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Abstract
Nowadays, sensitivity analysis (SA) is a methodology commonly used to identify important parameters that determine the
behavior of the model. The SA of a model allows to determine how uncertainties in the model responses (outputs) can be
assigned to the values of the model parameters (input variables). The related literature indicates that there are several methods to
perform SA. This work addresses the benchmarking of four widely used methods for Global SA (GSA): Sobol-Jansen, Sobol-
Baudin, Sobol-Owen and Sobol 2007, based on the concept of performance profile introduced by Dolan and Moré (2002) and the
extension by Mahajan et al. (2012). To evaluate these methods, a set of 21 models and their variations were considered, which
correspond to various applications in chemical engineering (such as heap leaching, water distribution network, milling, flotation
circuit, among others). These comparisons show that, although the four GSA methods based on the decomposition of the variance
proved to be quite stable, the Sobol-Jansen method presented the best performance, since it is the first to perform GSA in 83%
of the models considered and maintains a high performance up to 100%.
Keywords: Global sensitivity analysis, uncertainty, Sobol Method, parametric sensitivity, performance profile.

Resumen
Hoy en día, el análisis de sensibilidad (AS) es una metodología comúnmente utilizada para identificar parámetros importantes que
determinan el comportamiento del modelo. El AS de un modelo permite determinar cómo las incertidumbres en las respuestas
del modelo (salidas) se pueden asignar a los valores de los parámetros del modelo (variables de entrada). La literatura relacionada
indica que hay varios métodos para realizar el AS. Este trabajo aborda la evaluación comparativa de cuatro métodos ampliamente
utilizados para el AS global (ASG): Sobol-Jansen, Sobol-Baudin, Sobol-Owen y Sobol 2007, basados en el concepto de perfil
de desempeño introducido por Dolan y Moré (2002) y la extensión hecha por Mahajan et al. (2012). Para evaluar estos métodos,
se consideró un conjunto de 21 modelos y sus variaciones, los cuales corresponden a diversas aplicaciones en ingeniería química
(tales como lixiviación, red de distribución de agua, molienda, circuito de flotación, entre otros). Estas comparaciones muestran
que, aunque los cuatro métodos ASG basados en la descomposición de la varianza demostraron ser bastante estables, el método
Sobol-Jansen presentó el mejor rendimiento, ya que es el primero en realizar ASG en el 83% de los modelos considerados y
mantiene un alto rendimiento hasta el 100%.
Palabras clave: Análisis de sensibilidad global, incertidumbre, método de Sobol, sensibilidad paramétrica, índices de desempeño.

1 Introduction

Mathematical models have become indispensable in
many fields of science and engineering, since they
are used in a wide range of scientific research, such
as environmental engineering, chemistry, biology,

water resources, molecular design, life sciences,
and economic analysis, among many others. The
parameters associated with these models have a great
influence on the model performance. The specification
of the model parameters is not an easy task, some
parameters can be measured, but there are many others
that cannot be measured or inferred directly.
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To determine which parameters have the greatest
impact on the model performance and to identify
which are the most appropriate values for them,
it is necessary to find a way to screen out the
most sensitive parameters and evaluate qualitatively
the influence of each parameter on the model
performance. The sensitivity analysis (SA) is the
study of the uncertainties in the responses (outputs)
of a mathematical model, which can be distributed
to different sources of uncertainties in the values
of the model parameters (input variables). SA can
identify the parameters of which a reduction in the
uncertainty specification will have the most significant
impact on improving the model performance. Thus,
if some parameters have little or no influence, they
can be identified and fixed reasonably at given values
over their ranges, then, the computational cost may
decrease without reducing the model performance.
Therefore, interest in the application of SA has
increased in recent years because it has proven to be
an effective tool in the development and application of
models that present uncertainty (Lucay et al., 2015b).
These uncertainties can be related to the lack of
knowledge (epistemic uncertainties) or randomness
(stochastic uncertainties) (Jamett et al., 2015). The
effect of these uncertainties must be examined to avoid
poor design, safety problems, unreliable systems,
among other problems. SA methods can help to
analyze the effect of uncertainties. However, they can
be computationally expensive for complex problems
of chemical processes (Duong et al, 2016). Therefore,
a way of comparing and discriminating them is needed
in order to select the most appropriate method.

The related literature shows the existence of
several methods to perform SA, in general, they can
be classified into two main groups: local SA and
global SA (GSA). The local SA explores changes in
the model response by varying one parameter while
keeping other parameters constant. In contrast, the
GSA examines changes in the model response by
varying all parameters at the same time (Gan et al.,
2014). When SA is applied to process engineering, the
local SA methods are the most common (i.e. Austin
et al., 1975; Gonzalez-Cruz et al., 2012; Hernandez-
Suarez et al., 2008; Soto-Cruz and Paez-Lerma, 2005).
In general, the choice of local methods is due to time
and computational cost reasons.

In a local SA, the impact of small input
perturbations on the model output is studied,
considering the assumptions of linearity and
normality, as well as local variations. Where small
perturbations occur around nominal values (for

example, the mean of a random variable) (Ioosss
and Lemaître, 2015). Therefore, GSA methods based
on a statistical framework appear to overcome the
limitations of the local SA methods. GSA considers
the whole variation range of the inputs, and a wide set
of GSA methods can be found within Saltelli et al.
(2008). However, the GSA depends not only on the
chosen method, but also in the clear specification of
the objectives of a study before making a SA, which
can be: identify and prioritize the most influential
inputs, identify non-influential inputs to correct the
nominal values, assign the output behavior depending
on the inputs by focusing on a specific domain of the
inputs, calibrate some model inputs using available
information, and so on (Pappenberger et al., 2010;
Ioosss and Lemaître, 2015).

The comparison of SA methods is not new, in
general, different methods are compared considering
the time they take to perform the SA or the
similarity of the results obtained. In both cases,
this comparison is usually based on specific cases.
Some reported works are: regressions-based methods
(e.g. Partial Correlation Coefficients, standardized
regression coefficients) (Nguyen and Reiter, 2015),
regressions-based methods using rank transformation
techniques (e.g. Partial Rank Correlation Coefficient,
standardized rank regression coefficients) (Nguyen
and Reiter, 2015; Van Duc Long and Lee; 2012;
Hopfe and Hensen, 2011), variance decomposition-
based methods (Sobol and FAST) and screening-
based method (Morris method) (Herman et al., 2013;
Heiselberg et al., 2009). Gan et al. (2014) compared
various SA methods using a simple conceptual
hydrological model. While Sepulveda et al. (2013)
used the Sobol-Jansen and Morris methods to improve
mineral concentration plants. The model used by these
authors was the global recovery of the plant, and the
results indicated similarity in the results obtained with
both methods. Brevault et al. (2013) compared Sobol,
Morris, ANOVA methods and standardized regression
coefficients to determine the most significant input
variables in the optimal design of aerospace vehicles.
Other works that compare GSA methods are the works
of Cosenza et al. (2013) for applications in sewage
water, Ikonen (2016) for fuels and, Galvez and Capuz-
Rizo (2016) for project planning.

