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Abstract
The experimentally obtained biodiesel from used vegetable oil is used as an alternative energy source that has been synthesized
from reactions directed by a solid acid catalyst. The solid acid catalyst was prepared by sulfonating rubber from rubber for used
tires. For the realization and analysis of biodiesel tests in the internal combustion engine, an experimental design was applied
in which the type of biofuel feed was used as the main control, namely pure commercial diesel (DIEP), a mixture of 50/50%
biodiesel-diesel (MEBD) and pure biodiesel (BIOP). The performance values and the emission and combustion characteristics
of the fuel feed were investigated and compared under the same experimental conditions. During gas combustion, a considerable
reduction of CO, unburned hydrocarbon and NOx emissions was achieved by using BIOP obtained in the laboratory compared
to DIEP.
Keywords: Biodiesel, used oil, sulfonation, catalyst, atmospheric emission.

Resumen
El biodiesel obtenido experimentalmente del aceite vegetal usado se utilizó como una fuente de energía alternativa sintetizada a
partir de reacciones dirigidas por un catalizador ácido sólido. El catalizador ácido sólido se preparó por sulfonación de carbón
a partir de hule de neumáticos usados. Para la realización y el análisis de las pruebas de biodiesel en el motor de combustión
interna se aplicó un diseño experimental en el que se utilizó el tipo de alimentación de biocombustible como factor de control
principal, diesel comercial puro (DIEP), mezcla de biodiesel-diesel al 50/50% (MEBD) y biodiesel puro (BIOP). Los valores de
rendimiento y las características de emisión y combustión de la alimentación de combustible se investigaron y compararon en
las mismas condiciones experimentales. Durante la combustión gaseosa, se logró una reducción considerable de las emisiones de
CO, hidrocarburos no quemados y NOx al usar BIOP obtenido en el laboratorio en comparación con DIEP.
Palabras clave: Biodiesel, aceite usado, sulfonación, catalizador, emisión a la atmósfera.

1 Introduction

Consequent from environmental problems and
high costs of fossil fuels, companies, research

centers, and government agencies, are working on
finding appropriate solutions. Hence, to avoid the
consumption of fossil fuels that are considered as non-
renewable energy (Evangelista-Flores et al., 2014;
Ahmadi et al., 2013; Sánchez-Cárdenas et al., 2016).
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Further, to eliminate the environmental impacts
caused by the depletion and usage of fossil fuels,
several research groups are developing technology
for the application of clean energy sources with
high efficiencies, such as the solar energy, biomass,
and wind that also helps in the development of the
economy (Lubis et al., 2011; Saleh et al., 2011; Al-
Nimr et al., 2016; Sánchez-Cárdenas et al., 2017;
Sánchez-Roque et al., 2019) in the transport sector.
Combustion diesel engines are used because they show
greater efficiency, more reliable and economically
feasible because they allow significant fuel savings
(Sadhik et al., 2014; Peng et al., 2018; Brusamarello
et al., 2019). However, it is time to search for the
alternative renewable biodiesel as the efficient fuel that
helps to minimize the excessive use of conventional
diesel depends on the increase of need (Ramesh et
al., 2018; Wu et al., 2017; Hosseini et al., 2017).
Regarding the regulatory framework, new regulations
for the construction of diesel engines are updated and
adapted, that allow complying with the regulations of
atmospheric pollutants emitted by the combustion of
diesel, and whose main objective is to take care of the
environment (Efe et al., 2018; Akar et al., 2018).

In the last decades, a lot of alternative fuels have
been developed, biodiesel is one of them, and they
are also called methyl esters of vegetable/animal oils,
which is considered as a viable substitute due to its
lower impact with the environment, and this is derived
from its high oxygen content and renewable nature
(Zhang et al., 2018; Emiroğlu et al., 2018; Liu et
al., 2017). On the other hand, industrial needs to
have been bordered on linking their processes with
researchers, whose job is the search for new and
more economic raw materials for obtaining biofuels
with the focus of not to interfere with the economy
of the necessary elements for human-edible use such
as residual vegetable oils and animal fats (Chiatti
et al., 2018). As an option for the conversion of
profitable renewable energies and based on previous
and successful research reports to produce biofuels,
this work based on waste vegetable oil collected
from different restaurants in Mexico is considered
as a promising source of raw material for the
production of biodiesel (Liu et al., 2017; Chiatti et
al., 2018; Faried et al., 2017). Such a raw material
comprising of vegetable oils and animal fats are
composed of triglycerides, scientifically defined as
esters of glycerol with long chains of fatty acids
(Faried et al., 2017; Mohamadzadeh et al., 2017;
Avinash et al., 2018). The use of vegetable oil in
the engine of Internal Combustion (IC) results in

