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Abstract
Non-competitive geometric nature of L2/D controls was shown and its potential was demonstrated by applying L2/D
proportional integral (PI) algorithms to continuous concentric tubes heat exchangers (CCTHE) as example of space distributed
parameter systems. Both SISO (single input single output) and decentralized MIMO (multiple input multiple output) structures
were applied. Dynamic models of CCTHE were expressed in continuous space state. Results show that SISO L2/D PI algorithm
applied to the heat exchanger, gives similar performance and robustness with less parameters than previous geometric controls
reported in literature. The proposed L2/D PI algorithm was easily extended to decentralized MIMO structure.
Keywords: Optimal control, robust control, geometric control, heat exchangers, distributed parameter process.

Resumen
Se demostraron la naturaleza geométrica no-competitiva de controles en L2/D y su potencial aplicando algoritmos L2/D
proporcionales integrales (PI) a intercambiadores de calor de tubos concéntricos en régimen continuo (CCTHE) como ejemplo
de sistemas con parámetros distribuidos en el espacio. Se aplicaron estructuras tanto SISO (single input single output) como
MIMO (multiple input multiple output) descentralizadas. Los modelos dinámicos de los CCTHE fueron expresados en el espacio
de estado continuo. Los resultados muestran que el algoritmo L2/D PI SISO aplicado en intercambiadores de calor, entrega un
desempeño y robustez con menos parámetros que controles geométricos reportados en trabajos previos. El control PI en L2/D
fue fácilmente extendido a una estructura MIMO descentralizado.
Palabras clave: Control óptimo, control robusto, control geométrico, intercambiadores de calor, procesos con parámetros
distribuidos.

1 Introduction

Control theory has experienced an important
development in the field of Chemical Engineering
(Shih 1969; Tsiligiannis & Svoronos, 1988; Chen et
al. 2002; Hernández-Martínez et al. 2008; Goncalves
et al. 2008; García et al. 2010; Velasco-Pérez et al.
2011; Aguilar-Garnica, et al. 2011; Estévez-Sánchez
et al., 2017; Xie et al., 2018; Schorsch et al., 2019).
One of the control theory concepts, that has been
developed within the chemical engineering field, is the

L2/D control which has been successfully applied in
distillation columns (Ruiz-López et al., 2006; García-
Avarado & Ruiz-López, 2010), chemical reactors
(Carrillo-Ahumada et al., 2011), continuous stirred
tank heat exchangers (Vargas-González et al., 2014)
and even aeronautical systems (Carrillo-Ahumada et
al., 2015). Vargas-González et al. 2014 introduced
the non-competitive L2/D control as a control in
which the error signal and action control deviations
are elements of Lebesgue spaces (L2) and the close
loop characteristic matrix eigenvalues are in a limited
region (D) of left complex semi-plane.
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Ruiz-López et al. (2006) demonstrated that D
criterion implies control robustness and Voßwinkel et
al. (2019) demonstrated that D criterion is a damping
boundary of controls. L2/D controls include SISO
or MIMO (centralized or decentralized) PI or PID
algorithms that can be tuned directly from process
state-space (García-Avarado & Ruiz-López, 2010;
Carrillo-Ahumada et al., 2011; Carrillo-Ahumada
et al., 2015; Estévez-Sánchez et al., 2017). In
present day, although very complex control algorithms
have been developed, the research on mathematical
properties and applications of PI or PID algorithms
continue both in Laplace dominion (Ma et al.,
2019; Kozakova et al., 2019) and in state-space
dominion (Voßwinkel et al., 2019). State-space has
particular interest because is commonly used for
dynamic modeling of chemical engineering processes
(Alzate-Ibanez 2018; Bolaños-Reynoso et al., 2018;
Martínez-Monteagudo 2018). Although the L2/D
control has been applied in distillation columns,
columns dynamics models have been obtained by
process identification techniques and they have been
represented as transfer functions with time delay
(Ruiz-López et al., 2006; Estévez-Sánchez et al.,
2017). However, time delay is only an approximation
of the real behavior of distillation columns (Juarez-
Romero et al., 2010). The dynamic of distillation
columns (with plates of with packed bed) must be
represented as a series of N ordinary differential
equations (assuming ideal fixed units in the case
of packed bed) that increase the order of any
representation in Laplace dominion and therefore
time delay has been used for to simplify the order.
Any space distributed parameter process present the
same high order problem. Others typical examples
of distributed parameter process are the continuous
concentric tubes heat exchanger (CCTHE). Heat
exchangers optimal control has been studied at least
since Shih (1969). Recently Aguilar-Garnica et al.
(2011) applied a PI to a CCTHE; and, Maidi et
al. (2009) used boundary geometric control for
CCTHE two SISO controls. PI non-competitiveL2/D
algorithm represents a potential optimal-robust control
for CCTHE because it can handle high order systems
directly from the space-state. Therefore, this work has
two mains objectives: the geometrical formalization
of non-competitive L2/D controls in order to show
their complete potential; and, the application of
PI algorithms organized as non-competitive L2/D
optimal-robust controls for CCTHE in both SISO
and MIMO configurations as example of high order
systems.