A similar situation was observed in the
development of mathematical programming
algorithms. The conventional way of comparing these
mathematical programming algorithms has been by
interpreting data obtained through benchmarking,
i.e. by interpreting tables that show the performance
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of each algorithm in a set of problems for a set of
metrics such as the time required to solve the problem,
number of iterations, estimation error, among other
metrics. The literature indicates that there are many
ways to interpret the data obtained, in some cases the
average or the total accumulated for each metric in
all problems is a way to evaluate the performance of
an algorithm (Bongartz et al., 1997; Benson, 2000).
While other authors developed a ranking of methods
through a particular metric, such as Vanderbei (1999)
and Nash and Nocedal (1991). Billups et al. (1995)
proposed comparing methods through the relationship
(runtime of a specific method) / (best runtime), then
the methods are classified according to the percentage
of problems for which their resolution time is “very
competitive” or “competitive”. Beiranvand et al.
(2017) presented the best practices for comparing
optimization algorithms, and provided suggestions
for benchmarking those algorithms, such as tables
and graphs, and using the concept of performance
profiles proposed by Dolan and Moré (2002). These
authors used the relationship (computing time of
an algorithm) / (best time of all algorithms) as a
performance metric. The methodology of Dolan and
Moré (2002) is regularly used to compare solvers
in mathematical programming with more than 800
citations of their work. However, one of the limitations
of Dolan and Moré’s proposal is that the performance
profile only allows to determine the probability that
a method has a performance at least τ times slower
than the best performance solver, for a given factor
τ > 1. Therefore, Mahajan et al. (2012) extended
the definition of performance profile to determine the
probability that a method is faster than another method
for a given factor τ < 1.

In this paper, four GSA methods based on the
variance decomposition are evaluated and compared
based on the performance profiles and their extension
indices proposed by Dolan and Moré (2002) and
Mahajan et al. (2012). A set of 21 mathematical
models and their variations are considered as case
studies, corresponding to several applications in
chemical engineering (such as heap leaching, water
distribution network, milling, flotation circuit, among
others). The four GSA methods are selected because,
according to Saltelli et al. (2010), the methods
based on the variance decomposition show great
versatility and effectiveness. Among the aspects of
versatility, these methods allow the uncertainties of the
input variables to have different types of probability
distribution functions, which is not possible with
Morris method for instance.

2 Materials and methods

2.1 Sensitivity analysis

The sensitivity analysis consists of identifying the
contribution of the uncertainties of the input variables
in the uncertainties of the outputs of a mathematical
model. There are two types of sensitivity analysis:
local SA and GSA. The first quantifies the rate of
change of the model output due to small variations
in the uncertainties of the input variables. This
quantification is based on the derivative of the model
output, which is calculated at a specific point in the
space of the input variables (Cariboni et al., 2007).
One of the disadvantages of local sensitivity analysis
is that the choice of the assessment point could sharply
influence the results, especially when the sampling
space of the input variables is affected by considerable
uncertainty. While GSA considers the full range of
uncertainties of the input variables, such uncertainties
are characterized by probability distribution functions
(PDF). GSA considers the following six steps: 1)
determine the objective function, 2) select the input
variables, 3) assign a range and type of distribution of
the probabilities of the input variables, 4) applying a
sampling design to generate samples, size N from the
distributions of the input variables 5) assess the model
for the generated samples, thus obtaining N values
of the objective function, 6) implement the results of
step 5 to perform uncertainty analysis and determine
the importance of the input variables on the model
output (Lilburne and Tarantola, 2009). As mentioned
above, there are several methods to perform the
sensitivity analysis, but among them, the methods that
are based on the decomposition of the variance stand
out, due to their versatility and efficiency (Saltelli et
al., 2010). Therefore, in this study, we will implement
such methods, specifically those based on the Sobol
method. In the Sobol method, the variance of the
model output is broken down in terms of increasing
dimensions, called partial variances, which represent
the contribution of the input variables to the model
uncertainty, that is, the variance of the model output
can be expressed as follows (Confalonieri et al., 2010):

V(Y) =

n∑
i=1

Vi +

n∑
i≤ j≤n

Vi j + . . .+ Vi,...,n (1)

www.rmiq.org 425



Lucay et al./ Revista Mexicana de Ingeniería Química Vol. 19, No. 1 (2020) 423-444

or equivalently

1 =

n∑
i=1

Vi

V(Y)
+

n∑
i≤ j≤n

Vi, j

V(Y)
+ . . .+

Vi,...,n

V(Y)

=

n∑
i=1

S i +

n∑
i≤ j≤n

S i, j + . . .+ S 1,2,...,n

(2)

where V(Y) is the model variance, Y = f (x1, x2, . . . , xn)
is a scalar, xi is a model input, Vi represent the first
order effects of each input variable xi(Vi = V[E(Y |xi)]
and Vi j(Vi j[E[Y |xi, x j)] − Vi − V j) to Vi,...,n are the
interactions of the n factors. Since the calculation of
the partial variances has a high computational cost,
Homma and Saltelli (1996) introduced the concept of
total sensitivity index. This index allows determining
the average effect of an input variable, taking into
account all its interactions with the other input
variables. The methods considered in this work allow
to determine such indexes, i.e., they allow to calculate
the first order index (S i):

S i =
V[E(Y |xi)]

V(Y)
(3)

and the total sensitivity index (S T
i )

S T
i =

E(V(Y |x∼i))
V(Y)

= 1−
V[E(Y |x∼i)]

V(Y)
(4)

for the input variable xi, where x∼i indicates
the consideration of all the input variables and
their combinations, except those involving the input
variable xi. The first order index is important when
the goal is to determine which of the input variables
is the most influential in the model output. While the
total sensitivity index is important when the goal is to
identify the input variables that do not affect the model
output.

In the case that the input variable xi does not
interact with the other variables, we will have S i = S T

i ,
otherwise S i < S T

i . If S T
i = 0, then we will have that

the input variable xi is not important in the model
output and can be fixed at a given value. An important
implication of the sensitivity indexes is that if the sum
of the first order indexes is equal to 1

(∑n
i=1 S i = 1

)
and the sum of the total indexes is also equal to
1
(∑n

i=1 S T
i = 1

)
, then the model is perfectly additive,

otherwise the model is not additive (Saltelli et al.,
2008).

According to Lilburne and Tarantola (2009), a
way to estimate the terms in the decomposition (Eq.

(2)) is through the Sobol method (Sobol, 1993).
This method involves: (1) choose an integer N;
(2) generate a matrix, size (N,2k) of quasi random
numbers from sampling the input variables from their
respective distribution functions (here k is the number
of variables of the model input); (3) divide the matrix
into two sub-matrices A and B size (N,k); (4) form the
matrix Di from the columns of the matrix A, except
the ith column, which is taken from the matrix B;
and similarly, form the matrix Ci from the columns of
matrix B, except the ith column, which is taken from
matrix A; (5) assess the model output in the matrices
A, B, Ci and Di, obtaining YA = f (A), YB = f (B),
YCi = f (Ci), YDi = f (Di), with such vectors and using
the following equation:

S i =
V[E(Y |xi)]

V(Y)
=

YATCi − f 2
0

YAYA − f 2
0

=

1
N

∑N
j=1 Y ( j)

A Y ( j)
Ci
− f 2

0

1
N

∑N
j=1 Y ( j)

A Y ( j)
A − f 2

0

with f 2
0 =

 1
N

N∑
j=1

Y ( j)
A


2

(5)

where the Sobol method can estimate the first order
index for the input variable xi; (6) finally, estimate the
total sensitivity index for the input variable xi with the
Sobol method, using the following expression:

S T
i =

E(V(Y |x∼i))
V(Y)

= 1−
V[E(Y |x∼i)]

V(Y)
= 1−

YAYDi − f 2
0

YAYA − f 2
0

= 1−
1
N

∑N
j=1 Y ( j)

A Y ( j)
Di
− f 2

0

1
N

∑N
j=1 Y ( j)

A Y ( j)
A − f 2

0
(6)

Over the years, many authors have proposed
different modifications to equations (5) and (6) made
by Sobol (1993). Table 1 shows some of these changes.
A somewhat different proposal was given by Baudin
et al. (2016), who considered the linear correlation
coefficient to propose the following expressions to
determine the first order and total order sensitivity
indexes, respectively:

S i = ρ(YB,YDi ) =

∑N
j=1

(
Y ( j)

B −YB
) (

Y ( j)
Bi
−YDi

)
NS BS Di

(7)
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Table 1. Formulas for calculating S i and S T
i .

