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Abstract
Polyphenoloxidase (PPO) is an enzyme that produces enzymatic browning, which causes deterioration of quality, both in fresh
fruits and vegetables and on their products, such as juices, jams, syrup fruits, among others. This results in numerous losses
in the industry. For this reason, the characterization and inhibition of this enzyme are very important. In this work, PPO from
two types of pears (Pyrus communis L): Aranjuez White (APPO) and Williams (W PPO) were characterized. The optimum pH
and temperature for enzyme activity were determined (APPO: 7 and 30ºC; W PPO: 7.5 and 24.5ºC). Both enzymes are heat-labile
enzymes and exhibited similar behavior against temperature. The enzymes analyzed showed a higher affinity for 4-methylcatechol
than for catechol. The inhibition of PPO through ascorbic acid, 4-hexylresorcinol, sodium isoascorbate and citric acid was
determined. Additionally, the effect of β-Cyclodextrin was evaluated as preventive agent of fruit oxidation. This compound forms
an inclusion complex with the substrates. The binding constant value of the complex β-Cyclodextrin with 4-tert-butylcatechol
was 16888 M−1.
Keywords: polyphenoloxidase, chemical inhibition, β-Cyclodextrin, inclusion complex.

Resumen
La Polifenoloxidasa (PPO) es una enzima que provoca el pardeamiento enzimático, el cual causa el deterioro de la calidad en
frutas y vegetales frescos y en sus productos, tales como jugos, mermeladas, jarabes y otros. Esto da como resultado numerosas
pérdidas en la industria. Por esta razón, la caracterización e inhibición de esta enzima son muy importantes. En este trabajo
se caracterizaron las PPO de dos tipos de peras (Pyrus communis L): Blanca de Aranjuez (APPO) y Williams (W PPO). Se
determinaron el pH y la temperatura óptimos de la actividad enzimática (APPO: 7 y 30ºC; W PPO: 7.5 y 24.5ºC). Ambas
enzimas son termolábiles y presentan un comportamiento similar frente a la temperatura. Las enzimas analizadas mostraron
una mayor afinidad por el 4-metilcatecol que por el catecol. Se determinó la inhibición de las PPO a través de ácido ascórbico,
4-hexilresorcinol, isoascorbato de sodio y ácido cítrico. Asimismo, se evaluó el efecto de β-Ciclodextrina como agente preventivo
de la oxidación de la fruta. Este compuesto forma un complejo de inclusión con los sustratos. El valor de la constante de formación
del complejo β-Ciclodextrina con 4-terbutil catecol fue 16888 M−1.
Palabras clave: polifenoloxidasa, inhibición química, β-Ciclodextrina, complejo de inclusión.

1 Introduction

The loss of quality in fruits and vegetables has
numerous well-known causes. One of them is
enzymatic browning. Huge economic losses in fruit
and vegetable industries are attributed to this. The
browning is catalyzed by enzymes with polyphenol
oxidase activity (PPO, E.C.: 1.14.18.1), which has

been widely studied (Liu et al., 2013; Gómez-López
2002; Sulaiman and Silva, 2013).

PPO is a bifunctional copper-containing enzyme
that catalyzes the oxidation of phenolic compounds in
the presence of molecular oxygen. The oxidation of
phenolics develops the browning which appears in the
postharvest, processing and storage of foods (Ayaz et
al., 2008; Brandelli and Lopes, 2005; Robles-Ozuna et
al,. 2007).
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The characterization of PPO has been studied
in numerous fruits and vegetables: taros, potatoes,
avocados, apples, pears, artichokes, lychees, medlars,
peaches, sunflowers, bananas, mangos, among others
(Aydemir, 2004; Cheema and Sommerhalter, 2015;
Carbonaro and Mattera, 2001; Duangmal and Owusu
Apenten, 1999; Gómez-López, 2002; Rocha and
Morais, 2001; Singh et al., 1999; Sun et al.,
2008; Singh et al., 2018). The location of PPO
in the plant cell and its physicochemical properties
depend on species, cultivar, maturity and the specific
phenological stage of the plant. For this reason,
there are variations in the enzymatic activity, even
among similar fruits (Gómez-López, 2002). Thus, the
characterization becomes necessary in order to avoid
its undesirable effects (enzymatic browning).