carbon deposition and clogging of the injector in
the combustion chamber of the engine. This issue
can be minimized by reducing the viscosity of the
oil by transesterification (Sun et al., 2018). The
transesterification of vegetable oil used with methyl
alcohol and a solid acid catalyst, to obtain clean
biodiesel of lower viscosity (Sánchez-Olmos et al.,
2017; Medina-Valtierra et al., 2017). There have been
widely applied in solid acid catalysts for biodiesel
production (Niu et al., 2018). Among various methods
of solid acid catalysts, recently aroused the attention of
biomass-derived solid acid catalysts. However, those
solid acid catalysts are lack of surface area for the
sulfonic acid anchor, as a result, hindering biodiesel
production (Farabi et al., 2019). In the present days,
solid acid catalyst obtained from persistent materials
such as used tires has a sustainable recyclable
process (Sánchez-Olmos et al., 2017). Industrially
considering its production, biodiesel is obtained with
the chemical process of transesterification where
triglycerides react with an alcohol in the presence
of an alkaline catalyst. In general, use of NaOH or
KOH as catalyst is common for esterification and
transesterification, however, it is difficult to separate,
hence it made disadvantage. (Zhao et al., 2018).
These can occur in multiple reaction processes that
include three reversible steps in series, where initially
triglycerides are converted to diglycerides followed by
the conversion of diglycerides to monoglycerides and
in the final step, the monoglycerides are converted to
esters and glycerol (Sonthalia et al., 2019).

In the present work, methanol was used as an
alkylating agent under conditions below the critical
point in a homemade autogenous intermittent reactor
and in the presence of a solid sulfonated carbon
acid catalyst, by varying the quantity of catalyst,
temperature and reaction time with the purpose of
improving reaction efficiency, minimizing production
costs comparing to diesel fuel (Sánchez-Olmos et
al., 2017; Medina-Valtierra et al., 2017). In a
previous study, biodiesel is utilized in a diesel engine
where it was demonstrated that there is a decrease
of pollutants exposed to the atmosphere during
combustion (Sonthalia et al., 2019). However, it is
important to mention here that the inventors didn’t
make required modifications to the diesel engine for
the testing of output power and emissions of engine
pollutants like NOx, CO, HC and smoke depending on
the speed at which the steady-state conditions occur in
an engine.
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Table 1. Analysis of waste cooking.

Relative density unit value Testing Procedure

Relative Density g/ml 0.8503 ASTM D287
Free Fatty Acid % 6.3 -
Kinematic Viscosity cSt,40 °C 30.12 ASTM D445
Molecular Weight g/mol 866.23 -
Saponification value wt.% 188.21 ASTM D464

2 Materials and methods

2.1 Materials

The used vegetable oil was recollected from local
restaurants in the city of Aguascalientes, Mexico.
This raw material contains 0.45% free fatty acids,
therefore considered suitable for use in the process
of transesterification and obtaining biofuel discarding
the esterification step (Sánchez-Olmos et al., 2017;
Czekała et al., 2018). The viscosity values, acid and
water content of the oil were determined according
to the quality standard of the European Union (EN-
14214). The result of these values is with a viscosity
of 48.24 at 40 °C (mm2/s), an acid value of 0.27 (mg
KOH/g) and a water content of 0.09 (% weight) and
other data shown (Table 1). The oil was heated to
120 °C to remove excess water, and it was filtered to
remove any solid residue before participating in the
biodiesel production reactions. Anhydrous methanol
(99.8%) was obtained from Sigma-Aldrich (Mexico).
All the chemical products used were of analytical
grade.