S T
i = 1−ρ(YA,YDi ) = 1−

∑N
j=1

(
Y ( j)

A −YA
) (

Y ( j)
Di
−YDi

)
NS AS Di

(8)
While Owen (2013) proposed using three sample

matrices: A, B and C size (N,k), which form matrix Di
from the columns of matrix C, except the ith column,
which is taken from matrix A. Similarly, the matrix Ei
is formed from the columns of matrix A, except the ith
column, which is taken from the matrix B. Then, his
proposal is:

V(E(Y |x∼i)) =
1
N

N∑
j=i

(
Y ( j)

A −Y ( j)
Di

) (
Y ( j)

Ei
−Y ( j)

B

)
(9)

2.1.1 Performance profiles

Consider that we are interested in evaluating and
comparing a set of GSA methods applied to an M set
of models. The set contains nsa GSA methods and the
set M contains nm models to evaluate. Benchmarking
is obtained by applying the set of SA methods to the
M set of models and recording relevant information,
such as the standard deviation (SD) error of the total
sensitivity index obtained when applying each method
and the time it took each method to perform the

sensitivity analysis. Where tm,sa is defined as the time
required for the sa method to perform the GSA in the
model m.

The slow performance radius (rs
m,sa) of the sa

method in the model m is defined as the calculation
time of the sa method divided by the shortest
calculation time of all GSA methods in performing the
GSA in model m, i.e.

rs
m,sa =

tm,sa

min{tm,i : i ∈ S A}
(10)

To evaluate the performance of a method in all
models of the M set, the slow performance profile
(ρs

sa(τ)) is used, which is defined by:

ρs
sa(τ) =

1
nm

size{m ∈ M : rs
m,sa ≤ τ} (11)

This last expression is the cumulative distribution
function of the slow performance radius. The
definition of the slow performance profile can be
interpreted as the probability that the GSA sa method
can perform the sensitivity analysis at least τ times
slower than the best performance method in range
(1, τ), in case that τ > 1. These definitions are based
on the work of Dolan and Moré (2002).

Now consider that we want to know the probability
that a GSA sa method is faster than another GSA
method for a factor τ < 1. For this, similar to the
work of Mahajan et al. (2012) for mathematical
programming solvers, we propose a fast performance
radius (r f

m,sa) define as

r f
m,sa =

tm,sa

min{tm,i : i ∈ S A, i , sa
(12)

this is, the fast performance radius is defined as
the calculation time of the sa method divided by
the shortest calculation time of all GSA methods
excluding the sa method to perform GSA in the model
m. Moreover, the fast performance profile (ρ f

sa(τ)) is
defined as:

ρ
f
sa(τ) =

1
nm

size{m ∈ M : r f
m,sa ≤ τ} (13)

Therefore, we have that

size{m ∈ M : rs
m,sa ≤ τ} = size{m ∈ M : r f

m,sa ≤ τ},

τ ≥ 1 (14)

and, consequently, ρs
sa(τ) = ρ

f
sa(τ) when τ ≥ 1

motivates the expression “extension of the slow
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performance profile”. In particular, ρs
sa(1) represents

the probability that the GSA sa method is faster than
any other method for τ = 1 and ρ

f
sa(τ) indicates the

probability that the GSA sa method is at least 1/τ
times faster than another method in the range (0, τ).

Onwards, the goal is to graph the performance
profile of the different methods and compare them.

3 Benchmarking data

The times used to obtain the performance profiles
of the GSA methods that will be shown in
Section 4 were generated when performing the
sensitivity analysis with the methods of Sobol-
Jansen (Jansen, 1999), Sobol-Baudin (Baudin et al.,
2016), Sobol-Owen (Owen, 2013) and Sobol 2007
(Sobol, 2007) in the M set of models. Such set
consisted of the following base models: heap leaching,
Bateman equation, Legendre polynomial (P), Lotka-
Volterra equation, semi-autogenous grinding (SAG)
milling, transport model, pipe network design (ND),
flotation circuit, Ishigami function (F), flotation
circuit, Lorenz’s attractor, reverse osmosis (RO) stage,
RO membrane, linear model, heat equation, matrix
system, polynomial (P) division, Linear function (F),
trigonometric function (F), Sobol function, K function
and B function. Moreover, some variations of the base
models were considered, which can be seen in Table
2. Equations and some details of each model can be
found in Appendix A. It is relevant to mention that

the model parameters are given in the corresponding
references of Appendix A, and for this work, the base
values of the model parameters were the average of
the range in the case of uniform distributions, and the
mean in the case of the normal distributions.

Here it is worth mentioning that models such as
K function, Sobol function, B function and Ishigami
function were chosen because they commonly appear
as test models in the sensitivity literature. While
models such as SAG milling, flotation circuit,
transport, heap leaching, pipe ND and RO models
were chosen because they represent important mining
processes. The rest of the models were chosen because
they usually appear in chemical engineering problems,
besides they add diversity within the set of models.
Moreover, models as B function, linear function, K
function, or pipe ND have a low GSA time, which
hinders the development of the performance profiles
and, consequently, hinders the analysis of the results
as well.

In Table 2, the different variations performed on
the base models can be seen. In some cases, the
input variables of the models had distributions of the
following types: uniform, normal or uniform-normal.
While in other cases, the uncertainty interval of the
input variables was varied by ±10% of the initial
interval. In other cases, the uncertainty interval and the
type of uncertainty were varied, while at times there
was no changes in the base model. Besides, the same
table shows in what type of industry, scientific area or
process the models are applied.

Table 2. Description, type, variations and main variables of the models from M set.

