbYSS Nebro et al. (2008). The following section
discusses briefly the basics of these algorithms.

The Non-dominated Sorting Genetic Algorithm
(NSGA-II) is one of the most popular MOEAs.
NSGA-II is proposed by Deb et al. (2002). It is an
elitist model which ensures retaining a small portion

of the fittest candidates, into the next population to
enhance the convergence. In a generation, the parent
of size N produces the same number of offspring
using the genetic operators: selection, crossover and
mutation. These offspring are then combined with the
parent population to form a total of 2N solutions.
They are sorted according to their ranking based
on dominance rule. For this purpose, a fast-non-
dominated sorting procedure is applied. A lower rank
(assuming the problem as a minimization problem)
corresponds to a better solution. It results in a series
of non-dominated fronts, all solutions having the same
rank belonging to the same front. The best N solutions
are used as the population for the next generation.
In the case of having more than one solution with
the same rank, they are sorted according to a density
estimation metric, called crowding distance (CD).
CD of a solution is computed with regards to its
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neighbours as shown in Figure 2.5 for a bi-objective
problem. A solution with less crowding distance (i.e.,
a low populated region in the search space) is preferred
to maintain the diversity among the solutions.

NSGA-IIr (random NSGA-II) and NSGA-IIa
(adaptive NSGA-II) (Nebro et al., 2013) are the two
variants of NSGA-II. The variation operators, like
crossover probability and mutation probability, used in
MOEAs are usually fixed and applied in the same way
during the execution of the algorithms. The authors
have allowed a more dynamic approach on NSGA-II
and developed NSGA-IIr and NSGA-IIa combining
different operators with variable application rate
along the search process to improve the static
classical behavior of NSGA-II. They have explored the
combined use of three different operators: simulated
binary crossover (SBX), differential evolution and
polynomial mutation to create new solutions in
NSGA-II. Two strategies are considered for selecting
the operators: random and adaptive, resulting in the
variants NSGA-IIr and NSGA-IIa respectively. The
resulting variants have been tested on a set of 19
complex problems, and results have shown best overall
results in the bi- and three-objective problems.

The Multi-objective Evolutionary Algorithm
based on Decomposition (MOEA/D) (Zhang and
Li, 2007) decomposes a MOP into scalar sub-
problems and optimizes them simultaneously by
exploiting the neighborhood relationships among
those sub-problems. The sub-problems correspond
to the objectives of the given MOP. Each sub-
problem is transformed into a scalar aggregation
function and optimized using the information only
from its neighboring subproblems. This neighborhood
information is defined based on the distances between
their aggregation coefficient vectors. As each objective
is handled separately in MOEA/D, diversity is
maintained in it from this natural behavior.

Archieve-Based hYbrid Scatter Search, (AbYSS)
is introduced in 2008 by Nebro et al. It is a multi-
objective version of a scatter search which uses
evolutionary operators such as polynomial mutation,
binary crossover, and solution combination to enhance
its search capability while exploring the search space
of the MOPs. It incorporates the concepts of pareto
dominance, density estimation and an external archive.
The external archive is used to store the non-
dominated solutions.

MOEA modifies the values of the input parameters
for generating optimal solutions based on the

Fig. 2. Different fronts, generated by a MOEA for a
bi-objective optimization problem.

predefined objective functions. The goal of a MOEA
is to converge the solution set to the pareto front by
improving the proximity between the pareto front and
optimized front (non-dominated solutions) generated
by the MOEA and simultaneously maintain the
diversity among the optimized solutions to cover the
spectrum of the front as much as possible. Figure 2
shows different fronts generated by a MOEA during
the execution of a bi-objective optimization problem.
In this figure, the shaded region represents the feasible
objective space and the pareto front (PF) is represented
by P f . The front close to the PF is the first front.
There are two other fronts, second and third. It has
been mentioned earlier that all the solutions in the
front are non-dominated to each other. Moreover, no
solution in the first front is dominated by any solution
of the other fronts. Similarly, no solution in the second
front is dominated by any solution of the third front,
but a solution in the second front is dominated by
at least one solution of the first front. The fronts,
thus generated, try to maintain the convergence and
diversity among the solutions. The third front in Figure
2 covers the spectrum of the PF much less compared to
that of the second front, i.e., the solutions of the third
front are less diverse in nature compared to the second
front. During the optimization of MOP, the fronts
approach towards PF with generation by improving the
quality of the solutions.