Previous research has assayed different
compounds as inhibitors of PPO activity: sodium
metabisulphite, sodium azide, ascorbic acid, EDTA,
tartaric acid, citric acid, oxalacetic acid, glutathione,
cysteine, kojic acid, substituted benzaldehydes, among
others (Arias et al., 2011; Ayaz et al., 2008; Brandelli
and Lopes, 2005; Jiménez et al., 2001; Son et al.,
2000). Furthermore, some technologies, such as pulse
electric fields, temperature, microwave, and ultraviolet
irradiation, have also been used to control and inhibit
PPO activity in food (Castorena-García et al., 2013,
Falguera et al., 2012; Matsui et al., 2008; Riener et
al., 2008).

Other type of compounds that have inhibitory
effects on PPO activity are the cyclodextrins (CDs)
which are natural cyclic oligomers built up from
6, 7 or 8 glucopyranose units (named α-, β-
and γ-Cyclodextrin, respectively), linked by α-(1-4)-
glycosidic bonds. In recent years, the use of CDs
in food processing and food additives has notably
increased, especially to: a) solubilize colorants,
vitamins and flavorings; b) be a protecting agent
for lipid components susceptible to degradation; c)
suppress unpleasant odors and flavors; d) stabilize
fragrances, flavorings and essential oils against
unwanted changes; and e) release certain constituents
of the foods (Cravotto et al. 2006; Szente and Szejtli
2004). Another beneficial effect of CDs on food
is the reduction of enzymatic browning in juices
or in fresh fruits and vegetables (López-Nicolás et
al., 2007; López-Nicolás and García-Carmona, 2007;
Fuentes Campo et al., 2019). These beneficial effects
of CDs on foods are achieved through the formation
of inclusion complexes with food components. The
internal cavity of the CDs is hydrophobic, so they can
encapsulate molecules of appropriate size and shape

that are poorly soluble in water by means of non-
covalent type driving forces. These polysaccharides
are harmless, and the World Health Organization has
recommended a maximum level of βCD in foods of 5
mg/kg per day (Astray et al., 2009).

Williams and Aranjuez White pear varieties are
easily grown in Argentina. According to official data,
about 550,000 to 680,000 tons of Williams pear are
grown per year, out of which 35-40% is exported
(Benitez, 2001; Toranzo, 2016). The Aranjuez White
variety is grown in smaller quantities and is mainly
intended for the internal market. The study of both
pear varieties is important because of the relevance of
this crop for the food industry. In addition, although
the PPO has been widely studied in a considerable
variety of fruits, the properties of this enzyme have
not been thoroughly studied for Aranjuez White and
Williams pears. In this work, the characterization
of PPO from Aranjuez White and Williams pears
was carried out. Several physicochemical and kinetic
characteristics were evaluated to understand the
behavior of the enzyme in pears. Moreover, the
effect of βCD on PPO activity was assessed, and the
numerical value of the formation constant of βCD-
substrate complex was determined from the decrease
in enzymatic activity by the presence of βCD. In the
same way, the value of this constant was determined
from a phase solubility diagram.

2 Materials and methods

2.1 Materials

The whole fruits of two pear cultivars (Pyrus
communis L.: Aranjuez White (A) and Williams (W)
were obtained at commercial maturity from a local
market (San Luis, Argentina) and were stored at 4ºC
for 24 h until used. The substrates catechol (C), 4-
methylcatechol (MC) and, 4-tert-butylcatechol (TBC),
like the inhibitors 4-hexylresorcinol (HR), ascorbic
acid (AA), citric acid (CA), and sodium isoascorbate
(IA) were obtained from Sigma-Aldrich (St. Louis,
Missouri, USA). Anhydrous β-Cyclodextrin (βCD)
was purchased from MP Biomedicals. The non-
ionic tensoactive Triton X-100 was purchased from
Fluka Chemicals Co. (Buchs, Switzerland). All other
chemicals were of analytical grade.
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2.2 Methods

The PPO extracts from Aranjuez White (APPO) and
Williams (WPPO) pears were obtained using the
procedure described by Gauillard and Richard-Forget
with some modifications (Garro and Gasull, 2010).
Peeled crude samples (100 g) were homogenized
for 2 min in an Ultracomb commercial blender
(Buenos Aires, Argentina) in 100 mL of 50 mM
sodium phosphate buffer at pH 6.5, containing 20
mM AA, 2% (v/v), ethylenglycol, and 1% (v/v)
Triton X-100. Polyethylenglycol was used to bind
phenols which could inactivate PPO activity during
the extraction (Erat et al., 2006), while Triton X-
100, a non-ionic surfactant, was used to achieve the
full extraction of the enzyme (Sikora et al., 2019).
After filtration of the homogenate through gauze, the
filtrate was centrifuged at 30100 xg for 30 min in
a Beckman Coulter J2-HS ultracentrifuge (Fullerton,
California, USA). All steps were carried out at 4ºC.
The supernatants were recovered and kept in tubes at
-20ºC and were used as crude enzyme extracts which
retained PPO activity for about 6 months.

