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Abstract
Advanced oxidation processes aid in the degradation of contaminating organic matter, as they can form easily degradable
compounds by biologic processes or break organic matter down to its minerals. In this study, it was tested the chemical Fenton
process of chemical oxidation for organic matter degradation of petrochemical wastewater with chemical oxygen demand higher
than 20 g/L, batch laboratory experiments and continuous pilot plant tests. In batch testing, it was used the statistical factorial
experiments design, confirmed by verification tests utilizing various concentrations in water and subsequently in continuous flow
in a pilot plant by oxidation under the Chemical Fenton process. Variables’ effects on contaminant degradation in water follow
an order: pH > relation Fe2+/H2O2 > time > [H2O2]. The chemical Fenton process removes more than 50% of contaminants
chemical oxygen demand in batch laboratory testing and more than 70% in continuous pilot plant testing. Easily oxidized organic
matter consumes H2O2 at the beginning of the process, whereas organic matter that was more difficult to degrade was oxidized
with a hydroxyl radical (OH•).
Keywords: Wastewater, petrochemical industry, chemical Fenton process, pilot test.

Resumen
Los procesos de oxidación avanzada son de ayuda para la degradación de la materia orgánica contaminante, porque puede
formar compuestos fácilmente degradables por procesos biológicos o definitivamente degradar la materia orgánica hasta su
mineralización. En este trabajo se probó el proceso Fenton de oxidación química para la degradación de la materia orgánica de un
agua residual procedente de la industria petroquímica con más de 20 g/L de Demanda Química de Oxígeno. Se realizaron pruebas
de lote en laboratorio y pruebas en continuo en planta piloto. En las pruebas de lote se usó un diseño de experimentos estadístico
factorial, el cual se corroboró con pruebas de verificación empleando aguas con diferentes concentraciones y posteriormente en
un flujo continuo en una planta piloto de oxidación con proceso Fenton químico. El efecto de las variables sobre la degradación
de los contaminantes en el agua va de acuerdo al siguiente orden: pH > relación Fe2+/H2O2 > time > [H2O2]. El proceso Fenton
químico puede remover más del 50 por ciento de la Demanda Química de Oxígeno en las pruebas de lote y más del 70% en las
pruebas continuas. La materia orgánica fácilmente oxidable consume el H2O2 en el inicio, mientras que la materia orgánica más
difícil de degradar fue oxidada con el radical hidroxilo (OH•).
Palabras clave: Aguas residuales, industria petroquímica, proceso Fenton químico, planta piloto.

1 Introduction

Waste generation by companies dedicated to
petroleum refining and transformation is high;
therefore, alternative options should be sought to

treat this waste (Awaleh et al., 2014; Diya’uddeen
et al., 2011; Hu et al., 2013; Hernández-Martinez
et al., 2018; López et al., 1999). Generated waste
includes wastewater transporting abundant organic
loads when leaving processes, which indicates a high
concentration of petroleum products or byproducts
(Yu et al., 2017).
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Companies generating process wastewater or
contaminated water treat them by biological processes,
which sometimes are insufficient due to the high
organic load present in the water. Alternative or
complementary processes exist for treatment of
this type of water (Diya et al., 2011; Yu et al.,
2017; Zhong et al., 2003), including advanced
oxidation processes producing a hydroxyl radical
(HO•) (Cheng et al., 2016; Oliveros et al., 1997),
with oxidation potential only exceeded by fluorine.
The hydroxyl radical can degrade large amounts of
organic compounds. Systems capable of generating
hydroxyl radicals include Fenton processes (chemical,
electro, and photo) (Arslan-Alaton et al., 2014; Araña
et al., 2001; Bing et al., 2015; Babuponnusami
and Muthukumar, 2014; Chang et al., 2004; Anotai
et al., 2006; Guivarch et al., 2003; Khoufi et
al., 2004; Peralta-Hernandez et al., 2005; Saltmiras
and Lemley, 2000; Umar et al., 2010), UV-H2O2
(Castillo et al., 1999; Molkenthin et al., 2013; Peralta-
Hernandez et al., 2008), O3-H2O2 (Gulyas et al.,
1994), photocatalysis, and radiocatalysis with titanium
oxides as catalysts (Jiménez-Becerril et al., 2013),
among others (Dimoglo et al., 2004; Hesse et al.,
1999; Merayo et al., 2013; Oller et al., 2011).
In Mexico, specifically in Coatzacoalcos-Minatitlán-
Cosoleacaque, an industrial zone in Veracruz, many
petrochemical companies are clustered (Gonzalez-
Mille et al., 2010; Rodríguez-Dozal et al., 2012;
SEMARNAT 2008), including PEMEX petrochemical
complexes. Those companies wastewater treatment
systems can no longer purify their organic loads;
therefore, it is necessary to explore other appropriate
processes to work online with current processes or
replace existing ones to discharge treated waters
to rivers or lagoons. An alternate process to treat
petrochemical waters is the Fenton chemical process,
in which ferrous ions are oxidized into ferric ions by
the hydrogen peroxide effect (Equation 1), forming
a hydroxyl radical and hydroxide ion. Ferric ions
are subsequently reduced to ferrous ions by another
hydrogen peroxide molecule forming the superoxide
radical and a proton (Equation 2). The proton and
hydroxide ions are combined to form water molecules,
and free radicals react with contaminant substances
to oxidize them (GilPavas et al., 2012; Panizza, and
Cerisola, 2001; Peralta-Hernandez et al., 2006).