2 Modeling

2.1 L2/D controls formalization

Resuming the concepts expressed in previous works
(Ruiz-López et al., 2006; García-Avarado & Ruiz-
López, 2010; Carrillo-Ahumada et al., 2011; Vargas-
González et al., 2014), a non-competitive L2/D
control is defined in Eqs. (1) to (7),

min I(α,β1,β2,γ,δ1, δ2) =

∫ ∞

0
e′Qedt +

∫ ∞

0
u′dRuddt

(1)
Subject to

λi : {Iλi −A| = 0} ∈ D ∀i = 1,2, . . . , (n + k)

D⊂C_ = {z : =(z)/<(z) < φ} (2)

where e = r− y ∈ Rr, ud = u− u∞ ∈ Rc and,

dx
dt

= Ax + B1w + B2u (3)

y = Cx + D1w + D2u (4)

dξ
dt

= αξ + β1r + β2y (5)

u = γξ + δ1r + δ2y (6)

u∞ = lim
t→∞

u (7)

for I : Rr ×Rc → R is a quadratic performance index,
x ∈ Rn is the state space, y is the control algorithm
state space, w ∈ Rm is the vector of output variables,
u is the vector of the input variables, r is the vector
of control variables, and is the vector of the set point.
Q ∈ Rn×n and Q ∈ Rc×c are weight matrices; A ∈ Rn×n,
B1 ∈ R

n×n, B2 ∈ R
n×c, C ∈ Rr×n, D1 ∈ R

r×c, D2 ∈ R
r×c,

α ∈ Rk×k, β1 ∈ R
k×r, β2 ∈ R

k×r, γ ∈ Rc×k, δ1 ∈ R
c×r

and δ2 ∈ R
c×r are the process and control parameters

matrices. A is the close loop characteristic matrix
when Eqs. (3) to (6) are expressed as,

dX
dt

= AX + B1w + B2r (8)

y = C1X + D11w + B12r (9)
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u = C2X + D21w + D22r (10)

where X′ = [x′ξ′] and (García-Alvarado & Ruiz-
López 2010),

A =

[
A + B2δ2∆1C B2∆2δ

β2∆1C α+ β2∆1γ

]

B1 =

[
B1 + B2δ2∆1D1

β2∆1D1

]
B2 =

[
B2∆2δ1

β1 + β2∆1D2δ1

]

C1 =
[
∆1C∆1D2γ

]
C2 =

[
δ2∆1C∆2γ

]
D11 = ∆1D1 D12 = ∆1D2δ1 D21 = δ2∆1D1

D22 = ∆2δ1 ∆1 = (I−D2δ2)−1 ∆2 = I− δ2∆1D2

It was demonstrated (Vargas-González et al.,
2014) that if α has at least c eigenvalues zeros then(∫ ∞

0 e′Qedt +
∫ ∞

0 u′dRuddt
)1/2
∈ R, and therefore is an

element of a Lebesgue space (L2), which implies that
it can be analytically evaluated under step (1(t)K)
inputs as follows,

Ie =

∫ ∞

0
e′Qedt = K′B′2PyB2K f or w = 0, r = 1(t)K

(11)

Iu =

∫ ∞

0
u′dRuddt = K′B′2PuB2K f or w = 0, r = 1(t)K

(12)
where Py and Pu were the solutions of the following
Riccati equations,

A′Py + PyA−
(
A−1

)
C′1QC1

(
A−1

)
= 0 (13)

A′Py + PyA−
(
A−1

)
C′2RC2

(
A−1

)
= 0 (14)