2.2 Performance metrics

Convergence (i.e., closeness to PF) and diversity
(i.e., coverage of a diverse set of solutions)) are at
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conflict in the execution of MOEAs. Developing a
single metric is difficult to exactly measure these
two qualities by a solution set. For assessing the
performance of different MOEAs on the CA model,
two different issues are normally considered: minimize
the distance of the pareto front generated by the
proposed algorithm to the exact pareto front, and
to maximize the spread of solutions found, so that
a distribution of vectors as smooth and uniform as
possible can be obtained. Typically, four metrics are
considered: Inverted Generational Distance (IGD),
Spread (S), Hypervolume (HV) and additive Epsilon
(ε). They are defined below.

2.2.1 Inverted Generational Distance (IGD)

It measures the distance from the pareto optimal
solutions to a set of non-dominated solutions (Van and
Lamont, 1998) and is expressed as:

IGD =

∑|P∗ |
i=1 d(ρi,ND)

|P∗|
∀ρi ∈ P∗, (1)

with P∗ as the pareto front, ND is a non-dominated
solution vector and d(ρi,ND) is the Euclidian distance
between ρi and its closest neighbor in NDρi represents
a solution in P∗. A smaller value of IGD is always
preferred.

2.2.2 Spread (S)

It determines the diversity in a non-dominated front
that measures the extent of spread achieved among
the solutions obtained from the simulation. This
metric was first proposed by Deb et al. (2002) for
bi-objective problems and then extended to multi-
objective problems by Zhou et al. (2007). It is

expressed as:

S =

∑m
i=1 d(ei,Q) +

∑
X∈Q |d(X,Q),−d|∑m

i=1 d(ei,Q) + |Q| × d
∀ei ∈ P (2)

such that, d(Y,Q) =
min

Y ∈ S ,Y , X ‖F(X) − F(Y)‖2

and d = 1/|P|
∑

X∈P d(X,Q), where, Q is the set of
solutions, F is the set of m objectives and P is the
pareto front of the problem. So less the value of S ,
more is the diversity among the solutions.

2.2.3 Hypervolume (HV)

It is the volume covered by the set of all non-
dominated solutions, ND. The volume is generally the
region enclosed by all the elements of ND with respect
to a reference point T which is a vector that constitutes
the worst fitness values of OFs. For each solution e,
a hypercube is constructed with respect to T and the
cumulative contribution of all the solutions in a front
form of the hypervolume (Azevedo and Araújo, 2011).
It is expressed as:

HV = volume(Ue∈NDhe), (3)

with he being the hypercube for each e ∈ ND. Larger
values of HV is always desirable. More is the value
of HV, the closer will be the final front, generated by a
MOEA to the PF and at the same time the solutions are
well diverse. The hypervolume of an optimized front is
a measure with respect to a reference solution of worst
quality in the entire objective space of MOP.

In Figure 3(a) two fronts Q and R are generated
for say two different MOEAs for the same problem,
whose PF is represented by P. Q is closer to P as well
as more diverse compared to R.

9 
 

   320 
(a)                                                                   (b) 321 

 322 
Figure 3: HV for different optimized fronts (Q, R) with respect to the pareto front (P). (a) The front Q 323 
is closer to P than R hence shall have higher HV value, (b) both Q and R are similar in distance from P 324 
but R is more diversely spread than Q, hence shall have higher HV value. 325 
          326 
2.2.4 Additive Epsilon	(ε) 327 
It is used to determine how much worse a non-dominated set of solutions compared to the 328 
pareto optimal solution set with respect to all the objectives to be minimized (Zitzler {\it et al}., 329 
2003). Precisely, the additive epsilon 𝐼&'(𝑁), 	𝑃∗) metric indicates a small positive quantity 𝜀 330 
such that for any solution in P∗ there is at least one solution in 𝑁) which is not worse by	𝜀 with 331 
respect to all the objectives. It is evaluated by the following expression.            332 
𝐼&'(𝑁), 𝑃∗) = 𝑖𝑛𝑓{∀𝑧6 ∈ 𝑃∗∃𝑧9 ∈ 𝑁): 𝑧9 ≽&' 𝑧6},                                                 (4) 333 
where	𝜀 ∈ ℜ, 𝑧9 = {𝑧99, 𝑧69, … , 𝑧@9}, 	𝑧6 = {𝑧96, 𝑧66,… , 𝑧@6}, 𝑛 is the number of objectives and 334 
𝑧9 ≽&' 𝑧6, if and only if, 𝑧A9 ≤ 𝑧A6 + 𝜀, ∀𝑖 ∈ [1, 𝑛]. Smaller value of additive epsilon is 335 
desirable. Further, in the manuscript, we represent additive Epsilon as Epsilon.  336 
 337 