Fe2+ + H2O2 −→ Fe3+ + HO •+OH− (1)

Fe3+ + H2O2 −→ Fe2+ + HOO •+H+ (2)

From Equations 1 and 2, it can be determined that
concentrations of free hydroxyl radicals are directly
influenced by ferrous ions, hydrogen peroxide, and
[OH−] (Park et al. 1999). In this study, it was tested
the Chemical Fenton process of chemical oxidation
for organic matter degradation of Petrochemical
wastewater with COD higher than 20 g/L, batch
laboratory experiments and continuous pilot plant tests

2 Materials and methods

The present work included the following three
procedures:

2.1 Tests developed under statistical
experiment design (Series 1)

Experiment’s Samples were analyzed by COD and
toxicity. The COD was measured according to the
procedure indicated in the HACH water analysis
manual (HACH, 2000), using a HACH DR 4000
spectrometer. Testing was done in 1-L beakers agitated
in stainless-steel flat propellers in a Phipps &
Bird agitator model PB-700. Values obtained were
normalized to initial value as the percentage of
total removal after the experiment. Batch testing was
performed.

Toxicity was determined with Deltatox high-
sensitivity equipment using the bacteria lyophilisate
(Vibrio fischeri), which is a standardized method to
measure toxicity used in tasks in which it plays an
important role (Steliga et al., 2015).

The ferrous sulfate used during testing was
analytical-grade FeSO4·7H2O (J. T. Baker ACS).
The hydrogen peroxide solution utilized was 30%
analytical degree (HACH). Analytical-grade H2SO4
was used to adjust the pH. Wastewater samples
were taken from a petrochemical company whose
specialty is tensoactive and surfactant manufacturing.
Its characterization was carried out by Intertek
Testing Services according to the following standards:
Conductivity NMX-AA-093-SCFI-2000, pH NMX-
AA-008-SCFI-2000, COD NMX-AA-030-SCFI-
2001, BOD NMX-AA-028-SCFI-2001 (Table 1).
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Table 1. Characterization of wastewater from a petrochemical company.

Parameter Conductivity pH COD BOD Toxicity
(µS cm−1) (mg/L) (mg/L) (%)

Waste water 590.2 5.17 31,650 11,414 97.33

Table 2. Variables and levels used in the experimental design.
XXXXXXXXXXLevel

Parameter pH [H2O2] Ratio Time
(g/L) Fe2+/H2O2 (h)

L1 3 4.5 0.27 1
L2 4 13.6 0.33 3

Variables and levels in the chemical Fenton
process considered in the experimental design are
indicated in Table 2 (Oliveros et. al., 1997; Panizza
and Cerisola, 2001), showing that two levels and four
variables are utilized. [H2O2] values are respect to
high COD concentration.