It is important to take into account that a geometric
control is defined as the solution of the following
optimization problem (Boscani & Piccoli 1998),

dx
dt

= f (x,u) x ∈ M u ∈ U (15)

min
(∫
N(x,u)dt +ϕ(x∞)

)
(16)

where, M is a manifold, U is a metric space, F :
M × U → M, N : M × U → R, and ϕ : M → R.
That is, a geometric control is an optimal control in
which the control action applied to a smooth process
state space x, minimize the integral of a positive norm
N . Therefore, the mathematical characteristics of non-
competitive L2/D control are defined in the following
remarks,

Remark 1 � e′Qe + u′dRud = N(x,u). That is, the
square sum of error elements plus the square sum of
control action deviation is a feasible positive norm
function of x and u. Therefore, I =

∫ ∞
0 e′Qedt +∫ ∞

0 u′dRuddt is a particular form of
∫
N(x,u)dt +

ϕ(x∞). As consequence, if A, B2, B2, C, D1, D2
are constants (Eqs 3 and 4 are linear with constant
coefficients) then x ∈ M and L2/D control defined
in Eqs. (1) to (16) is a class of parametric geometric
control with α,β1,β2,γ,δ1, δ2 as parameters. �

Remark 2 � The concept of control action deviation
square integral

(∫ ∞
0 u′dRuddt

)
introduced in our

previous work (Vargas-González et al., 2014) and
demonstrated as theorem 1 of appendix A, guaranties
that a control action integral was element of L2
(Eq. 12) at difference of typical control action square
integral

(∫ t
0 f u′Rudt

)
(García-Avarado & Ruiz-López,

2010). This concept has the decisive consequence
that

∫ ∞
0 e′Qedt vs

∫ ∞
0 u′dRuddt are non-necessarily

competitive because in optimum neighborhood (Eq.
1), increasing control actions deviations may produce
an increasing in error signals. �

Remark 3 � If exists a set of α,β1,β2,γ,δ1, δ2 for
which Σ < 0 (where Σ is the spectral abscise or Σ =

max<(λi) for λi : {|Iλi −A| = 0} ∀i = 1,2, . . . , (n + k))
then would be Hurwitz and Eqs. (13) and (14) would
have real Py and Pu solutions for Q and R positive
defined. As consequence I ∈ L2 and the system (3) to
(6) will be stabilizable and controllable. �

Remark 4 � Like I is in terms of e and ud the
optimization problem defined in Eqs. (1) and (2) does
not require that system must be observable. That is, it
is not necessary rebuild x from y. �

Remarks 1-4 state that L2/D controls defined
in Eqs. (1) to (4) are linear controls that can
be optimized simultaneously in error signals and
control action (the essence of non-competitiveness),
with robustness, damping limited (by D criterion),
with enough parameters for to be controllable and
stabilizable; and, without the necessity that systems
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must be observable. These mathematical properties are
especially useful for linear controllers of high order
systems as continuous concentric tubes heat exchanger
(CCTHE).

2.2 CCTHE dynamic modeling

A typical counter current CCTHE may be modeled
with heat balances in complete mixed volume
elements Vc j (in cold tube) and Vh j (in heat tube),

ρCpVc j
dTc j

dt
= qcρCp

(
Tc j−1 −Tc j

)
+ha

(
Th j −Tc j

)
Vc j

(17)

ρCpVh j
dTh j

dt
= qhρCp

(
Th j−1 −Th j

)
+ha

(
Th j −Tc j

)
Vh j

(18)
where j = 1,2, . . . ,N, N is the number of ideal mixed
elements (if N = 1 is a completely mixed process; if
N → ∞ is a plug flow process); ρ fluid density; Cp
fluid heat capacity; Tc cold fluid temperature, Th hot
fluid temperature, qc cold fluid flow; qh hot fluid flow;
h overall heat transfer coefficient. The average specific
surface is,

a = 4/ ((d0 + d01)/2) (18a)

where d0 is internal tube internal diameter; d01 is
internal tube external diameter. Ideally mixed units

volumes are,

Vc j =
(
πd2

0/4
)
L j (18b)

and Vh j = π
(
d2

1/4− d2
01/4

)
L j (18c)

with L j = L/N (18d)

where L is heat exchanger total length.