3. Model setup  338 

The grid size of the CA model is fixed at 50×50. Its number of update iterations has been fixed 339 
to 1000 based on the observation of attainment of steady state when running with the standard 340 
values for the probability rules (Dutta {\it et al}., 2015). The reaction agents used in the model 341 
are Substrate (S), Product (P), Enzyme (E), Inhibitor (I) and Water (W). The chemical reaction 342 
structure represented in the CA is shown in Figure 4. The initial percentage occupancy for the 343 
reacting agents are 40% of S, 5% of E, 5% of I, 16% of water, zero P and rest 34% as void 344 
space. 345 

 346 
Figure 4: Empirical reaction structure for the CA model. 347 

For optimization by MOEAs, ten stochastic parameter rules for CA model: four rules for 348 
probabilities of Join between E and S, between E and P, between E and I and between S and 349 
W; four rules for probabilities of Break between E and S, between E and P, between E and I 350 

Fig. 3. HV for different optimized fronts (Q, R) with respect to the pareto front (P). (a) The front Q is closer to P
than R hence shall have higher HV value, (b) both Q and R are similar in distance from P but R is more diversely
spread than Q, hence shall have higher HV value.
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As a result, the value of HV for Q is more than that
for R. If solutions of Q are not well diverse compared
to R as depicted in Figure 3(b), a better HV for R than
that of Q with respect to the reference solution T can
be obtained.

2.2.4 Additive Epsilon (ε)

It is used to determine how much worse a non-
dominated set of solutions compared to the pareto
optimal solution set with respect to all the objectives
to be minimized (Zitzler et al., 2003). Precisely, the
additive epsilon Iε+(ND,P∗) metric indicates a small
positive quantity ε such that for any solution in P∗

there is at least one solution in ND which is not worse
by ε with respect to all the objectives. It is evaluated
by the following expression.

Iε+(ND,P∗) = in f {∀z2 ∈ P∗∃z1 ∈ ND : z1 ≥ε+ z2}, (4)

where ε ∈ <, z1 = {z1
1,z

1
2, . . . ,z

1
n}, z2 = {z2

1,z
2
2, . . . ,z

2
n}, n

is the number of objectives and z1 ≥ε+ z2, if and only
if, z1

i ≤ z2
i + ε,∀i ∈ [1,n]. Smaller value of additive

epsilon is desirable. Further, in the manuscript, we
represent additive Epsilon as Epsilon.

3 Model setup

The grid size of the CA model is fixed at 50×50.
Its number of update iterations has been fixed to
1000 based on the observation of attainment of steady
state when running with the standard values for the
probability rules (Dutta et al., 2015). The reaction
agents used in the model are Substrate (S), Product
(P), Enzyme (E), Inhibitor (I) and Water (W). The
chemical reaction structure represented in the CA is
shown in Figure 4. The initial percentage occupancy
for the reacting agents are 40% of S, 5% of E, 5% of
I, 16% of water, zero P and rest 34% as void space.

For optimization by MOEAs, ten stochastic
parameter rules for CA model: four rules for
probabilities of Join between E and S, between E and
P, between E and I and between S and W; four rules
for probabilities of Break between E and S, between
E and P, between E and I and between S and W; two
rules for transition probabilities from ES complex to
EP and from EP complex to ES have been considered.
Two objective functions (OFs) have been used for the
optimization: (a) to minimize the rate of reaction for
the initial 100 update iterations and (b) to minimize the
difference between the target concentration of agent P

Fig. 4. Empirical reaction structure for the CA model.

and mean concentration of agent P, averaged for
the last 100 update iterations. The principle behind
selecting first OF is to induce the tendency of slowing
down the interactions, hence increasing the details of
the reactions. The final concentration of the agent P as
a mean value over the last 100 iterations to minimize
the stochastic fluctuation is obtained. An 80% of S
conversion to P has been considered as the target P
concentration.