2.3 PPO activity assay

PPO activity was assayed by a spectrophotometric
procedure using a Cary 50 UV-Vis (Varian Inc.,
USA) double beam spectrophotometer equipped with
a quartz cell of 10 mm path length, with Single Cell
Peltier accessory for temperature control. Enzymatic
activity was assayed by measuring the rate of increase
in absorbance at 25ºC. The reaction mixture contained
3 mL of sodium phosphate buffer solution (50 mM,
pH 7), 100 µL of enzyme extract and the substrate.
The reference cuvette contained only buffer solution
and the substrate. The straight-line section of the
absorbance curve as a function of time was used to
determine enzymatic activity. One unit of PPO activity
(UE) was defined as the amount of enzyme that causes
an increase in absorbance of 0.001/min at 420 nm
per mL of enzyme assay solution mixture (Lim and
Wong, 2018). All determinations were performed in
triplicate.

2.4 pH effect on PPO activity

The enzymatic activity was tested using different
buffer solutions in the pH range of 4 to 9, with
intervals of 0.5 pH units. PPO activity was assayed
using 50 µL of C and MC (1000 mM) as substrate
and 100 µL of crude enzyme extract in 3 mL
buffer solutions. These were tested in the pH range

4-5.5 in 50 mM acetate buffer, 6-7.5 in 50 mM
phosphate buffer and 8-9.5 in 50 mM THAM
buffer (tris(hydroxymethyl)aminomethane-HCl). PPO
activity was determined by measuring absorbance at
the maximum wavelength of the product (420 nm). All
determinations were performed in triplicate.

2.5 Enzyme kinetics and substrate
specificity

APPO activity was assayed using C (125.5 mM),
MC (1.601 mM) and TBC (1.039 mM) in buffer at
optimum pH values, while WPPO was assayed using
substrates C (1.504 mM) and MC (1.484 mM). The
reaction rate was measured in terms of the increase in
absorbance at the wavelength of maximum absorption
for the corresponding products (λ = 420 nm). The
assays were carried out in cuvettes (3 mL) containing
the buffer solution at optimum pH, 100 µL of the crude
enzyme extract and different amounts (10-150 µL) of
the substrate solution. For each substrate, the kinetic
data were plotted as 1/activity versus 1/substrate
concentration, according to the Lineweaver-Burk
method (Leskovac, 2003). Michaelis-Menten constant
(KM) and maximum velocity (Vmax) were determined
from the linear regression curve. Substrate specificity
(Vmax/KM) was calculated using the previously
obtained data on a Lineweaver-Burk plot. All the
determinations were performed in triplicate.

2.6 Evaluation of thermal activity

PPO activity (at optimum pH values) was measured
at different temperatures in a range of 10-50ºC using
a circulation water bath. Before the addition of
100 µL of the enzyme solution, buffer solutions (3
mL) and substrate MC (APPO, 15.4 mM; WPPO,
37.8 mM) and C (APPO, 16 mM; WPPO, 35.2
mM) were kept between 10-50ºC for 15 min. All
assays were performed in triplicate. The data obtained
from the thermal activity have been used to analyze
some thermodynamic parameters related to APPO and
WPPO activities in the crude enzyme extracts.

2.7 Thermal stability

Thermal stability of PPO extract was measured at
optimum pH values. The solution was kept in a
circulation water bath at constant temperatures: 25,
30, 35, 40, 45, 50 and 55ºC for different times
lapses (5-30 min). After the mixture was cooled
in an ice bath and brought to 25ºC, 3 mL of the
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treated enzyme was mixed with approx. 0.1 mL of
C 1M (32.9 mM) and approx. 0.05 mL of MC 1 M
(15.8 mM), and residual PPO activity was determined
spectrophotometrically. All solutions were prepared
by weighing. The percentage of residual PPO activity
was calculated by comparison with the unheated
enzyme (Simas-Dias et al., 2018).