2.2 Preparation of sulfonated carbon
catalyst

The preparation of the solid acid catalyst was began
with a pyrolysis process, in which 5 g of ground tire
rubber (pieces of 7.5 x 1.0 mm and 1 mm thick) was
placed in a stainless steel reactor at a temperature of
500 °C with a heating ramp of 15 °C/min and N2
flow of 30 ml/min for 2 h. At the end of the process,
the carbonaceous material was obtained and washed to
remove any impurities (Sánchez-Olmos et al., 2017).
For the sulfonation treatment, 10 g of carbon was taken
and refluxed with 100 ml of concentrated H2SO4 at
140 °C for 12 h in a 500 ml flask. Then, the resulting
suspension was washed with hot deionized water until
reaching a neutral pH. After washing, it was subjected

to filtration and drying at 120 °C for 24 h in an oven
to remove excess water. Finally, the sulfonated acid
carbon catalyst was obtained.

2.3 Characterization of the catalysts

The sulfonated carbon was subjected to various
physical and chemical characterizations, most of
which were described in a previous document
(Sánchez-Olmos et al., 2017). The crystalline zones
and the planes of the carbonaceous materials were
determined by X-ray diffraction (XRD) using a Bruker
diffuser D8 model. The Raman spectra were obtained
by a dispersive Micro-Raman JASCO NRS-5100
spectrophotometer. This equipment uses a laser diode
wavelength of 532 nm and 30 mW of power (Elforlight
G4-30; Nd: YAG). The total acidity and the resistance
of the acid sites of the carbonaceous material were
determined by thermally programmed desorption
(TPD) of n-butylamine using a mass spectrometer
model Prism placed in line. The adsorption/desorption
tests were carried out in a quartz microreactor at
atmospheric pressure using 0.2 g of a sample that was
previously evacuated with He, under a flow of He/Ar
saturated with n-butylamine at 0 °C. The total flow was
60 cm3/min, and the partial pressure of n-butylamine
is 28.92 Torr. After that, the saturated sample was
purged with pure He for 1 h to remove the trapped
n-butylamine residue, and further, the desorption of n-
butylamine was recorded by heating at 10 ºC/min.

2.4 Transesterification of vegetable oil

The production of biodiesel was carried out using
60 ml of used vegetable oil which was mixed with
142 ml of anhydrous methanol along with 0.03%
sulfonated carbonaceous catalyst at a temperature of
210 °C and a reaction time of 20 minutes. These
reaction conditions are maintained constant in all
experiments to obtain high-quality biodiesel (Medina-
Valtierra et al., 2017).
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Table 2. Physicochemical properties and composition of Biodiesel.

Property Unit Biodiesel

Cloud point °C 11.3
Pour pint °C 7.9
Heating Value MJ/Kg 41.1
Flash point °C 163
Could point °C 6
Density al 15 °C Kg/m3 794.9
Kinematic Viscosity mm2/s, 40 °C 4.211

The transesterification reaction was carried out in
the closed stainless steel reactor (maximum capacity
of 400 ml), a constant heating ramp of 20 °C/min
was carried out starting from the room temperature
until reaching the programmed temperature. Once the
reactor reached the reaction temperature, it started the
reaction time until it reached the programmed time. At
the end of the reaction, the reactor was quickly cooled
by placing it in a container with water at 20 °C, since
the reaction is occurring at high temperatures (Hoque
et al., 2011). The properties of biodiesel are shown in
Table 2.

2.5 Tests of biofuel in a diesel engine

The tests of power output and pollutant emissions
of the engine such as NOx, CO, HC and smoke
depending on the speed were performed under steady-
state conditions in a motor that operates with three
speeds (1400, 1600, 1800 r/min). The main injection
time was adjusted to the default engine configuration.
The pilot injection was used at a constant engine
speed of 1400 r/min, and the timing of the pilot and
the injection process was also maintained constant. In
the motor tests, three experimental runs were carried
out where the DIEP was first evaluated (Mixture of
paraffinic, olefinic and aromatic hydrocarbons, derived
from crude oil processing). Afterward, the remaining
two experiments were done firstly using MEBD where
a mixture of 50% of diesel fuel and 50% of biodiesel
were used and then the last test was carried out with
BIOP obtained in the laboratory.