For simulation purpose of five MOEAs, Java
based jMetal 4.5 framework version (Durillo and
Nebro, 2011) has been used. Seven different values
of the maximum number of function evaluations
have been considered: 27000, 51000, 75000, 80000,
85000, 90000 and 95000 for each of five different
MOEAs: NSGA-II, NSGA-IIr, NSGA-IIa, AbYSS
and MOEA/D, resulting 35 different simulation
configurations each of which has been executed ten
times independently. As the MOEAa are probabilistic
in nature, each simulation configuration has been
executing independently 50 times. Due to high
computational requirement, a high-performance
computing cloud available on credit basis from
Amazon Web Service (AWS) has been used. The
multi-thread ability of jMetal 4.5 allows parallel
execution of 35 individual simulations hence reducing
the execution time.

For a given multi-objective application problem,
if the pareto front (PF) is known, evaluating the
performance (in terms of the convergence and
diversity) of the MOEA used for its optimization
becomes easy. But for a real-world problem, the pareto
front is generally unknown. In that case, a pseudo
pareto optimal front, i.e., reference front is created
by collecting and aggregating the best possible non-
dominated solutions obtained from different MOEAs.
It is important to note that for the CA model, studied
here, no PF is available in the literature. The reference
front for the CA model is created by collecting all the
best quality solutions from five MOEAs. To compare
the performance of these algorithms used to optimize
the CA problem, performance metrics (Spread,
Inverted Generational Distance, Hypervolume and
Epsilon) have been computed based on the reference
front.
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The 4-performance metrics are calculated
individually for each of the simulation design
- including 7 generation size options and 5
MOEA optimization algorithms. These computed
performance metrics help to identify the best fitting
optimization algorithm for the CA problem. To
identify if there is any significant difference across the
MOEAs for each generation size setting, we perform
Friedman test testing against the null hypothesis being
there is no difference between the performance metrics
sets (each set has 50 independently computed metrics
values from the 50 independent simulations). If the
null hypothesis is rejected based on a 5% confidence
interval, we perform pairwise comparisons finding
the exact p-values based on the method published
in Eisinga et al., 2017. These statistical tests are
performed using PMCMRplus R package (Thorsten,
2018). Finally, we count the number of significant
’wins’ (better performing algorithm) to identify the
best fitting MOEA for the CA problem.

4 Results

It has been mentioned that the CA model implemented
in this study has been optimized using five different
MOEAs: NSGA-II, NSGA-IIr, NSGA-IIa, MOEA/D
and AbYSS. Their results are compared and analyzed
in terms of different performance metrics, discussed
above. Comparison studies between MOEAs on the
CA model with various characteristics will help to
understand the strengths and weaknesses of these
different methodologies and to choose and/or modify
an algorithm for solving the CA model.

It is important to note that for the CA model
studied, no PF is available in the literature. So, an
approximate PF is created by generating a reference
front by collecting all the best quality solutions from

every independent execution of these five MOEAs.
A different set of non-dominated solutions, generated
while executing five MOEAs for the CA model at
different function evaluations, create different non-
dominated fronts which are shown along with the
reference fronts in Fig. 5(a) - 5(g). It indicates that
more the number of function evaluations, closer a non-
dominated solution is to the reference front. Table 1
summarizes the different parameters and their values
as used for simulating the different MOEAs. Except
for the population size, the other parameter values
were selected based on a few ad-hoc runs of the
simulation setting.

For each of the seven function evaluation
(generation size) values (27000, 51000, 75000, 80000,
85000, 90000 and 95000), all the MOEAs are executed
50 times, and in each execution of a MOEA, the four
performance metrics, HV, S, IGD and ε, are evaluated
for the obtained set of non-dominated solutions with
respect to the reference front. Due to the probabilistic
nature of the MOEAs, statistical dispersion among
the values of each of the performance metrics is
studied for each MOEA, which are enlisted in
supplementary information Table SI-1 and Table SI-
2. Based on Friedman non-parametric test, it is
confirmed that the presence of significant difference
across the 5 MOEAs’ performance metric values for
each combination of generation size and performance
metric set.