2.3 Linearized state space

Eqs. (17) and (18) represent a non-linear system of
differential equations. This system may be represented
by linear state space (Eqs. 3 and 4) expanding in Taylor
series around the steady state. The results are,

x′ =
[
Tc1Tc2 · ·TcNTh1Th2 · ·ThN

]
y′ =

[
TcNTh1

]
u′ =

[
ThN+1qh

]

A =

[
A11A12
A21A22

]
B2 =

[
B211B212
B221B222

]
C =

[
C11C12
C21C22

]

D2 =
[
0
]

(19)

A11 =



−
qcs
Vc1
− ha
ρCp 0 0 · · 0 0

qcs
Vc2

−
qcs
Vc2
− ha
ρCp 0 · · 0 0

· · · · ·

· · · · ·

0 0 0 · ·
qcs
VcN

−
qcs
VcN
− ha
ρCp



A12 =



ha
ρCp 0 · · 0
0 ha

ρCp · · 0
· · ·

· · ·

0 0 · · ha
ρCp


A21 =



ha
ρCp 0 · · 0
0 ha

ρCp · · 0
· · ·

· · ·

0 0 · · ha
ρCp



A22 =



−
qhs
Vh1
− ha
ρCp

qhs
Vh1

0 · · 0 0
0 −

qhs
Vh2
− ha
ρCp

qhs
Vh2

· · 0 0
· · · · ·

· · · · ·

0 0 0 · · 0 −
qhs
VhN
− ha
ρCp
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B211 =


0
0
·

·

0

 B212 =


0
0
·

·

0

 B221 =


0
0
·

·
qhs
VhN

 B222 =



ThN+1s
Vh1

ThN+1s
Vh1
·

·
ThN+1s

Vh1


C11 =

[
0 0 · · 1

]

C12 =
[
0 0 · · 0

]
C21 =

[
0 0 · · 0

]
C22 =

[
0 0 · · 0

]
(20)

Matrices (20) definition considers a general case
in where the process outputs (target variables) are the
cold temperature (TcN) at volume N (the output cold
temperature) and the hot temperature (Th1) at volume
1 (the output hot temperature in counter current).
And the handle variables for control are the input
hot temperature (ThN+1) and flow of hot temperature
fluid (qh). The subscript indicates the variable value at
steady state.

2.4 PI algorithm state space

As it was detailed in introduction section, a PI
algorithm can be organized as a non-competitive
L2/D control. In the case of decentralized MIMO
PI, for CCTHE represented by Eqs. (3) and (4) and
matrices (19) and (20), it may be expressed in terms of
Eqs. (5) and (6) with the following matrices,

α =

[
α11 α12
α21 α22

]
β1 =

[
β111 β112
β121 β122

]
β2 =

[
β211 β212
β221 β222

]

γ =

[
γ11 γ12
γ21 γ22

]
δ1 =

[
δ111 δ112
δ121 δ122

]
δ2 =

[
δ211 δ212
δ221 δ222

]
(21)

αi j = 0, β1i j = 1, β2i j = −1, γi j = Kii j, δ1i j = Kpi j,

δ2i j = −Kpi j.

(22)

In the case of SISO PI algorithm systems can be
represented with the same matrix structure (19)-(20)
and the following modifications:

1. SISO PI with hot temperature ThN+1 as handle
variable for control and cold temperature output TcN
as target variable,

A =

[
A11 A12
A21 A22

]
B2 =

[
B211
B221

]
C =

[
C11 C12

]
D2 =

[
0
]

α11 = 0 β1 = β111 β2 = β211 γ = γ11 δ1 = δ111

δ2 = δ211.
(23)

2. SISO PI with hot fluid flow qh as handle variables
for control and cold temperature output TcN as target
variable,

A =

[
A11 A12
A21 A22

]
B2 =

[
B121
B222

]
C =

[
C11 C12

]
D2 =

[
0
]

α22 = 0 β1 = β122 β2 = β222 γ = γ22 δ1 = δ122

δ2 = δ222.
(24)

In order to compare the non-competitive geometric
L2/D PI algorithm, Maidi et al. (2009) geometric
SISO controls were taken as reference. Maidi et
al. (2009) used a different modeling criterion. They
modeled the dynamic of a counter current CCTHE
with,

∂Tc

∂t
= −νc

∂Tc

∂z
+ ac(Th −Tc) (25)