No. Model Type Variation ranges No. Main variables Implementation
distribution of uncertainty variables

1 Heat equations U base 3 t Photovoltaic energy
(Bien and Musikowski,
2008)

2 Ishigami F U base 3 x1,x2
2a Ishigami F N 10% base 3 x2
2b Ishigami F U 10% base 3 x1, x2
2c Ishigami F N base 3 x2
2d Ishigami F N-U base 3 x2
3 Flotation circuit U base 6 TC , T S C , TCS Mining (Lucay et al.,
3a Flotation circuit N 10% base 6 TC , T S C , TCS 2015c), paper
3b Flotation circuit U 10% base 6 TC , T S C , TCS recycling (Nie et al.,
3c Flotation circuit N base 6 TC , T S C , TCS 1998)
3d Flotation circuit N-U base 6 TC ,T S C

4 Flotation- U base 45 Jg, kmax,mol,C ,
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El Salvador Rmax,mol,R
5 Legendre P U base 2 d,x Dairy industry (Pool
5a Legendre P U 10% base 2 d,x et al., 2000;
5b Legendre P N-U base 2 d, x Campolina et al.,
5c Legendre P N base 2 d, x 2014)
6 Milling U base 7 F, Jb Mining (Lucay et

al., 2017), Cement
treatment (Austin et
al., 1975)

7 RO stage U base 6 n Seawater desalination,
sewage water
treatment, ultra-
pure water production
(Garud et al., 2011)

8 RO membrane U base 4 T , P f , Q f , CC f
9 Lorenz equation U base 3 x1, x2, x3 Climate change

(Palmer et al., 2005)
10 Lotka-Volterra eq. U base 3 d Population modeling

in ecosystems (Zhue
and Yin, 2009)

11 Linear F U base 6 x4
11a Linear F N 10% base 6 x4
11b Linear F U 10% base 6 x2, x4, x5
11c Linear F N base 6 x4
11d Linear F N-U Base 6 x4
12 Matrix system U base 4 x1
12a Matrix system U 10% base 4 x1
12b Matrix system N base 4 x1
13 Transport model U base 5 x2
13a Transport model U 10% base 5 x2
13b Transport model N base 5 x2
14 Pipe ND U base 13 M3, M4, M5 Desalinated water
14a Pipe ND N 10% base 13 M3, M4, M5 transport (Herrera
14b Pipe ND N base 13 M3, M4, M5 et al., 2015)
14c Pipe ND U 10% base 13 M3, M4, M5
14d Pipe ND N-U base 13 M3, M5
15 P division U base 5 x2, x3
15a P division U 10% base 5 x2, x3
15b P division N base 5 x2, x3
16 Trigonometry F U base 2 x1
16a Trigonometry F N 10% base 2 x1
16b Trigonometry F U 10% base 2 x1
16c Trigonometry F N base 2 x1
16d Trigonometry F N-U base 2 x1
17 Bateman eq. U base 8 l4, c1 Environmental impact
17a Bateman eq. N base 8 l4, c1 of uranium mining
17b Bateman eq. N-U base 8 l4, c1 (Cotta and Naveira,
17c Bateman eq. U 10% base 8 l4, c1 2007)
18 Heap leaching U base 11 R∞ Mining (Mellado et al.,

2009), agriculture (Hu
et al., 2014)

19 Sobol function U base 8 X1
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19a Sobol function N base 8 X1
20 K function U base 5 X1, X2, X3, X4, X5
21 B function N base 10 X1, X2, X3, X4, X5

w1, w2, w3, w4, w5

U (uniform), N (normal)

Table 3. Standard deviation error of the total sensitivity index (error).

error

No. Model Sobol-Jansen Sobol-Baudin Sobol-Owen Sobol 2007

1 Heat equations 0.0128 0.011 0.013 0.0123
2 Ishigami F 0.0137 0.0127 0.0136 0.0138
2a Ishigami F 0.0165 0.0158 0.015 0.015
2b Ishigami F 0.0152 0.0154 0.0142 0.0134
2c Ishigami F 0.0141 0.0131 0.0134 0.0133
2d Ishigami F 0.012 0.0128 0.0137 0.0128
3 Flotation circuit 0.0094 0.009 0.0137 0.015
3a Flotation circuit 0.0109 0.01 0.013 0.017
3b Flotation circuit 0.0099 0.009 0.0145 0.0187
3c Flotation circuit 0.0102 0.0104 0.0137 0.019
3d Flotation circuit 0.0093 0.0086 0.0131 0.017
4 Flotation-El Salvador 0.0106 0.0103 0.0177 0.018
5 Legendre P 0.0108 0.0108 0.0129 0.0107
5a Legendre P 0.0108 0.00997 0.013 0.011
5b Legendre P 0.0096 0.0096 0.0128 0.0101
5c Legendre P 0.01 0.0098 0.015 0.0103
6 Milling 0.0123 0.012 0.018 0.017
7 RO stage 0.0143 0.0135 0.018 0.015
8 RO membrane 0.0145 0.0112 0.017 0.018
9 Lorenz equation 0.017 0.0163 0.016 0.018

10 Lotka-Volterra 0.0186 0.017 0.017 0.018
11 Linear F 0.01 0.01 0.0146 0.015
11a Linear F 0.01 0.01 0.0172 0.0172
11b Linear F 0.01 0.01 0.0138 0.0132
11c Linear F 0.01 0.01 0.0163 0.017
11d Linear F 0.01 0.01 0.0146 0.0164
12 Matrix system 0.01 0.0104 0.015 0.016
12a Matrix system 0.0106 0.01 0.014 0.012
12b Matrix system 0.0104 0.0098 0.017 0.018
13 Transport 0.0102 0.00995 0.0167 0.017
13a Transport 0.0101 0.0102 0.0163 0.017
13b Transport 0.0108 0.0102 0.017 0.018
14 Pipe ND 0.0085 0.0066 0.018 0.016
14a Pipe ND 0.0116 0.0106 0.018 0.018
14b Pipe ND 0.0083 0.0078 0.017 0.018
14c Pipe ND 0.0104 0.0082 0.0172 0.0171
14d Pipe ND 0.00784 0.00786 0.0178 0.017
15 P division 0.01 0.01 0.012 0.0123
15a P division 0.01 0.0096 0.0144 0.01
15b P division 0.0107 0.0098 0.013 0.015
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16 Trigonometry F 0.011 0.0093 0.0135 0.0117
16a Trigonometry F 0.0177 0.0099 0.019 0.017
16b Trigonometry F 0.011 0.01 0.012 0.0116
16c Trigonometry F 0.0098 0.01 0.017 0.019
16d Trigonometry F 0.01 0.01 0.0148 0.0094
17 Bateman eq. 0.0103 0.0098 0.017 0.0152
17a Bateman eq. 0.00959 0.00971 0.0145 0.0177
17b Bateman eq. 0.00959 0.00994 0.0162 0.0157
17c Bateman eq. 0.0097 0.0094 0.0135 0.0167
18 Heap leaching 0.01001 0.0106 0.015 0.018
19 Sobol function 0.0105 0.0104 0.013 0.012
19a Sobol function 0.0105 0.0102 0.0182 0.0103
20 K function 0.0108 0.0107 0.014 0.0101
21 B function 0.0105 0.0105 0.016 0.0102

U (uniform), N (normal)

4 Results and discussion

4.1 Sensitivity analysis

The requirement of GSA methods was only to
have 2 or 3 sample matrices, size (N,k), where
N is the number of rows and k is the number
of input variables and a semi-random sampling
design, in our work the Monte Carlo method was
used. Here it is important to mention that all the
calculations were developed in the computational
platform called Rstudio, which is an integrated
development environment for the R programming
language, dedicated to statistical computing and
graphics. After performing the sensitivity analysis, the
time taken by the GSA method to perform sensitivity
analysis, the standard deviation (SD) error of the
global sensitivity index and the most relevant variables
in each model were recorded. The breakdown of the
sensitivity analysis results is reported in Table 3, where
it can be seen that all values of the SD error of the
total sensitivity index are small, in the range [0.0066,
0.019]. When analyzing these values, it is not possible

to define the method with greater efficiency to perform
GSA, because sensitivity indices provided by GSA
methods depend on the sample size used. Pianosi et
al. (2016) reported that for each input variable of the
model, close to 1000 data should be taken to guarantee
reliable results. However, this criterion is not feasible
in large models.