2.6 Engine test

The whole set of experiments was performed at the
designed injection temperature of 23 °C, an injection
pressure of 180 bar, the speed of 1500 RPM and a
compression ratio of 17.5:1. The engine was started
manually with DIEP fuel supply and was allowed

to reach it is steady-state (for about 10 minutes).
The engine tests were carried out on a computerized
platform of a single four-stroke diesel engine. It
was directly coupled to a current dynamometer
with a fixed position so that the motor can be
maneuvered completely or partially. The motor and
the dynamometer were interconnected with a control
panel, which in turn was connected to a digital
computer. The computer software ‘Engine Analysis
Software’ was used to record the test parameters, such
as the fuel flow rate, temperatures, airflow, load, etc.
and to calculate the performance characteristics of the
engine such as the thermal efficiency of the brake,
the rate of heat release, etc. The experiments were
performed at low and high fuel load. Subsequently,
the engine was used with BIOP, DIEP, and MEBD
to determine the analysis of each of them. For
the analysis of the exhaust gases, the exhaust gas
analyzer “AVL DITEST MDS 650” was used, whose
specifications are given in Fig. 9 and to register the
opacity of the smoke, the smoke meter “TESTO 338”
was used.

2.7 Analysis of uncertainty

The uncertainties of the parameters were calculated
by sequential perturbation. Some of the average
uncertainties of the measured and calculated
parameters are airflow (1.1%), liquid fuel flow (0.1%),
gas flow (2%), engine load (0.1%), engine speed
(1.3%), cylinder pressure (0.8%), temperature (1.0%)
and lower calorific value (LCV) of the liquid fuel
(1.0%). Based on this, the calculated accuracy of
the performance and the combustion studies of the
engine are within ± 4.6%. However, the accuracy of
the emission study is ± 4.6%. The maximum variance
coefficient values of the performance parameters, i.e.,
Brake Thermal Efficiency (BTE) and Brake specific
fuel (BSFC) are 3% and 4% respectively. While the
parameters of combustion emission, namely, Peak
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Cylinder Pressure, Ignition Delay, CO, HC, and NOx
have shown VOC of 5, 4, 2, 2, and 6% respectively
(Özener et al., 2014).

3 Results and discussion

3.1 Physicochemical characterization of
carbonaceous materials

The elemental carbon composition of tire rubber
has an amount of elemental S caused by the
vulcanization of the tire rubber. Further, subjecting
this to a pyrolysis treatment it maintains an amount
of elemental sulfur in the carbon (Tovar-Martinez
et al., 2018). The quantification of the total acidity
density in the catalytic support and the sulfonated
carbon (CAS) sample was carried out by the acid-base
titration method resulting in a density of acid groups
of 0.92 mmol/g (non-sulfonated) and 2.82 mmol/g
(sulfonated). The carbon structure gave results similar
to those presented by Tang et al., 2019 and Lathiya
et al., 2018. The thermal stability of the CAS was
analyzed by TGA under nitrogen flow as shown in Fig.
1.

Fig. 1. CAS thermogravimetry analysis.

Fig. 2. The sulfonated carbon-based material XRD
pattern.

The CAS exhibits three transition zones. The
first region extends between 36-320 °C, where the
mass loss is about 4.8% by weight attributed to the
release of physically bound water and probably a
loss of -OH groups. The second transition at 400-
750 °C is attributed to the decomposition of the
remaining organic groups, together with the collapse
of the amorphous carbon structure. Above 500 ºC,
the acid group (COOH) and other functional groups
are eliminated (Lu et al 2008). In the third stage,
the disintegration appears in the range of high
temperatures typically between 700-950 ºC, due to the
existence and stability of the covalent bond between
the sulfonic acid site (-SO3H) and the carbon surface
(Bezerra et al., 2014; Devi et al., 2017). The XRD
patterns of the CAS are shown in Fig. 2.

The diffractograms show two main peaks 2θ
around 25.5 ° and 43.6 °. The first peak (plane 002)
can be indexed to graphene in nanosheets in disorder
and the second one is attributed to the plane (100)
of graphite. These results indicate the presence of
graphitic carbon. Materials such as ZnO and CaCO3
that are used for the vulcanization/polymerization
process during the manufacture of vehicle tires were
not detected in XRD as this has been suggested
by other works (Alves et al., 2012; Wang et al.,
2018). Impurity materials were removed after sulfonic
treatment, and that has considerably improved the
main peaks outlined above. This is inconsistent with
the amorphous carbon materials mentioned in previous
reports (Gopinath et al., 2017). The surface area and
porosity presented in CAS presented in Table 3, the
total BET area and the pore volume of the CAS
sample was decreased. It could be speculated that the
sulfuric acid treatment process eliminates impurities
and compounds not subject to the structure of carbon.
As a result of this, there is a decrease in total pore
volume, and the specific volume of mesopores is
generated.