The expression Experiments = Levelsparameters

reveals, 24=16 experiments to be developed by
applying the Stat-graphics program, which is an
assistance program in statistical-experiment design
and data analysis (San Pedro-Cedillo et al., 2015; Lira-
Pérez et al., 2019). Analysis of variance (ANOVA)
is a decision-making tool for detecting variations in
process parameters. It is a statistical technique used
to determine the optimal level of factors for the
verification of the optimal design parameters through
confirmation experiments. ANOVA is one of the most
common statistical methods applied to analysis results

to determine each parameter’s contribution ratio and
rank (Hernández-Martinez et al., 2018). In general, the
ANOVA technique has been used to find the significant
effect level of influencing parameters in response. The
resulting experimental matrix is shown in Table 3.

2.2 Verification testing with degradation
reaction variables on various COD
wastewater concentrations (Series 2)

The wastewater used here came from the same
company as the wastewater used in the Series 1
experiments. The experiment procedure and materials
utilized were the same as those utilized in the
Series 1 experiments. Series 1 testing results provided
experimental conditions with the highest COD
removal percentage, and wastewater testing was
developed with various initials, as shown in Table 4.

Table 3. Experimental conditions matrix.

Experiment
pH

[H2O2]
Ratio Fe2+/H2O2 Time (h)number (g/l)

1 3 4.49 0.27 1
2 4 4.49 0.27 1
3 3 13.65 0.27 1
4 4 13.65 0.27 1
5 3 4.49 0.33 1
6 4 4.49 0.33 1
7 3 13.65 0.33 1
8 4 13.65 0.33 1
9 3 4.49 0.27 3
10 4 4.49 0.27 3
11 3 13.65 0.27 3
12 4 13.65 0.27 3
13 3 4.49 0.33 3
14 4 4.49 0.33 3
15 3 13.65 0.33 3
16 4 13.65 0.33 3
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Table 4. Initial conditions and COD removal for the verification tests of series 2. (pH = 3, [H2O2] = 13.6 g/L,
Fe2+/H2O2 = 0.27).

Experiment number 17 18 19 20 21 22 23 24

Time (h) 1 3 1 3 1 3 1 3

Initial COD (mg/L) 29850 29850 31900 31900 35450 35450 13400 13400

COD removal
57.8 64.7 40 49.5 49.6 54.9 56.3 66.4(%)
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Fig. 1. Fenton Chemical pilot plant process schematic diagram.

2.3 Pilot testing developed with the
wastewater sample (Series 3)

With the conditions obtained in Series 1 and 2,
pilot-level testing was developed. The pilot plant
used for Fenton chemical oxidation had a capacity
of 0.7 L/min of wastewater with non-biodegradable
organic compounds. Pilot plant process: Wastewater
was stored in a 2 m3 tank and afterwards it was fed
to the continuous process using a PVC pipe with
a peristaltic pump (Fig. 1). Later it was conducted
to a static mixer and sulfuric acid was added to
adjust pH= 3.0. The wastewater was submitted to
a coalescing plate separator, where the fat and oil
were separated, before to be conducted to the Fenton
oxidation reactor. In this reactor, wastewater was
mixed with H2O2 and FeSO4. H2O2 solution was fed
with a dosing pump and the FeSO4 powder through a
screw feeder. The reaction time was 3 h. The produced
foams were separated by overflow into the fat and oil
collecting tank. The oxidized wastewater that leaves
the Fenton oxidation reactor leads to a second static
mixer where the effluent was neutralized at pH=6 with
NaOH solution. The separation of the total suspended
solids was done in a Lamellar Plate settler, where the
clear water was separated and stored in a clear water

tank. Clear water was filtered in an activated carbon
filtration system and finally discharged into the treated
water tank. Fig. 1 shows the scheme used in the pilot
plant, indicating sampling points.

The iron sulphate used in the pilot testing was
FeSO4·7H2O technical degree added in solid form
with a worm screw dispenser designed to insert the
required dose continuously. The hydrogen peroxide
solution used was 30% technical degree. The water
was obtained from the same company as in series 1
and 2; however, this sample was obtained at a later
date. The COD concentration in the water was 23,725
mg/L. Samples of process were taken and they were
analyzed by COD and toxicity.

Fig. 2. COD removal and toxicity percentage for the
experiments of series 1.
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3 Results and discussion

3.1 Results of the tests of the factorial
statistical experimental design (Series
1)

Degradation resulting in the function of response
variables is shown in Fig. 2, revealing that the
maximum COD removal obtained was 56.6% and
toxicity was reduced at 2%.