In particular, the GSA methods included in
Rstudio (the programming language used in this work)
provide the SD related to sensitivity indices. These
SDs are calculated using the bootstrap method, which
considers the resampling of the initial sample with a
certain number of times. Then, the sensitivity indexes
are calculated for each resampling.

Finally, the SDs are determined using all the
resampling for each sensitivity index. Note that SD
decreases as the sample size increases. When the
maximum SD was approximately equal to 0.01 (error),
the sample size was considered optimal. The error was
chosen arbitrarily and the resampling was equal to 100
in all cases. Therefore, the reported SDs indicate that
the used sample sizes provided reliable results, in other
words, the effect of the sample sizes on the variation
of the sensitivity indexes was minimal.

Table 4. Time required for the sa method to perform GSA (tm,sa)

tm,sa (s)

No. Model Sobol-Jansen Sobol-Baudin Sobol-Owen Sobol 2007

1 Heat equations 1551.9 594.9 2270.7 679.4
2 Ishigami F 0.58 0.98 104.74 0.8
2a Ishigami F 0.83 1.34 101.6 1.52
2b Ishigami F 0.74 1.09 103.75 1.19
2c Ishigami F 0.61 0.84 97.59 1.14
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2d Ishigami F 0.58 0.85 96.59 1.06
3 Flotation circuit 2.55 4.01 227.14 1113.2
3a Flotation circuit 1.85 3.18 191.62 902.75
3b Flotation circuit 2.86 5.11 293.97 1085.52
3c Flotation circuit 2.29 3.8 210 1249.48
3d Flotation circuit 1.87 3.13 188.95 967.69
4 Flotation-El Salvador 66.69 201.03 1071.07 2452.716
5 Legendre P 4.11 2.92 87.83 2.39
5a Legendre P 18.94 6.65 80.07 4.81
5b Legendre P 4.17 2.85 86.94 2.28
5c Legendre P 7.48 6.56 56.45 1.83
6 Milling 249.7 439.58 15763 49078
7 RO stage 777600 1041984 2083968 7293888
8 RO membrane 256801 343283.18 686566 3432831.8
9 Lorenz equation 19574.5 22152.3 79834.5 63800.7

10 Lotka-Volterra 1974.5 682 4536.3 3902
11 Linear F 0.12 0.31 117.33 8.31
11a Linear F 0.14 0.33 120.58 32.62
11b Linear F 0.09 0.22 111.33 8.56
11c Linear F 0.12 0.3 114.12 30.38
11d Linear F 0.19 0.44 117.28 19.58
12 Matrix system 3.84 4.91 92.83 51.23
12a Matrix system 3.07 4.66 92.19 51.33
12b Matrix system 3.25 5.11 86.85 91.69
13 Transport 22.89 35.7 131.73 1502.9
13a Transport 22.37 32.17 167.85 1670.94
13b Transport 23.54 30.87 198.92 1749.61
14 Pipe ND 9.83 16.49 215.47 726.7
14a Pipe ND 6.83 12.97 201.89 791.41
14b Pipe ND 8.05 19.25 295.97 968.2
14c Pipe ND 8.32 15.7 238.89 924.44
14d Pipe ND 7.95 14.07 232.89 755.11
15 P division 0.75 1.3 173.92 30.49
15a P division 0.92 1.31 141.39 31.43
15b P division 0.63 1.18 182.25 60.39
16 Trigonometry F 0.67 0.5 44.03 18.7
16a Trigonometry F 0.58 0.58 46.78 34.38
16b Trigonometry F 0.48 0.5 46.21 19.08
16c Trigonometry F 1.56 0.59 54.879 21.63
16d Trigonometry F 0.52 0.48 46.02 35.63
17 Bateman eq. 15.42 26.13 263.42 29.75
17a Bateman eq. 13.95 21.74 257.01 33.67
17b Bateman eq. 14.65 17.29 266.31 24.65
17c Bateman eq. 11.9 20.2 266.64 20.11
18 Heap leaching 1.34 2.01 244.2 851.4
19 Sobol function 0.48 0.98 242.81 1.49
19a Sobol function 1.08 1.15 247.16 1.97
20 K function 1.33 2.26 137.76 5.59
21 B function 2.13 3.99 433.8 3.36
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Therefore, the time required for the sa method
to perform GSA (tm,sa) was calculated and the
corresponding values are in Table 4. It is important to
mention that the two models, the RO stage and the RO
membrane, with the greatest time tm,sa are due to the
high non-linearity exhibited by these models together
with the use of a solver. Then, these time values
were used to calculate the slow and fast performance
profiles, which will help to discriminate the best GSA
method.

4.2 Performance profiles

In this section, the performances of Sobol-Jansen,
Sobol-Baudin, Sobol-Owen and Sobol 2007 methods
in the M set are examined.

Figure 1a shows the slow performance profile from
the four GSA methods, which establishes that the
Sobol-Jansen method is the most efficient to perform
GSA in the M set. The Sobol-Jansen method is higher
in the ρs

S obol−Jansen(1) = 83% of the cases considered,
exceeded only in four and five cases by the Sobol
2007 and Sobol-Baudin methods, respectively. The
Sobol-Baudin method reaches a performance of 40%,
60% and 80% at least 1.5, 1.7, 2.0 times slower,
respectively, than the Sobol-Jansen method. While
the Sobol-Owen and Sobol 2007 methods do not
present a competitive performance within the interval
considered for τ. On the other hand, Figure 1b shows
the faster performance profile, this allows to deduce
that the Sobol-Jansen method achieves a performance
close to 10%, 40% and 80% at least 2.0, 1.66 and 1.03
times faster, respectively, than any other method of the
SA set.

Also from Figure 1, we have that approximately
τ = 2 the Sobol-Baudin method achieves a competitive
performance with respect to the Sobol-Jansen method.
While performance of Sobol 2007 approaches 25%
and Sobol-Owen achieves a performance of 0%, i.e.,
it is not capable of carrying out the global sensitivity
analysis to any model of the SA set.

Fig. 1. Performance profiles in [0, 5]: (a) slow
performance profile and (b) fast performance profile.

When τ = 5.0 the Sobol-Baudin and Sobol-
Jansen methods reach a 100% performance, while
the method of Sobol 2007 achieves a performance of
approximately 36% and the Sobol-Owen method has a
performance of approximately 8%. In general, Figure
1 shows that the slow and fast performance profiles
are functions that do not decrease and are piecewise
constant. To see how follows the evolution of the
methods performance profiles, the range of the interval
of the values for τ are expanded, as shown in Figure 2.
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Fig. 2. Performance profiles in [0, 10]: (a) slow
performance profile and (b) fast performance profile.