2.8 Inhibition of PPO activity

HR (0.015-1.10 mM), CA (3.10-21.5 mM), AA
(0.620-6.400 mM) and IA (1.60-6.40 mM) were
examined for their effectiveness as inhibitors of
APPO and WPPO using MC 1500 mM as substrate.
Experiments were carried out using 3 mL of reaction
mixture containing the buffer solution at optimum
pH, crude enzyme extract (100 µL), different amounts
(10-50 µL) of MC and variable volumes (µL) of the
inhibitor at the concentrations detailed above (Ali et
al., 2015).

2.9 Complexation of TBC with β-
Cyclodextrin

The oxidation of TBC by APPO was followed
spectrophotometrically at 420 nm (ε = 1150 M−1

cm−1) in the presence of increasing concentrations (0-
10 mM) of βCD at 25ºC. Experiments were performed
for three concentrations of TBC (6.30, 9.54 and 12.58
mM) with 100 µL of crude enzyme extract (Orenes-
Piñero et al., 2007).

The experimental determination of complex
formation constant using the other substrates analyzed
(C and MC) was not possible because the inclusion
complexes with these substrates were not detected.

3 Results and discussion

3.1 Effects of pH: Stability and optimum pH

Figure 1 shows the pH versus activity profile for the
enzymatic extract of the samples analyzed using MC
as substrate. The curves obtained show that the APPO
activity is the highest at pH 7, whereas WPPO presents
its maximum activity at pH 7.5. This is in agreement
with the values reported by the literature, since the
most usual pH range for the optimal PPO activity
of pears is between 5 and 7 (Singh et al., 2018).

Figure 1 

 

 

 

 

3 4 5 6 7 8 9 10
2

3

4

5

6

7

Ac
tiv

ity
 (D

Ab
s/

m
in

 m
L 

E)

pH

 WPPO
  APPO

  7.5

7

Fig. 1. pH activity profiles for Polyphenoloxidase
from Aranjuez White (APPO) and Williams (WPPO)
pears (Substrate: 4-methylcatechol; T= 298 K). Buffer
solutions: Acetate Buffer (pH 4 to pH 5.5); Phosphate
Buffer (pH 6 to pH 7.5); THAM Buffer (pH 8 to pH
9).

It can also be observed that the PPO from both
sources were inactive at pH lower than 4 and at
alkaline pH greater than 9. The optimum pH may vary
depending on some factors such as the enzyme source,
maturity of the fruit, extraction method, temperature
and substrate (Ziyan and Pekyardimic, 2004). In this
case, we have used the same extraction procedure
and the same substrates for both enzymes. Thus, the
optimum pH values depend only on pear variety. The
activity profile with respect to the incubation pH of the
enzyme was assayed and the results were expressed
as residual activity to the enzymatic activity at the
optimum pH. According to the data obtained, the pH
of highest enzyme stability is 6.5 for APPO and the
range 6.5-7.5 for WPPO. If the enzyme is at pH far
from the optimum, its secondary and tertiary structure
will be altered as a consequence of the protonation or
deprotonation of the residues of the different amino
acids that compose it. The consequence will be the
unfolding or permanent (or irreversible) denaturation
of the protein. If the environment in which the enzyme
is found is not at an extreme pH, it can retract and
return to its original conformation and activity, i.e. it
can be renatured.

3.2 PPO activity and substrate specificity

Vmax and KM values for the substrates analyzed
are listed in Table 1. The best substrate for each
enzyme depends on two factors: strong substrate
binding or high affinity (low KM value) and high

880 www.rmiq.org



Melo et al./ Revista Mexicana de Ingeniería Química Vol. 19, No. 2 (2020) 877-887

Table 1. Kinetics and Thermodynamics Parameters of PPO from pears.