For the purpose of result analysis, they were
grouped together according to variables. The variable
pH-Time-% of COD removal (Fig. 3) on the graph
indicates that when pH = 4, at longer times, the
compound’s degradation reaction in the sample was
facilitated by the chemical Fenton process effect;
however, when pH = 3, the removal percentage
decreased with longer reaction times. Fig. 3 shows that
the removal percentage was lower when pH = 4.

Fig. 3. The pH value and time effect over COD
removal percentage of series 1.

Fig. 4. [H2O2] value and time effect over COD
removal percentage of series 1.

Fig. 5. Fe2+/ H2O2 rate and time effect over COD
removal percentage of series 1.

Fig. 6. [H2O2] value and pH effect over COD removal
percentage of series 1.

Fig. 4 shows that [H2O2]-time rate has little
influence on COD removal: the removal percentage
increases slightly, which means that with increasing
[H2O2] and shorter retention times, a slight increase
occurs within an interval from 18% to 20% removal,
but when reaction times are approximately 3 h, the
removal percentage decreases, and the [H2O2] level
increases.

On the other hand, at low [H2O2] levels, the
removal percentage is affected to a greater extent than
at high [H2O2] levels, as the reaction speed is higher
with high [H2O2] levels with almost no time effect;
therefore, more time is necessary with lower [H2O2]
levels for a total reaction to occur.

During the Fe2+/ H2O2 rate increase at 1-h reaction
times, this event causes the COD removal percentage
to remain almost constant (Fig. 5); however, when the
time is 3 h, the removal percentage decreases as the
Fe2+/ H2O2 rate increase. Under Fe2+/ H2O2 rates of
0.26, as well as comparing 1 and 3 h, the removal
percentage increases from 20% to 30% approximately.
Also, the Fe2+/ H2O2 rate is equal to the 0.32 removal
percentage and suffers slight variations in the 10%
to 20% range, indicating that [H2O2] addition has a
higher effect over removal percentage, thus requiring
more time to allow reaction completion.
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Fig. 7. [H2O2] value and time effect over COD
removal percentage of series 1.

Fig. 8. Fe2+/ H2O2 rate and [H2O2] value over COD
removal percentage of series 1.

By relating [H2O2] to pH, it can be observed that
at pH = 3, the COD removal increases with [H2O2]
(Fig. 6) and at pH = 4, the removal percentage is
reduced from 22% to 10%. When the [H2O2] value
is maintained at 5 gr/L and the pH value varies from
3 to 4, a slight increase in removal percentage occurs.
When the [H2O2] value is 13, the removal percentage
is reduced from 35% to 10%; this situation indicates
that [H2O2] positively impacts the reaction as the pH
value decreases; therefore, at low pH values and high
[H2O2] concentrations, higher organic matter removal
percentages occur. It means that H2O2 in excess react
with the organic matter easily degradable before the
HO• production. High [H+] promote the Equation 1
by OH- neutralization. In any case, the expectation is
that high acidity concentrations will inhibit organic
matter degradation reaction due to Equation 2, as
the production of high H+ ions concentrations will
cause the Equation 2 trends to occur slowly or to stop
occurring.

Fe3+ + H2O2 −→ Fe2+ + HOO •+H+ (3)

The H2O2 concentration plays an important role
in water contaminants removal, as its concentration
increase affects more than the Fe2+/H2O2 rate increase

when working at low rates (Fig. 8); however, when the
Fe2+/H2O2 rate is high, there is no substantial effect by
the H2O2 rate increase. Under the Fe2+/H2O2 rate and
H2O2 concentration conditions, the best COD removal
efficiencies are obtained (from 32 to 42%, at Fe2+/

H2O2 = 0.27 and [H2O2] higher than 11 g/L). The
high COD concentration in waste water is 31.650 g/L
while [H2O2] is 13.6 g/L, it means that there are
organic matter available and the COD removal may be
improved by H2O2 addition.