Fig. 3. Isotherm of the CAS sample. Adsorption of N2;
closed symbols, desorption of N2.
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Table 3. Textural parameters of the original and sulfonated carbons.

Specific surface, ¡Pore volume, Pore average size, Mesopore specific volume
Sample SBET (m2/g) VP (cm3/g) DP (nm) (cm3/g)

C 115.943 0.403 14.112 0.373
(non Sulfonated)
CAS 97.99 0.319 18.669 0.307

Fig. 4. SEM and EDX analysis of sulfonated carbon.

The adsorption isotherms are of type II, with a
mesoporous volume between 0.20 and 0.30 cm3/g.
Two groups of mesopores were detected in the
samples, considering the IUPAC classification, which
defines mesopores as pores with diameters between
2 nm and 50 nm. A small number of narrow mesopores
(3.6 and 4.3 nm) close to being considered as
micropores (< 2 nm) were found in the CAS sample.
The second group of relatively large mesopores (18.3-
18.4 nm) was also detected, as seen in the graphs
shown in Fig. 3.

The SEM image of the CAS sample is shown in
Fig. 4. This acid catalyst is turned out to be constituted
by particles of different and irregular sizes with a
diameter of 3-40 µm. However, the large aggregate
particles could be formed due to agglomeration during
the sulfonation treatment by solid-state reactions.

The EDXs analyzes of the CAS sample were
carried out to determine its chemical composition in
weight percentage and atomic percentage. Fig. 4. is
the SEM scan of the sulfonated carbon powder where
the EDXs scan is obtained. The elemental analysis
found increase of sulfonation carbon of 214.6% (wt%)
(Sánchez-Olmos et al., 2017). The EDX analysis
also confirms the presence of a significant amount
of S. The minimum emission voltage value of S

was approximately 2.36 keV. This analysis showed
an increase in the amount of C and S in sulfonated
carbon, as shown in Fig. 4. It was observed that the
original carbon contains 1.78% S and in sulfonated
carbon (acid catalyst) 3.82% S was observed, which
shows a remarkable increase in S after the sulfonation
process. From the chemical composition in CAS, it
can be concluded that for 200 carbon atoms (C), there
are approximately 3 and 6, Sulfur (S) and Oxygen (O)
atoms respectively present on the catalyst surface.

The IR spectrum of CAS (Fig. 5.) shows a first
peak located at 617 cm−1 with a weak intensity
corresponding to the S-O bond according to the
data reported in the literature (Hou et al., 2012).
A vibratory peak at 726 cm−1 corresponds to the
aromatic residue with average intensity. An IR signal
at 1254 cm−1 with a weak intensity corresponds to
the aromatic bond C-C. One of the most important IR
peaks is located at 1074 cm−1 having strong intensity
assigned to the acid groups -SO3H and represented
by the symmetric vibration of O = S = O (Farabi et
al., 2019), other IR peaks in which carbon atoms are
involved in 1447 cm−1 and 1717 cm−1 with strong
and average intensities corresponding to the functional
group C = C and the conjugated C = O group
respectively (dos Santos et al., 2018).
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Table 4. Different processes used for the conversion of oils into biodiesel.

S. No Feedstock Catalyst FAME Yield Ref.

1 Palm fatty acid sulfonated carbon-based 94.20% Farabi et al. 2019
2 Corn acid oil orange peels-sulfonated 91.68% Lathiyaet al. 2018
3 Levulinic acid Carbon sulfonated 88.30% Özener et al. 2017
4 Waste cooking oil Carbon sulfonated 95.80% Farabi et al. 2019
5 Waste cooking oil Carbon sulfonated 94.50% Medina-Valtierra et al. 2017

Fig. 5. IR spectroscopy of CAS.

The quantification of acidity and the definition
of the acid resistance in the CAS catalyst was also
obtained from the integration of the curves in the
analysis of the thermal desorption of n-butylamine
on the surface of the CAS, resulting in the following
acid values; CAS = 2.78 mmol g−1. It defines a
large number of acid groups in the sulfonated carbon
strongly anchored in the carbon layer (dos Santos et
al., 2018; Ogino et al., 2018).