The results confirm that as the number of function
evaluations increases from 27000 to 95000, the
standard deviation and IQR of all the performance
metrics of each of the five MOEAs tends to reduce.
The increase in the number of function evaluations
increases in the number of generations and with
improvement in each generation the resulting non-
dominated front becomes closer to reference front as
depicted in Figure 5, which eventually improves the
value of the performance metrics.

Table 1: The parameter settings of different MOEAs as used while optimizing the CA model.

population crossover mutation crossover mutation Others
size probability (pc) probability (pm) rate (CR) rate (F)

NSGA-II [14]

300
0.9 0.03

NA NA NA
NSGA-IIr [25] 0.95 0.4 NA
NSGA-IIa [25] NA
AbYSS [24] NA NA ref. set

size = 150,
improvement
round = 4

MOEA/D [23] NA NA 0.95 0.4 NA
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Fig. 5. Non-dominated fronts obtained by NSGA-II, NSGA-IIr, NSGA-IIa, MOEA/D and AbYSS after (a)
27,000 function evaluations, (b) 51,000 function evaluations, (c) 75,000 function evaluations, (d) 80,000 function
evaluations, (e) 85,000 function evaluations, (f) 90,000 function evaluations and (g) 95,000 function evaluations.
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Statistical interpretation is that for all the metrics
the variation around the mean becomes smooth as
well as the dispersion between the lower and upper
quartiles is reduced and progressively approached
towards the median as the number of function
evaluations increases for all the five MOEAs.

In Figure 5, it can be observed that the optimized
fronts generated by different MOEAs gradually
approach towards the reference front by generating a
more optimized set of solutions of the CA problem
with an increase in the maximum number of function
evaluations. The optimized fronts of the CA problem
generated by NSGA-IIr and NSGA-IIa are closer to
the reference front for all values of the maximum
number of function evaluations have been observed.
It implies that these two algorithms, NSGA-IIr and
NSGAIa, can produce superior results compared to
other MOEAs. The same is also inferred from the
values of performance metrics, given in Tables 2 and
Table 3. It is observed in Fig. 5 that the optimized
front generated by MOEA/D has the majority of
the solutions crowded at lower part of the front,
whereas the fronts generated by NSGA-II, NSGA-
IIr, NSGA-IIa and AbYSS contain solutions from less
crowded regions and thus they cover more spectrum
of the reference front (i.e., more diverse solutions)
than MOEA/D. For selecting the most suitable one
among these five MOEAs and appropriate value
for the maximum number of function evaluations
for its execution, it is noted that HV of NSGA-IIr
improves from 27000 to 95000. But for S there is a
marginal improvement on performance for the cases
above 75000 function evaluations. For IGD and ε
the improvement above 80000 function evaluations
are also marginal. Hence it can be concluded that
increasing the number of function evaluations above
75000 function evaluations is not cost effective for
the CA model. So, the two agent CA model of
chemical kinetics can, therefore, be better optimized
using NSGA-IIr when executed for 75000 evaluations.

5 Discussions

The stochastic generalized CA model based on
two agent interactions can be optimized for its
parameters to represent specific two chemical species
in intermediate steps based chemical kinetic reactions.
The objectives of the optimization are to make
the representative model detailed showing a greater
number of intermediate interaction steps and to attain

the target reaction state of the model. MOEA is
used to optimize the two objectives. A comparative
study is performed to find the best fitted MOEA for
the present problem. In this study, the CA model
has been optimized with five MOEAs: NSGA-II,
NSGA-IIr, NSGA-IIa, MOEA/D and AbYSS for
27000, 51000, 75000, 80000, 85000, 90000 and 95000
maximum number of function evaluations. During
each execution, four performance metrics, HV, S, IGD
and ε are evaluated. Due to the stochastic nature of the
problem, the statistical dispersion of the performance
metrics has been considered. Since the mean and
median values share small differences between the
different performance metrics, the Friedman rank test
statistic is calculated to identify the presence of
significant (5% level) difference among the studied
algorithms for each generation size and performance
metric sets. The significant difference is found to
exist for all the groups (p ≤ 0.05). Further, the pair-
wise posthoc test is performed to find the exact p-
values (Eisinga et al., 2017) for each of the pair. For
each performance metric and generation combination,
algorithms are counted for the number of times they
are significantly better (p < 0.05). This is summarized
in Table 2.