∂Th

∂t
= −νh

∂Th

∂z
+ ah(Th −Tc) (26)

where νc cold fluid velocity, νh hot fluid velocity,
ac cold fluid heat transfer constant, ah hot fluid heat
transfer constant, 0 < z < L linear coordinate within
heat exchanger. And the following control laws,
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u = Th|z=L =
1
ac

[
1
τ

(
µ− Tc|z=L

)
− ν

∂Tc

∂z

∣∣∣∣∣
z=L

+ ac Tc|z=L

]
(27)

u = νh =
1

acβ2
∂Th
∂z

∣∣∣∣
z=L−ε

µ− β2νc
∂2Tc

∂z2

∣∣∣∣∣∣
z=L−ε

+ β2acνc
∂Th

∂z

∣∣∣∣∣
z=L−ε

− (2β2acνc − β1νc)
∂Tc

∂z

∣∣∣∣∣
z=L−ε

+
(
β2a2

c + β2acah − β1ac
) (

Th|z=L−ε − Tc|z=L−ε
)
− Tc|z=L−ε

]
(28)

µ = Kp

[(
r− Tc|z=L

)
+

1
τi

∫ t

0

(
r− Tc|z=L

)
dt

]
(29)

Eq. (27) is the control law for a SISO system with
inlet hot temperature as handle variable, and Eq.
(28) is the control law for a SISO system with
inlet hot fluid velocity as handle variable. In both
cases µ is calculated from a PI algorithm (Eq. 29)
with outlet cold temperature as target variable. Maidi
et al. (2009) calculated the control parameters by
geometrics technics (not detailed). Eqs. (25) and (26)
discretized in ∂z, and linearized by Taylor series
expansion, may be represented with matrix structures
(19) and (20) with the following modifications: matrix
A11 diagonal elements − νcs

L j
− ac; matrix A11 non-

diagonal elements νcs
L j

; matrix A12 elements ac; matrix

A22 diagonal elements − νhs
L j
− ah; matrix A22 non-

diagonal elements νhs
L j

; matrix A21 elements ah. B221

matrix element νhs
LN

; B221 matrix elements ThN+1s
L1

.

3 Methodology

The tuning method of a PI algorithm as a non-
competitive L2/D geometric control is the solution
of the problem defined by Eqs. (1)-(7) with matrices
(19)-(20) for CCTHE linearized state-space, and
matrices (21)-(22) for decentralized MIMO PI, or
matrices (23)-(24) for SISO PI. This problem was
solved in three steps. Every one of the following
steps was solved with the Box-Ruiz-Rodríguez-García
optimization algorithm (Ruiz-López et al., 2006), due
to its capacity for finding solution in non-convex valid
regions without derivatives of target function.

3.1 Initialization

The following problem must be solved,

minΣ (α,β1,β2,γ,δ1, δ2) (30)

where

Σ = max<(λi) λi : {|Iλi −A| = 0} ∀i = 1,2, . . . , (n + k)

That is, the problem is minimize the spectral
abscise (Σ) of the close loop control system as function
of parameters α,β1,β2,γ,δ1, δ2 in real domain. A
negative solution (a stable control system) is required.
If the case of PI algorithm, only γ,δ1, δ2 elements
are search, because α,β1,β2 are constant in agreement
with Eqs. (21) and (22). In agreement with remark 3,
if this step produces a negative value for Σ the system
is stabilizable and controllable.

3.2 Searching for and adequate geometric
spaceD

The following problem must be solved with the
solution of 3.1. as initial guess,

minφ (α,β1,β2,γ,δ1, δ2) (31)

where

φ = max
(
=(λi)/<(λi)

)
λi : {|Iλi −A| = 0} ∀i = 1,2,

subject to

Σ < Σmax

That is, the problem is to find the limit value
of φ that delimitates the geometric space D keeping
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the control system spectral abscise (D) below of a
given negative value (Dmax) which evidently must be
greater that the values obtained in 3.1. The parameters
obtained at the solution were used to evaluate the
integrals (11) and (12) with Q and R as identity
matrixes. The results lead an adequate value for with
Q and R in order that two integrals have similar metric.
This step produces an adequate reference damping
boundary (φ) for the control problem in agreement
with Voßwinkel et al. (2019).

3.3 Solving the L2/D problem

Taking the solution of 3.2. problem as initial guess,
and the adequate values for Q and R, the problem
defined in Eqs. (1) and (2) must be solved. The
problem must relax the φ value, that is, constrain for
φ must be greater than the value obtained in problem
3.2.