Figure 2a shows that the slow performance of
the Sobol 2007 method achieves a performance of
almost 20%, 30% and 38% at least 1.7, 3.3 and
9.2 times slower, respectively, than the Sobol-Jansen
method. While the Sobol-Owen method reaches a
slow performance, almost 10%, at least 7.1 times
slower than the Sobol-Jansen method. For τ = 10,
the performance of the Sobol 2007 and Sobol-Owen
methods is approximately 17% and 40%, respectively.
Considering that is the fraction of the models that the
sa sensitivity analysis method is not able to perform
within a range (1, τ), we have that the Sobol-Owen
method cannot perform the sensitivity analysis to
almost 83% of the models of the SA set in the range
of τ considered. According to Figures 1 and 2, the
progress of the performance profile is not linear, so a
logarithmic scale in base 2 will be used for the values
of τ, in order to not to lose information, so only values
of τ ≥ 1 are considered.

Figure 3 shows the slow performance profile for
the four GSA methods. From this figure, the following
order is established for the performance of the GSA
methods: 1) Sobol-Jansen, 2) Sobol-Baudin, 3) Sobol

2007 and 4) Sobol-Owen. The fourth place for Sobol-
Owen method could be because this method uses
3 sample matrices and not 2 as the other methods,
which increases the number of calculations and,
therefore, the time to perform the sensitivity analysis.
Also, Owen (2013) indicates that this method is not
efficient when the first order index that is calculated
is large. The third place of the method of Sobol
2007 could be because its performance is competitive
only in models such as Sobol-function, K-function,
B-function, Bateman equation, polynomial Legendre
and models that include trigonometric functions, i.e.
strongly non-linear and non-monotonic models (see
Appendix A). In the other models, their performance
is poor because to obtain a reliable index, a greater
number of iterations was necessary than with other
methods to achieve a small error in the standard
deviation of the total sensitivity index. This was
especially observed in complex models and models
that involve a large number of variables. The second
place for the Sobol-Baudin method is that, although
its performance is very competitive with respect to
the Sobol-Jansen method from approximately log2(2),
the latter performs a sensitivity analysis first in
almost 83% of the cases considered in this study. As
mentioned above, the Sobol-Baudin method calculates
the sensitivity indexes using the equation of linear
correlation coefficients, which considering the results
is quite efficient. In part, these results were presented
by Saltelli et al. (2010), who compared the Sobol-
Jansen and Sobol 2007 methods through three models.
Their results indicate that the Sobol-Jansen method
is computationally more efficient, which can also
be derived from Sobol (2001), specifically from the
Theorem 4 described in his work.

Fig. 3. Slow performance profile in [1, log2(2000)].

434 www.rmiq.org



Lucay et al./ Revista Mexicana de Ingeniería Química Vol. 19, No. 1 (2020) 423-444

On one hand, Figure 3 shows that all GSA methods
are able to perform sensitivity analysis in 100% of
the models considered in this study. On the other
hand, these results are positive, since they indicate that
the GSA methods based on variance decomposition
are quite stable when performing this procedure.
However, on the other hand, they are negative, since
they question the way of selecting the different models
considered. Such models were selected considering
different applications and because they appeared in
different publications related to GSA, others because
they have interesting mathematical characteristics to
be analyzed. As Dolan and Moré (2002) indicated
that the way of selecting the elements of the test set
remains an open problem.

One of the implications of the results of this
work is the validation of the use of the Sobol-Jansen
method in the methodology proposed by Lucay et
al. (2015b) to determine critical variables to avoid
unwanted responses in the process design. While
the methodologies, as proposed by Lamoureux et al.
(2014) for early validation of health indicators, could
be improved since it involves the combination of
the sensitivity analysis of Morris and Sobol. First,
the input variables with low sensitivity index are
determined with Morris, which are then fixed, and
then with a reduced input variables model, the most
relevant input variables are determined through the
Sobol method. That is, in the work of Lamoureux
et al. (2014), the Sobol method could be changed
by the Sobol-Jansen method in the hope of reducing
computational costs.

Conclusions

This work presents a procedure for comparing global
sensitivity analysis methods based on performance
profiles. A large set of models were considered,
which were selected because some of them appeared
in different works related to GSA, others because
they have interesting mathematical characteristics
to analyze in the chemical engineering area. The
slow performance profile allows determining the
probability that a GSA method can perform GSA
at least τ times slower than the best performance
method for τ ≥ 1. The fast performance profile allows
determining the probability that a GSA method is
faster than another method at least 1/τ times, for
τ < 1. Although the four GSA methods based on the
decomposition of the variance proved to be quite

stable, the Sobol-Jansen method presented the best
performance, since it is the first to perform GSA in
83% of the considered models and maintains a high
performance up to 100%. Which additionally means
that the Sobol-Jansen method uses less computational
resources. And, finally, it is worth mentioning that the
GSA methodology can be extended and applied to
multiple response models, but analyzing one response
at a time.
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Appendix A. Models

A.1. Heat equations

The problem P1 describes the heat transfer through
conduction in a thin wire, here u(x, t) is the
temperature:

P1 =


α ∂

2u
∂x2 = ∂u

∂t , α > 0

u(0, t) = u(L, t) = 0, t > 0

u(x,0) = f (x) x ∈ (0,L)

(A.1)

with

α =
K
ρc

(A.2)

where L is the wire length, ρ is the density of the
metal wire, c is the specific heat and K is the thermal
conductivity. Assuming that f (x) can be expressed as
an infinite series of sin(x), this is
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f (x) =

∞∑
n=1

an sin
(nπx

L

)
(A.3)

a general solution of the heat equation is given by

u(x, t) =

∞∑
n=1

an exp
(
−α

n2π2

L2 t
)
sin

(nπ
L

x
)

(A.4)

taking

f (x) = x(1− x) and L = 1 (A.5)

the coefficients an have the following expression

an =
4(1− (−1)n)

n3π3 (A.6)

Then, a particular solution of the problem P1 is given
by

u(x, t) =

∞∑
n=1

4(1− (−1)n)
n3π3 exp(−αn2π2t) sin(nπx)

(A.7)
The model to which the GSA was applied had t, α and
x as input variables, while the model output was u.

A.2 Ishigami function

The Ishigami function was defined by Ishigami and
Homma (1990) as:

f (x1, x2, x3) = sin(x1)+a·sin2(x2)+b·x4
3 sin(x1) (A.8)

This equation shows the property of being strongly
non-linear and non-monotonic. The model considered
to apply the GSA had x1, x2 and x3 as input variables,
while the model output was f .

A.3 Flotation circuit

Flotation circuits are used to separate the valuable ore
from the gangue ore. Lucay et al. (2015a) presented a
group contribution method to estimate the recovery of
a large number of flotation circuits. This method was
validated with 30 circuits among which is the plant
shown in Figure A.1.

Taking T R, TC1, T S 1, T S 2, T S C11 and TCS 21

as the recovery of valuable ore in step rougher
(R), cleaner (C1), scavenger 1 (S 1), scavenger 2
(S 2), scavenger-cleaner (S C11) and cleaner-scavenger
(CS 21), respectively, it is possible to determine by

mass balances the global recovery circuit shown in
Figure A.1, with the following equation:

R =
f
g

(A.9)

where

F = TC
(
T R −T RT S 1 −T RT S 2 + TCS T S 1T S C

+ TCS T S 2T S C + T RT S 1T S 2 + T RT S 1T S C

+ T RT S 2T S C + TCS T S 1T S C −TCS T RT S 1T S C

−TCS T RT S 2T S C −TCS T S 1T S 2T S C

−T RT S 1T S 2T S C + TCS T RT S 1 T S 2T S C
)

(A.10)

g =
(
TCTCS −TCS + 1

) (
T S 1T S 2 −T S 2

−T S 1 + T S 1T S C + T S 2T S C −T S 1T S 2T S C + 1
)

(A.11)

The model considered to apply the GSA had the
recovery in each stage as input variables and the global
recovery as model output.