A total of 201 out of 280 comparison cases were
found significant across all the performance metric and
generation size combinations. Across all generation
size and performance metrics, the MOEA NSGA-IIa
(34%) and NSGA-IIr (35%) are found to perform close
by and better than other algorithms, with MOEA/D
14% and NSGA-II 17% wins. For none of the cases,
AbYSS is found to perform significantly better.

For the performance metric Hypervolume and
Inverted Generational Distance, NSGA-IIa (36%,
38%) and NSGA-IIr (38%, 38%) are seen performing
better, but also, NSGA-II is identified performing
similarly better for the performance metric Spread.
When Epsilon metric is studied, MOEA/D is seen
to perform slightly better (30%) than NSGA-IIa and
NSGA-IIr both with 38% wins. Wins for all the
algorithms remain somewhat steady across the 7
generation sizes.

Hence, the NSGA-IIa and NSGA-IIr MOEAs are
seen performing significantly better than AbYSS,
MOEA/D and NSGA-II algorithms for optimizing the
parameters of the CA problem. Even though the wins
as seen in table 2 remains somewhat similar across
the different tested generation size, a higher number of
generations help improve the pseudo-pareto front for
the unknown CA problem.
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Table 2: A summary of count for the tested MOEA algorithms performing significantly (p < 0.05) better based on
posthoc Friedman rank test (Eisinga et al., 2017)) for each performance metric and generation setting. A

percentage for each performance metric summarizes an algorithm win. Also, the total % at the bottom row of the
table summarizes algorithms performances across all the generation settings.
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A total of 201 out of 280 comparison cases were found significant across all the performance 511 
metric and generation size combinations. Across all generation size and performance metrics, 512 
the MOEA NSGA-IIa (34\%) and NSGA-IIr (35\%) are found to perform close by and better 513 
than other algorithms, with MOEA/D 14\% and NSGA-II 17\% wins. For none of the cases, 514 
AbYSS is found to perform significantly better. 515 

For the performance metric Hypervolume and Inverted Generational Distance, NSGA-IIa 516 
(36\%, 38\%) and NSGA-IIr (38\%, 38\%) are seen performing better, but also, NSGA-II is 517 
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Metrics Generations AbYSS MOEAD NSGAII NSGAIIa NSGAIIr n(sig. diff)
27k 0 1 1 2 3 7
51k 0 1 1 3 3 8
75k 0 1 1 3 3 8
80k 0 1 1 3 3 8
85k 0 1 1 3 3 8
90k 0 1 1 3 3 8
95k 0 1 1 3 3 8
sub-total % 0 13 13 36 38 55
27k 0 0 2 2 2 6
51k 0 0 2 2 2 6
75k 0 0 2 2 2 6
80k 0 0 2 2 2 6
85k 0 0 2 2 3 7
90k 0 0 2 2 2 6
95k 0 0 2 2 2 6
sub-total % 0 0 33 33 35 43
27k 0 1 1 3 3 8
51k 0 1 1 3 3 8
75k 0 1 1 3 3 8
80k 0 1 1 3 3 8
85k 0 1 1 3 3 8
90k 0 1 1 3 3 8
95k 0 1 1 3 3 8
sub-total % 0 13 13 38 38 56
27k 0 2 1 2 2 7
51k 0 2 1 2 2 7
75k 0 2 1 2 2 7
80k 0 2 1 2 2 7
85k 0 2 1 2 2 7
90k 0 2 1 2 2 7
95k 0 2 1 1 1 5
sub-total % 0 30 15 28 28 47
Total % 0 14 17 34 35 201
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This gives a good understanding of pairing of the
different MOEAs for the stochastic CA problem
and can support further development of stochastic
CA model to represent complex biological chemical
networks, giving an insight of their fundamental
understanding.
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