Aranjuez White Williams
(APPO) (WPPO)

Substrate C MC C MC

pHOp 7.0 7.0 7.5 7.5
KM (mM) 24.34±2.23 17.04±0.05 41.37±4.17 29.69±1.29
Vmax (UE) 13061±552 10889±12.0 9300±554 7116±104

SE (UE mM−1) 539.11±26.8 639.18±1.02 226.04±8.85 240.0±6.90
Ea (kJ mol−1) 11.8±0.7 7.1±0.5 18.1±0.1 19.1±1.1

A (UE) 593.7±185 78.62±14.3 16.29±6.85 16.94±9.01
TOp (°C) 30.0 30.0 24.5 24.5

∆H, (kJ mol−1) 9.4±1.7 4.6±0.5 16.1±0.4 16.5±1.2
∆S ,(J K−1 mol−1) -195±6 -217±2 -190±1 -172±4
∆G,323 (kJ mol−1) 72.3±0.2 74.7a 77.5a 72.2a

pHop: Optimum pH; Top: Optimum Temperature; KM: Michaelis constant; Vmax:
Maximum Velocity; SE: Substrate Specificity; Ea: Activation Energy; ∆H,:
Activation Enthalpy change; ∆S ,: Activation Entropy change; ∆G,323: Free
Energy change. The error was calculated from the 95% confidence interval. a

Values calculated with error <10%.

catalytic efficiency (high Vmax value) for a fixed
enzyme concentration. Thus, the criterion for the best
substrate is the Vmax/KM ratio, known as substrate
specificity (SE) that measures the enzyme efficiency
against a given substrate (Rocha and Morais, 2001;
Tuncay, 2011). According to the results obtained,
kinetic parameters indicate that the two enzymes
analyzed have higher affinity for MC than for C. This
difference is more important for WPPO than for APPO.
The SE values listed in Table 1 coincide with those
reported for “Jonagored" apples (Rocha and Morais,
2001), for taros and potatoes (Duangmal and Owusu
Apenten, 1999), and for medlars (Dincer et al., 2002).
The same behavior has been observed in our previous
work (Garro and Gasull, 2010) for summerset peaches,
while for September peaches the enzyme showed
greater affinity for C. The same trend was observed
in artichokes (Aydemir, 2004).

3.3 Evaluation of thermal activity

It is known that the temperature has a two-sided
influence on enzymatic activity: the increase in
temperature improves the enzymatic reaction rate, but
it also causes denaturation of the enzyme.

The dependence of Vmax with the temperature can
be evaluated by the Arrhenius equation, presented in
Eq. (1) (Martinez-Monteagudo, 2018):

lnVmax = ln A−
Ea

RT
(1)

where: A is Arrhenius constant; Ea is activation energy
(J/mol); R is the universal gas constant (8.314 J/K mol)
and T is the absolute temperature in Kelvin (K).

Plotting lnVmax versus 1/T , the values of the
Activation Energy (Ea) and the Frequency Factor (A)
can be obtained from the slope and the intercept,
respectively. For APPO and/or WPPO, the plot showed
no obvious deviation from linearity. The Ea values
obtained for APPO are different (11.8 kJ mol−1 for C
and 7.1 kJ mol−1 for MC), whereas for WPPO they are
very similar (18.1 kJ mol−1 for C and 19.1 kJ mol−1for
MC). The optimum temperature is 30ºC (APPO, Fig. 2)
and 24.5ºC (WPPO).

Figure 2 
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Fig. 2. Plot of ln Activity vs 1/T for Aranjuez White
(APPO, Substrate: catechol).
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Below and above these temperatures, enzymatic
activity decreases gradually. This is consistent with
the reported temperatures for PPO activities in lychees
35ºC (Sun et al., 2008) and medlars 30ºC (Ayaz et al.,
2008), among others.

The activation parameters ∆S , (entropy change)
and ∆H, (enthalpy change) were calculated using the
Eyring equation, as shown in Eq. (2):

ln
(Vmax

T

)
= ln

k
h

exp
(
∆S ,

R

)
−
∆H,

RT
(2)

where k (1.3806 × 10−23 J/K) is the Boltzmann
constant, h (6.6261×10−34 J s) is known as the Planck
constant, and R (8.314 J/K mol) is the universal gas
constant. Results for these analyses, as well as Ea,
A and free energy change ∆G, for crude APPO and
WPPO are reported in Table 1.