Fig. A.1. Flotation circuits used to validate the group
contribution method.
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A.4 El Salvador Flotation circuit

The flotation process is used to concentrate valuable
minerals, in practice the number of variables in
the process is very large, considering this, this
time we will include a flotation model in each
stage of the circuit. Through mass balances and the
following equations (Yianatos et al., 2005; Yianatos
and Henríquez, 2006):

R = Rmax

[
1−

(
1− (1 + kmaxτ)1−N

)
(N − 1)kmaxτ

]
(A.12)

RC = Rmax

[
1−

4
3kmaxτ

(
12

kmaxτ+ 12
− 1

+
10
9

ln
(

10kmaxτ+ 12
kmaxτ+ 12

))] (A.13)

R f = 95exp

−0.0144
HF(1 + 3Jw)

J3
g

 (A.14)

RG =
RCRF

1−RC + RCRF
(A.15)

Fig. A.2. El Salvador flotation circuit.

It is possible to determine the global recovery of
the circuit shown in Figure A.2, with the following
equation

Rec(Cu) =

∑n
i=1 CFi · l(i)∑n

i=1 CFi
(A.16)

where CFi is the mass flow of the species i in the
concentrate of the circuit, Li is the grade of Cu in
the species i present in the concentrate and F is the
fresh feed flow to the circuit. The model considered to
apply the GSA had 47 input variables and the model
output was Rec(Cu), for further details see Lucay et
al. (2015c).

A.5 Legendre polynomial

The Legendre differential equation can be solved
using the power series method, in the particular case
d (polynomial order) is a non-negative integer. The
solution forms a family of orthogonal polynomials,
called Legendre polynomial, which has the following
expression:

Ld(x) =
1
2d

d/2∑
m=0

(−1)m
[

d!
m!(d −m)!

(2d − 2m)!
d!(d − 2m)!

xd−2m
]

(A.17)

where x ∈ [−1,1], d = {1,2,3,4,5} and bvc indicates
the greatest integer ≤ v. The model considered to apply
the GSA has x and d as input variables, and the model
output was Ld(x). For further details see Saltelli et al.
(2000).

A.6 SAG Milling

Semi-Autogenous Grinding (SAG) is a process that
reduces the size of minerals. Usually, for modeling, the
mill is divided into two areas according to the process
carried out in each of them (see Figure A.3): size
reduction and classification. In general, it is assumed
that the SAG mill behaves like a well-mixed reactor,
with a mass W retained in the mill volume V , and first
order kinetics (Austin, 1990).

It is possible to determine the retained mass W
with the following system of equations (Lucay et al.,
2017):

0 = fi + τ

i−1∑
j=1
i> j

bi jK jw j −
(
Kiτ+ (1− ci)(1 + C∗)

)
wi

i = 1,2, . . . ,n
(A.18)
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Fig. A.3. Conceptual representation for internal SAG
mill operation.

0 = W −W
n∑

i=1

wi (A.19)

0 = τ−
W
F

(A.20)

where F is the feed to mill, Fi is the mass fraction
of feed to mill, τ is the residence time, and Ki is the
specific breakage rate of species i present in the feed to
the SAG Mill, bi j is the breakage distribution function,
wi is the mass fraction of W, C∗ is the ratio of internal
recirculation and ci is the classification efficiency of
the internal grid mill.

Once W is determined, it is possible to calculate
the specific energy consumption of the mill:

E =
∑

i

Mp

KiW
(A.21)

with

Mp = GD2.5L(1− AJ) ((1− εb)Jρs(1−wc)

+0.6Jb(ρ− ρs)(1 + wc))φc

(
1−

0.1
29−10φc

) (A.22)

Where Mp is the mill power consumption. The
model considered to apply the GSA had as input
variables: the feed to the mill, the fraction of the
species present in the feed, the mill volume occupied
by the steel balls, the percentage of solids in the
discharge mill, the operating speed equal to % of the
critical speed. While the model output was the specific
energy consumption of the mill, E.

Fig. A.4. Stage of desalinization with RO membrane.

A.7 Reverse osmosis stage

Reverse osmosis (RO) is a water purification
technology that uses membranes to remove particles,
ions, and molecules. This process is performed in
circuits or stages as shown in Figure A.4.

This procedure is modeled by the following
equations

Qp = JwA (A.23)

with

Jw = Aw
(
P f −∆PL − Pp −∆π

)
(A.24)

∆π = 0.9524(Cb −Cp)exp
( Jw

k

) (
(Cb −Cp)exp

( Jw

k

)
+2Cp + 81633

)
(A.25)

∆PL =
ρu2LCtd

2dh
(A.26)

where Qp is the permeate flow, Jw is the water
flow, P f is the operating pressure of the process, ∆π
is the difference of the osmotic pressure across the
membrane, ∆PL is the pressure drop across the feed
channel of the membrane, PP is the permeate pressure,
Aw is the coefficient permeability of water, L is the
length of one element of a membrane, k is the mass
transport coefficient, Cb is the bulk concentrate, u is
the axial velocity, A is the membrane area, ρ is the
water density, Ctd is the total drag force, and dh is the
hydraulic diameter of the feed spacer channel. While
the concentration of salt in the permeate is determined
by

Cp = Cb
Bs exp

(
Jw
k

)(
Jw + Bs exp

(
Jw
k

)) (A.27)

with
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Cb(x) = C f +

(
Cc −C f

L

)
x (A.28)

where L is the membrane length and Bs is
the permeability coefficient of salt. For further
information see Kaghazchi et al. (2010). The model
considered to apply the GSA had as input variables:
the operating pressure (P f ), the feed flow (Q f ), the
salt concentration in the feed flow (C f ), the number
of membranes (n), the number of pressurized tank (m)
and the temperature (T ). While the concentration in
the permeate was selected as the model output.

A.8 Reverse osmosis membrane

The previous equations for the RO stage are also
valid for the case of a single RO membrane, i.e.,
tanks in parallel or membranes in series are not
considered. The model to which the GSA was applied
had the operating pressure, the feed flow, the salt
concentration in the feed flow and the temperature
as input variables, while the salt concentration in
the permeate generated by the membrane was the
model output. The fact of not considering tanks or
membranes in series is an important factor because the
model output for the RO membrane has an additive
behavior, while the model output of the RO stage is
not additive.

A.9 Lorenz attractor

The Lorenz attractor is a three-dimensional
deterministic nonlinear dynamic system (Lorenz,
1963). The system of equations is given by:

dx
dt

= a(y− x) (A.29)

dy
dt

= x(b− z)− y (A.30)

dz
dt

= xy− cz (A.31)

The model to which the GSA was applied had
a, b and c as input variables. Once the system was
determined, this was solved by Runge-Kutta 4th order
and the model output was the variable x.