The best conditions during previous tests, and the
results obtained showed that variables most affecting
the process follow the order, pH > Fe2+/H2O2 >

time > [H2O2], which is in agreement with the
ANOVA analysis and Pareto diagram. This may be
due to the high content of organic matter degradable
by oxidation, which, when contacted with acid and
hydrogen peroxide, reacts instantaneously by avoiding
the pair Fe2+-H2O2 to work in a normal way so as
to produce the hydroxyl ion (OH•). However, after
a while, the relational effect of Fe2+/H2O2 becomes
important due to the depletion of organic matter
easily degradable by oxidation. It is observed that
part of the organic matter reacts by reducing the
pH; thus, due to the addition of sulfuric acid, the
reduction reaction becomes more predominant than
the oxidation reaction. Due to the reactivity of the
system, the use of prolonged reaction times only helps
when there is an excessive amount of reagents that
allow reaction with the products of the initial reactions
or that allow the products to come into contact with
the organic matter degradable by the oxidation that is
still present. The ANOVA analysis and Pareto diagram
indicate that the combined effects follow the next
order:

Fe2+/H2O2/[H2O2] > [H2O2]/pH > Fe2+/[H2O2]/pH
> pH/time > Fe2+/H2O2/time > [H2O2]/time

3.2 Verification testing over degradation
reaction at different COD concentrations
in water (Series 2)

Table 4 shows the replicated test results, with the best
conditions obtained in previous tests, showing that the
COD removal percentage for samples varied between
40% and 66.4%. However, for the compound samples
(Experiments 23 and 24), the same removal percentage
was maintained between 56.3% for 1 and 66.4% for 3
reaction hours, and this situation has certain similarity
with previous results (i. e. 56.6%)
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3.3 Pilot-level testing performed over
wastewater sample (Series 3).

The pilot plant operation was carried on under the
following condition: pH 3, [H2O2] 13.65, Fe2+/H2O2
0.27 and time 3 h.

COD degradation values reached a steady state for
Test through the treatment train in the pilot plant, as
shown in Fig. 9. The identification samples mentioned
above correspond to Fig. 1, showing each sampling
points where they were taken. The results indicate
that, following the pilot plant diagram, a COD removal
percentage of 84.4 can be obtained; likewise, at
the chemical Fenton reactor exit, between 55% and
63% of COD removal is obtained, and these values
coincide with those obtained during experimental
testing through laboratory tests. The increase in COD
removal using all the treatment plant processes is
due to the combination of the oxidation process and
the adsorption process, in which the organic matter
undergoes a primary degradation; subsequently, the
residual organic matter is adsorbed on activated carbon
(San Pedro-Cedillo et al., 2015).

Fig. 9. COD removal percentage with respect to
the sampling points in the pilot plant with Fenton
chemical process, Series 3.

Fig. 10. Toxicity values with respect to the sampling
points in the pilot plant with Fenton chemical process,
Series 3.

Fig. 10 shows the toxicity values for a chemical
industry-treated effluent over each sampling point in
the chemical Fenton advanced oxidation pilot plant
in a steady state. Toxicity values, that determine
toxicity, show that the chemical Fenton pilot plant
has a decreased toxicity value according to the 100%
original sample value, reaching values between 6%
and 25% toxicity for a sample treated after the
filtration process and between 27% and 31% toxicity
for a sample treated before the clarified water tank.
The toxicity measurements are an indirect indication
that treated wastewater has changed its characteristics
due to higher biodegradability. The results of the tests
performed under a statistical design system, series 1
(i.e., tests with water with different COD values and
the Fenton pilot plant tests) maintained consistency
because COD removal percentages of around 56%
were obtained when the chemical Fenton system was
utilized. In the results of the tests performed at the pilot
plant, COD removal of ∼80% was obtained due to the
complementary operations carried out in its design.

The above indicates that the studied system
presents an alternative for petrochemical wastewater
treatment; however, it should be taken as a
complementary process as the contaminants present
are not completely eliminated.

Conclusions

In the performed tests, it was showed that the variables
effects over water pollutants to reduce COD has the
following order: pH > Fe2+/H2O2 > time > [H2O2];
also, the combined variables have the following order:
Fe2+/H2O2/[H2O2] > [H2O2]/pH > Fe2+/[H2O2]/pH
> pH/time > Fe2+/H2O2/time > [H2O2]/time. The
chemical Fenton process proved the ability to reduce
petrochemical wastewaters’ COD by more than 50%
in batch testing; however, continuous testing proved
the ability to remove more than 70% COD in the
pilot plant due to the use of a more complete process
(oxidation-adsorption).
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