It can be observed that, as expected, both enzymes
behave in the same way against the two substrates
analyzed. The values obtained from Ea and ∆H, for
WPPO are significantly higher than those for APPO.
Thus, we can conclude that WPPO is more resistant to
thermal inactivation. ∆H, is considered as a measure
of the number of noncovalent bonds broken in forming
a transition state for enzyme inactivation. The positive
values of ∆H, indicate that PPO denaturation of
both pears is an endothermic reaction. ∆S , is a
measure of the net enzyme and solvent disorder
change accompanying transition state formation. The
possible reason for negative ∆S , is an increase in the
order of the system through an aggregation process in
which a few inter or intramolecular bonds are formed,
achieving a certain ordering of the protein molecule.
Taking into account the ∆S , values, APPO is more
heat-resistant than WPPO. However, it can be observed
that the differences are not significant. For this reason,
we can conclude that WPPO is more heat resistant
than APPO. ∆G, values (at 30ºC) are very similar
for the two enzymes acting on the two substrates and
are consistent with the characteristic value (100 kJ /

mol) of protein denaturation reaction (Gouzi et al.,
2012). In general, the activation parameter values are
in agreement with those obtained in previous research
(Dincer et al., 2002; Duangmal and Owusu Apenten,
1999).

3.4 Thermal stability

For WPPO using MC and C as substrate, it was
observed that the enzyme which is incubated in pH
7.5 buffer at 25ºC between 5 and 30 min retains its
activity; whereas at 30ºC, the residual activity (RA%)
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Fig. 3. Thermal stability of Polyphenoloxidase from
Williams pear (WPPO) (Substrate: 4-methylcatechol).

decreases gradually as the temperature and the time of
exposure to heat increase. The enzyme loses between
50 and 80% of its activity (Figure 3) when heated
for 30 min. APPO behaves similarly under heating
for the two substrates tested. Its residual activity was
typically linear for all temperatures higher than 25°C
when heated for up to 5 minutes. In the longest
heating times, there is an apparent deviation from
linearity. This deviation could indicate the presence of
a second enzyme with greater thermal resistance. This
is compatible with the fact that PPO is an isoenzyme.
The values obtained for these two pears are within the
ranges reported by other authors (Rapeanu et al., 2005;
Dincer et al., 2002).

3.5 Inhibition of PPO activity

Various compounds were examined to determine their
potential for inhibition of crude APPO and WPPO
activity, using MC as substrate. These inhibitors
included analogous substrates and reducing agents.
The type of inhibition produced by the compounds was
identified applying linear regression analysis for the
Lineweaver-Burk plots at different concentrations of
substrates in the absence and presence of inhibitors.
Subsequently, the representation of the slope and/or
intercept against the inhibitor concentration used in
each case allowed to obtain the numerical value
of KI (dissociation constant of the enzyme-inhibitor
complex). The KI values reported in Table 2 show
that HR is more effective as an inhibitor of APPO and
WPPO (lower KI value) and presents uncompetitive
inhibition. In addition, AC, AA and IA act as non-
competitive inhibitors of APPO and as competitive
inhibitors of WPPO.
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Table 2. Chemistry Inhibition of PPO of Aranjuez White and Williams pears.

Aranjuez White (APPO) Williams (WPPO)

Inhibitor Type KI (mM) Type KI (mM)
HR UC 0.044±0.0014 UC 0.0104±0.011
AC NC 77.26±2.490 C 0.1328±0.002
IA NC 2.554±0.109 C 7.641±0.130
AA NC 0.245±0.0043 C 0.044±0.0051

C: Competitive; UC: Uncompetitive; NC: No Competitive (Type
Inhibition); HR: 4-hexylresorcinol; AA: ascorbic acid; CA: citric
acid; IA: sodium isoascorbate. Substrate: 4-methylcatechol. The error
was calculated from the 95% confidence interval.
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Fig. 4. Representation of Lineweaver-Burk (L-B)
equation in the presence of HR as inhibitor; Substrate:
4-methylcatechol (Uncompetitive Inhibition). Inset:
Intercept (L-B) vs HR concentration.

The relative KI values were KI(AC) > KI(IA)
> KI(AA) for APPO and KI(IA) > KI(AC) >

KAI(AA) for WPPO. In Figure 4, the graphical
representation of the Lineweaver-Burk equation for
APPO and the intercept of the previous line versus the
concentration of HR (inset) are shown. The parallel
straight lines obtained indicate that this inhibitor acts
as a uncompetitive inhibitor.