A.10 Lotka-Volterra equation

This model is used to describe the dynamic behavior
of two interacting species, one as preys and the other

as predator (Cariboni et al., 2007). The system of
differential equations is given by:

dX
dy

= aX
(
1−

X
K

)
− bXY (A.32)

dY
dt

= cY − dXY (A.33)

where X is the number of prey, Y is the number of
predators, the constant a is the birth rate of prey, b
is the rate of prey elimination by predators, c is the
birth rate of predators, d is the predator increase rate
as a result of the prey consumption, K is the maximum
number of prey that the environment can endure. The
model considered to apply the GSA had a, b, c, d and
K as inputs, and the number of prey as model output.

A.11 Linear models

A classic model in many publications is the linear
model. In this work, the following expression is
considered:

f (X1,X2,X3,X4,X5,X6) = X1 + X2 + X3 + X4 + X5 + X6
(A.34)

The model considered to apply the GSA had Xi as
input variables, while the model output was f .

A.12 Matrix system

Many engineering problems can be transformed into
matrix systems:

AX = b (A.35)

where A is a matrix of nxn, X is a vector of unknowns
of dimension nx1, and b is a vector of dimension nx1.
In our case, we have


1 1 1 −1
2 −1 2 1
3 0 1 1
2 2 2 −1



and b =


b1
b2
b3
b4


(A.36)

The model input variable is the vector b, and the model
output is ||X||2.
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A.13 Transport model

Consider that we want to determine the transportation
schedule that minimizes costs and meets the market
demands and materials factories shown in Table A.1.
The total costs are defined as

total cost =
∑

i

∑
j

c(i, j) · X(i, j) (A.37)

with
c(i, j) = F ·D(i, j) (A.38)

where c(i, j) are the transport cost, X(i, j) are the
transport quantities, F is the cost freight and D(i, j) are
the distances between plants and markets. The model
considered to apply the GSA had the markets supply
and the plants demand as input variables, while the
total costs as model outputs.

Table A.1. Transport model parameters.
Distances
Markets

Plants New York Chicago Topeka Supply
Seattle 2.5 1.7 1.8 350
San Diego 2.5 1.8 1.4 600
Demand 325 300 275

A.14 Pipes network design

Herrera et al. (2015) proposed a methodology for the
design of a water distribution network, among the
model equations are:

TCi, j =

κp

(
1 +

Hi, j
Hb

)
Li, jDm

i, j

PL
(A.39)

TCn =

(
κN(1 + sb)ρg

ηPL

+
8.76FDFAECρg

η

) ∑
j∈output

Qn, jHn, j

(A.40)

TCS O = PA ·UPCS O,C QS O (A.41)

where Eq. (A.39) is used to determine the cost of
the water transport network, Eq. (A.40) is used to
determine the operational cost of pumping stations,
and Eq. (A.41) is used to determine the cost
associated with the RO plants. Moreover, the head
Hi, j was determined by the following equation:

CORRECCIONES PARA TABLAS Y FIGURAS 

15. En la Tabla 2 combinar varias celdas indicadas en el archivo PDF (ya que algunos 
comentarios corresponde a varios renglones). 

16. Sustituir la Figura A.5 por la siguiente (ya que el tamaño de letra era muy pequeño) 

 

Figure A.5. Optimum pipe network design. 

 

 

 

 

Fig. A.5. Optimum pipe network design.

Hi, j = ∆Zi, j + H0 +
8 fiLi, jQ2

i, j

π2gD5
i, j

(A.42)

While the function objective was to minimize the
total annualized cost

TC =
∑
so

TCso +
∑
i, j

TCi, j +
∑

n
TCn (A.43)

The methodology considers a network consisting
of 5 mining operations, 3 RO plants and 14 pumping
stations. Then, the best design was determined using
the GAMS software. The result was a network that
uses 5 pumping stations and 1 RO plant, the design
is shown in Figure A.5.

The model considered applying the GSA had as
input variables: the flows of desalinated water required
by each mining operation and the diameters of the
pipes of the water distribution network. The model
output was the total cost.

A.15 Polynomial division

This model is given by:

P(x1, x2, x3, x4, x5) =
x1 + x2 + x3 + x4x5

x1x2 + x3x4x5
(A.44)

here the xi is the input variable and P is the model
output.

A.16 Trigonometric function

This model has the following expression:

F(x1, x2) = sin(πx1) + cos
(
πx2

4

)
+ (x1x2)0.5 (A.45)

The model considered to apply the GSA had x1
and x2 as input variables, while the model output was
F.
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A.17 Bateman equation

This equation describes a simple chemical or
radioactive chain, where the growth rate of each
element is proportional to the initial concentration, and
the decay rate of each element λi is proportional to
the concentration Ci of the element itself. Bateman
equation is given by the following system of
differential equations:

dC1

dt
= −λ1C1, C1(0) = C0

1 (A.46)

dC2

dt
= −λ2C2 + λ1C1, C2(0) = C0

2 (A.47)

dC3

dt
= −λ3C3 + λ2C2, C3(0) = C0

3 (A.48)

dC1

dt
= −λ1C1, C1(0) = C0

1 (A.49)

dC4

dt
= −λ4C4 + λ3C3, C4(0) = C0

4 (A.50)

The analytical solution of the system of differential
equations is

Ci(t) =

i∑
m=1

C0
m

[ i−1∏
r=m
m,i

λr

i∑
n=m

exp(−λnt)∏i
l=m
m,i
l,n

λl − λn

]
i = 1,2,3,4.

(A.51)
The model considered to implement the GSA had

as λ1, λ2, λ3, λ4, C0
1, C0

2, C0
3, C0

4 as input variables.
While the model output was . For further details see
Saltelli et al. (2000).

A.18 Heap leaching

Leaching is a hydrometallurgical process that has been
modeled by many authors, among them Mellado et
al. (2009) proposed analytical models to describe the
heap leaching. The model is given by the following
equation

R(t) = R∞

[
1−αexp

(
−kθus

Zεb

(
t−

εbZw
us

))
− (1−α)exp

(
−kτDAe

r2ε0

(
t−

εbZW
us

))] (A.52)

where Z is the heap death, us is the superficial bulk
flow velocity, DAe is the effective pore diffusivity of
the reagent, r is the particle size, εb is the volume
fraction of the bulk solution, R∞ is the recovery in
an infinite time, ε0 is the porosity of the mineral, kθ
is the kinetic constant at the particle level, kτ is the
kinetic constant at the heap level and w is the delay
time. While that parameters α, kθ, kτ and w must be
adjusted with experimental data.

The model considered to apply the GSA had all
the variables mentioned above, except the adjustment
parameters, as input variables. While the model output
was the full recovery R(t).

A.19 Sobol function

This function is defined by Archer et al. (1997) as

G(X1,X2,X3,X4,X5,X6,X7,X8) =

8∏
i=1

|4Xi − 2|+ ai

1 + ai

(A.53)

where a = (0,1,4.5,9,99,99,99,99). The input
variables are Xi ∈ U[0,1], and the model output is G.

A.20 K function

This function is defined by Kucherenko et al. (2011)
as

K(X1,X2,X3,X4,X5) =

5∑
i=1

(−1)i
i∏

j=1

Xi (A.54)

Here the input variables are Xi ∈ U[0,1], and the
model output is K.

A.21 B function

This function is defined by Saltelli et al. (2000) as

B(X1,X2,X3,X4,X5,w1,w2,w3,w4,w5) =

5∑
i=1

Xiwi

(A.55)

Here the input variables are Xi ∈ N
(
0,σXi

)
andwi ∈

N
(
0,σwi

)
, and the model output is B.
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