3.2 Transesterification of waste vegetable
oil

After the transesterification reaction to produce
biodiesel with CAS catalyst in the autogenous reactor,
the remaining solution was decanted to remove the
catalyst and glycerin was formed. Then, the methanol
was recovered by evaporation at 70 ºC (Sánchez-
Olmos et al., 2017). The reaction was brought to
240 ºC using a molar ratio of methanol to the oil of
24:1, a mass ratio of catalyst to the oil of 0.1, and a
reaction time of 20 min. A pressure reached 900 psi
and temperatures in the reactor played an important
role in reactivity to transesterification reactions under
subcritical methanol conditions. The biodiesel yield
was 95.69% by volume for the CAS sample. A good
result obtained from the gas chromatography analysis
was a high content of FAME in the biodiesel produced,

more than 80% by weight. Different catalysts used to
obtain biodiesel are shown in Table 4.

3.3 Effects of the reaction parameters

The parameters of biodiesel production are crucial,
which reflects the performance even more. The main
parameters analyzed were the amount of catalyst (W),
temperature (T) and reaction time (t). In general,
deactivation of the catalyst resulted from contact
between the oil and methanol in the reaction mixture
(Amani et al., 2014). To verify the optimization model,
Box-Behnken was applied, in order to determine
the best reaction conditions (T=210ºC, t=20min
and Catalyst amount (W)=0.03 wt%) yielding the
following: The combination of factor levels is
obtained, with a maximum equivalent yield of 95.69%
of biodiesel, in the indicated region, which is 210 °C,
20 min and 0.03% by weight of the catalyst. From
these statistical studies, it is suggested that the
model proposed by Medina-Valtierra et al., 2017 and
Sánchez-Olmos et al., 2017, is adequate to predict
the conversion rate of TG in the field of the variables
investigated.

Fig. 6. shows the behavior of renewable biodiesel
obtained from a sulfonated catalyst in a diesel engine
with the best conditions based on the design of
biodiesel experiments (BIOP) (Sánchez-Olmos et al.,
2017), as well as the output power for renewable
biodiesel compatible in a mixture of biodiesel-diesel
50/50 (MEBD) and commercial diesel (DIEP).

Fig. 6. Power output for BIOP, MEBD, and DIEP.
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Fig. 7. NOx emission for BIOP, MEBD, and DIEP.

When comparing BIOP, DIEP, and MEBD, a
minimum output power variation was detected, around
2% variation between each sample. The value of the
calorific value of biodiesel is responsible for this
reduction (Pinzi et al., 2013). Some authors reported
similarity in this behavior in 100% for gas and Partial
Biodiesel loads (Varatharajan et al., 2012) where they
mention a 5% power reduction and are attributed to
the calorific value of biodiesel. Likewise, it can be
attributed to the reduction of potency to the oxygens
present in the biodiesel molecule (Olikara et al., 2010;
Deng et al., 2017; Jiaqiang et al., 2018). The DIEP
starts before the MEBD and the BIOP at the time of
combustion. These behaviors are attributed to a brief
ignition delay as well as an advanced injection time
for the MEBD and BIOP samples since these two
samples containing biodiesel have a higher density and
higher kinematic viscosity (Ban-Weiss et al., 2007;
Westbrook et al., 2018).

Fig. 7. shows the analysis of the composition of
NOx present in the emissions at different speeds,
considering in the first instance that the NOx
emissions are sensitive to the oxygen content present
in the combustion mixture in the adiabatic flame,
which is referred to the temperature and pulverization
of the fuel inside the engine (Qi et al., 2009). To
considering the physical characteristics of the fuel
injection studied, NOx production can be modified,
such as the size of the fuel drop, the degree of
mixing of air and fuel inside the combustion chamber,
the evaporation rate, the geometry of the engine,
among others (Monyem et al., 2001). The samples
of BIOP, DIEP, and MEBD analyzed in the diesel
engine showed a decrease in NOx by increasing the
engine speed as when using the DIEP and MEBD
samples. This is truncated to the increase in volumetric
efficiency and gas flow within the combustion chamber
(Suresh et al., 2015).

Fig. 8. CO emission for BIOP, MEBD, and DIEP.

Likewise, considering that the molecule of the
obtained biodiesel has a higher oxygen content
compared to commercial diesel, reacting with the air
of the nitrogen-containing mixture results in a greater
NOx production upon reaction (Diya’Uddeen et al.,
2012; Patel et al., 2016).