4 Results and discussion

4.1 SISO control with input hot fluid
temperature as control handle variable

Maidi et al. (2009) reported the CCTHE defined with
Eqs. (25) and (26) and the following parameters:
a = 2.92s−1, νc = 1m · s−1, ah = 5s−1, and L = 1m; and
steady state variables; νhs = 2m · s−1, Tc0s = 25 ºC and
Th101s = 50 ºC. In order to represent Eqs. (25) and (26)
in continuous space state the following discretization
was introduced,

dTc j

dt
= −νc

Tc j −Tc j−1

L j
+ ac

(
Th j −Tc j

)
(32)

dTh j

dt
= −νh

Th j −Th j−1

L j
+ ah

(
Th j −Tc j

)
(33)

where j = 1,2, . . . ,N. The space state was obtained
for N = 20, which produces that A ∈ R40×40 with the
elements detailed at the end of section 2. It is important
to remark that the proposed L2/D requires only 2
parameters and it does not require the evaluation of a
first derivative like in Eq. (27). The geometric control
characteristics (for Eqs. 27 and 29) tuning by Maidi et
al., (2009) and theL2/D PI control characteristics (for
matrices 23) tuning by procedure described in section
3 are listed in Table 1. The simulation of the process

control was obtained with Eqs. (32) and (33) with
N = 100. That is, the number of ideal mixed elements
used for L2/D control tuning (N = 20) was different
than those used for process simulation (N = 100). The
200 ODEs of Eqs (32) and (33) were initially solved,
by four order Runge-Kutta method, until reach steady
state in order to calculate Tc js and Th js. Finally the
process control simulation were performed solving (by
four order Runge-Kutta method) the 200 ODEs (Eqs.
32 and 33) simultaneously with the following control
equations, Maidi et al., (2009) geometric control (from
Eqs. 27 and 29),

dξ
dt

= r−(Tc100+η) (there f ore, ξ is the integral o f error)
(34)

µ = Kp

[
(r− (Tc100 + η)) +

1
τi
ξ

]
(35)

Th101 =
1
ac

[
1
τ

(µ− (Tc100 + η))− ν
(Tc100 + η)− (Tc95 + η)

5∆z

+ac(Tc100 + η)
]

(36)

L2/D control (Eqs. 5 and 6 with matrices 23),

dξ
dt

= r− (Tc100 + η) (37)

Th101 = Th101s + Kp11(r− (Tc100 + η)) + Ki11ξ (38)

And the following inputs:

r =

44.5 t < 0
50.0 t > 0

Tc0 =

25.0 t < 7s
20.0 t > 7s

(39)
η is a Gaussian white noise with 0.2 ºC of standard
deviation:

η = 0.2Z where ∼ N(0,1) (37a)

that is, Z a random number obtained from normal
distribution with mean 0 and variance 1.

The process control simulations are plotted in Figs
1 and 2 and the error and control integrals calculated
by trapezoidal rule from simulation results are listed in
Table 1.
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Table 1. Characteristics of CCTHE SISO controls with Th101 as handle variable.
Control Parameters φ (Ie, Iu)r=1(t)ss (Ie, Iu)r=1(t)sim (Ie, Iu)r=5(t)sim

Maidi et al. (2008)
L2/D

Kp = 7.8 τ1 = 1s (21,14)
τ = 1.03s
Kp11 = 1.7 1.45 (0.21, 0.03) (0.20,0.04) (6.1,1.3)

Ki11 = 3.0−1

(Ie, Iu)r=1(t)ss integrals defined in (11) and (12) evaluated with (13) and (14) with K = 1.
(Ie, Iu)r=1(t)sim same integrals evaluated with trapezoidal rule from simulation with K = 1.
(Ie, Iu)r=5(t)sim same integrals evaluated with trapezoidal rule from simulation with K = 5.

Fig. 1. Target variable evolution (Tc100) of CCTHE
SISO control with hot fluid temperature (Th101) as
control handle variable. L2/D continuous line; Maidi
et al. (2009) discontinuous line.

Fig. 2. Control handle variable evolution (Th101) of
CCTHE SISO control with hot fluid temperature as
control handle variable. L2/D continuous line; Maidi
et al. (2009) discontinuous line.