3.6 Complexation of TBC with β-
Cyclodextrin

When βCD was included in the reaction medium, the
phenolic compounds in the fruit were oxidized by
PPO to the same quinone produced as in the absence
of βCD. However, as can be observed in Fig. 5 (inset),
the oxidation rate (Abs/min) decreased in the presence
of βCD. To understand this decrease in the oxidation
rate, the effect of increasing amount of βCD in the
reaction medium at fixed substrate concentrations was

Fig. 5. Plot of Equation (8) from different
concentrations of βCD for APPO. [TBC]: 0.989 mM.
Inset: Absorbance vs. time in the presence of different
concentrations of βCD.

studied. The enzymatic browning decreased as βCD
concentrations increased. This result is produced by
the complexation of the substrate with this starch
derivative, which acts as a host to include poorly
soluble substrates as TBC. Its hydrophobic side
chain enables it to form inclusion complexes with
CDs, producing a decrease in color at low CDs
concentrations. The sparingly soluble substrate (TBC)
and βCD form an inclusion complex, characterized by
a formation constant. This constant can be determined
directly through phase solubility diagrams or some
other analytical method (Filippa et al., 2013).

In order to determine the complexation constant
(Kc) between TBC and βCD, the inhibition curves
similar to those shown in Figure 5 were studied.
Depending on the degree of enzyme saturation, that
is, on total TBC concentration, the inhibition curve
obtained was more or less sigmoidal.
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Assuming that this inhibitory effect was due to
the formation of the inclusion complexes and that free
TBC is the only form of substrate to which PPO can
react, the Michaelis-Menten rate equation could be
expressed as equation (3):

v =
Vmax[T BC] f

KM + [T BC] f
(3)

where [T BC] f refers to the concentration of free
TBC (substrate). This expression can be obtained
as a function of the total concentrations of βCD
and TBC. When a complex of stoichiometry 1-1 is
formed between [T BC] f and [βCD] f , the following
equilibrium is presented in equation 4 (Sojo et al.,
1999):

[T BC] f + [βCD] f
KC
−−→ [T BC − βCD] (4)

KC is the complex formation constant, Eq. (5):

KC =
[T BC − βCD]

[T BC] f [βCD] f
(5)

Taking into account that both TBC and βCD can
be found freely or forming complexes, the following
mass balances can be established, Eq. (6) and (7):

[T BC]t = [T BC] f + [T BC − βCD] (6)
[βCD]t = [βCD] f + [T BC − βCD] (7)

Operating with equations (5), (6) and (7) gives an
expression for [T BC] f , which is replaced in Eq. (3)
to obtain Eq. (8):

V =
Vmax[(−([βCD]tKC − [T BC]tKC + 1) +

√
([βCD]tKc − [T BC]tKC + 1)2 + 4KC[T BC]t/2KC])

KM + [(−([βCD]tKC − [T BC]tKC + 1) +
√

([βCD]tKc − [T BC]tKC + 1)2 + 4KC[T BC]t/2KC]
(8)

There is a nonlinear relationship between the
enzymatic reaction rate and the concentration of βCD
present in the reaction medium. Fitting the data by
nonlinear regression using Origin v 8.0, a value of
16888 M−1 was obtained for Kc between TBC and
βCD. In the previous expression, the values of Vmax
and KM (9.36 mM min−1 and 13.19 mM) from the
Lineweaver-Burk equation in the kinetic experiences
without βCD were used. In agreement with previous
research, the value for Kc is similar to those calculated
by other authors. Sojo et al. reported 12010 M−1

(1999) and Orenes-Piñero et al. observed 12903 M−1

(2007) for the complex TBC-βCD in an environment
where banana PPO and Streptomyces antibioticus
were present.

Conclusions

The PPO enzyme was obtained from two varieties
of pears: Aranjuez White and Williams, and they
were characterized in physicochemical terms. If we
compare results obtained for the two enzymes, we
can conclude that as far as pH is concerned, their
behaviors do not differ significantly. There is an
important difference in the optimum temperature
value. However, when the enzymes were incubated
at different temperatures, the behaviors were very
similar. The determination of the thermodynamic

parameters of denaturation provides information on
the enzyme thermal stability of the heat-induced
denaturation process. For the two enzymes analyzed,
values reported for this process were consistent with
previous research.

In relation to the inhibitor effects, HR, which was
shown to be the most efficient one, had the same type
of inhibition in both PPO, and the KI values obtained
were in the same order. Moreover, the compounds AC,
IA and AA showed a non-competitive inhibition for
APPO and a competitive inhibition for WPPO.

For the Aranjuez White pear, we found that the
decrease in browning due to βCD occurs through the
formation of an inclusion complex between βCD and
the substrate. It was possible to verify the complex
formation and to determine the magnitude of the
inclusion complex constant with TBC, which is a very
insoluble substrate.
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