Fig. 8. Shows the quantities of CO emissions from
the BIOP, MEBD and DIEP fuels. In this test, it was
observed that when increasing the speed of the engine,
the formation of CO decreased. This is attributed to the
decrease of the coefficient of the excess of air, and to
better combustion and evaporation of the fuel by the
temperature and pressure of injection in the cylinder
(Monyem et al., 2001). The production of CO as an
intermediate product of the process is affected mainly
by the composition of gas mixtures and temperature
(Mohan et al., 2015). This decrease in the amount
of CO can also be attributed to the oxygen content
in BIOP, MEBD, and DIEP due to poor atomization
(Roskilly et al., 2008). The DIEP fuel produced a
higher CO emission compared to the BIOP; this is
attributed to the oxygen present in the BIOP molecule,
causing better combustion of the molecule at high
temperatures in the cylinder (Dharmadhikari et al.,
2012; Özener et al., 2014).

Fig. 9. Smoke emission for BIOP, MEBD, and DIEP.
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Fig. 10. HC emission for BIOP, MEBD, and DIEP.

Fig. 9. shows the smog opacity (K), lower
K values were obtained in the BIOP, MEBD
samples compared to the DIEP sample. With samples
containing biodiesel, it showed a K decrease of 22%
for MEBD and 31% for BIOP compared to DIEP. The
value of K is formed due to incomplete combustion
(Manigandan et al., 2019). This issue is because
biodiesel has oxygen in the molecule, which causes
better combustion and fewer soot formation (Abed et
al., 2018).

The variations of HC emissions are shown in Fig.
10. The results obtained show a reduction of the
HC emissions with the increase of the engine load
for the samples of BIOP, DIEP, and MEBD used in
the diesel engine. As a first feature of the analyzed
samples, the BIOP gives a lower emission of HC
compared to the DIEP and approximately a midpoint,
the MEBD showed. This behavior is attributed to the
fact that there is better combustion in the presence
of the biodiesel molecule in the samples. Since it
contains oxygen atoms at the end of the chain, causing
better combustion in the engine (Shehata et al., 2014;
Mufrodi et al., 2018). The amount is also taken into
account of cetans present in the BIOP which causes
a decrease in HC emissions due to the delay caused
when starting the diesel engine (Qi et al., 2009;
Monyem et al., 2001). When using the MEBD sample,
it showed an 18% reduction in HC average compared
to DIEP, and the BIOP sample showed a reduction of
23% in average HC compared to DIEP.

Conclusions

The CAS material resulting from the production above
processes showed to be an efficient catalyst for the
transesterification of the used vegetable oil. From

this, we can mention that the treatment with sulfuric
acid can eliminate the impurities in the surface and
promote in the surface of the carbon with a union
of sulphonyl groups possessing strong acid character.
The heterogeneous catalyst used in this study showed
a good performance in the production of methyl esters
and was easy to separate from the liquid mixture. The
highest rate of conversion of triglycerides was 96.51%
indicated in previous works. This behavior occurred
at the reaction conditions for a temperature reaction
of 210 °C, a reaction time of 20 min and a catalyst
amount of 0.03% by weight. The results obtained in
the engine with BIOP, MEBD, and DIEP showed that
the kinematic viscosity and the relationship between
the FMAE are important factors. With the increase
of C18:1, C18:0 and C16:0 the physical ignition is
delayed, as well as C16:0, because a higher kinematic
viscosity does not favor the mixture of fuel and
air, evaporation of the fuel and the efficiency of
combustion. Therefore, the physical and chemical
ignition delay collectively affects the general ignition
time. DIEP produced fewer NOx emissions and the
lower power indicated by producing the highest HC
and CO emissions. However, better performance and
emission characteristics were observed with BIOP,
although it showed an increase in NOx emissions.
Comparing with DIEP, BIOP due to its low caloric
value and higher kinematic viscosity showed a slightly
deficient performance in its characteristics. Compared
to DIEP, at low loads, CO and HC emissions increase
by 5%, but significantly decrease by approximately
30% at medium and high load, while, at low load,
there is an increase of 5% at NOx emissions, but at
medium and high loads are reduced by approximately
30%. The oxygen content of biodiesel is beneficial and
improves combustion in the cylinder at high loads.

Nomenclature

DIEP Commercial Diesel
MEBD Mixture Of Biodiesel-Diesel 50/50
BIOP Biodiesel
IC Internal Combustion
LCV Lower Calorific Value
BTE Brake Thermal Efficiency
CAS Sulfonated Carbon
FAME Fatty Acid Methyl Ester
W Catalyst
T Temperature
t Reaction Time
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