Fig. 3. Target variable evolution (Tc100) of CCTHE
SISO control with hot fluid temperature (Th101)
as control handle variable and inputs (39a). L2/D
continuous line; Maidi et al. (2009) discontinuous line.

Fig. 4. Control handle variable evolution (Th101) of
CCTHE SISO control with hot fluid temperature
as control handle variable and inputs (39a). L2/D
continuous line; Maidi et al. (2009) discontinuous line.
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It is evident that for tracking problem the L2/D
PI geometric control performs better than Maidi’s
geometric control (as can be appreciated in Table
1 integrals), otherwise in the regulatory problem
Maidi’s geometric control performs better than L2/D
PI geometric control. Resuming both controls have
good performance but the proposed requires only two
parameters and does not require the evaluation of a
first derivative.

The geometric characteristic φ and simultaneous
minimization of

∫ ∞
0 e′Qedt and

∫ ∞
0 u′dRuddt improves

the robustness and the capacity of reject noise, as
can be observed in both Figs. 1 and 2, and it was
theoretically justified by Ruiz-López et al. (2006)
and Voßwinkel et al. (2019). In this case we can
keep φ < π/2 as recommended Voßwinkel et al.
(2019). Other indications on L2/D PI robustness
are the integrals results listed in Table 1. The
integrals analytically calculated with Eqs. (1)-(14)
and therefore with linearized space-state and N = 20
have practically the same value than those numerically
obtained with non-linear equations (32) and (33) and
N = 100. These results demonstrate that geometric
L2/D PI algorithm preserves performance even with
parameters uncertainties.

The geometric L2/D PI algorithm robustness was
additionally tested with the most extreme parameters
variations suggested by Maidi et al. (2009). These
perturbations were introduced as the following input
variations,

r =

44.5 t < 0
50.0 t > 0

ac =

2.92 t < 7s
2.34 t > 7s

νc =

1.0 t < 7s
1.4 t > 7s

ah =

5.0 t < 7s
4.0 t > 7s

νh =

2.0 t < 7s
2.8 t > 7s

(39a)
Both controls simulation were plotted in Figs. 3

and 4. It is evident that geometric L2/D PI algorithm
has similar performance than Maidi et al. (2009)
bounded geometric control, with better capacity for
reject noise and with two parameters.

4.2 SISO control with input hot fluid
velocity as control handle variable

The L2/D PI characteristics (for matrices 24), for
the CCTHE described in section 4.1., tuning by
procedure described in section 3 are listed in Table
2. Integrals results listed in Table 2 demonstrate that
L2/D PI geometric control performs with the same
robustness capacity discussed for Eq. (39) inputs. In
this case Maidi et al. (2009) did not provide β1 and
β2 parameters. Therefore, the process simulation was
performed only with L2/D PI control by solving
Eqs. (32) and (33) with N = 100 (and with same
initial conditions calculated in 4.1. section) jointly the
following control Eqs.
Eqs. 5 and 6 with matrices 24,

dξ
dt

= r− (Tc100 + η) (40)

νh = νhs + Kp22(r− (Tc100 + η)) + Ki22ξ (41)

where µ is Gaussian white noise and the inputs are,

r =

44.5 t < 0
50.0 t > 0

Tc0 =

25.0 t < 14s
20.0 t > 14s

(42)

Table 2. Characteristics of CCTHE SISO control with νh as handle variable
Parameters φ (Ie, Iu)r=1(t)ss (Ie, Iu)r=1(t)sim (Ie, Iu)r=5(t)sim

Kp22 = 0.39m · s−1 ·C−1 1.30 (0.43, 0.02) (0.51, 0.02) (2.3, 0.05)
Ki22 = 0.69m · s−1 ·C−1

(Ie, Iu)r=1(t)ss integrals defined in (11) and (12) evaluated with (13) and (14) with K = 1.
(Ie, Iu)r=1(t)sim same integrals evaluated with trapezoidal rule from simulation with K = 1.
(Ie, Iu)r=5(t)sim same integrals evaluated with trapezoidal rule from simulation with K = 2.
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Fig. 5. Target variable evolution (Tc100) of CCTHE
SISO control with hot fluid velocity (Vh) as control
handle variable.

Fig. 6. Control handle variable evolution (Vh) of
CCTHE SISO control with hot fluid velocity as control
handle variable.

The simulation results are plotted in Figs. 5 and
6. Like it was not possible the direct comparison with
Maidi et al. (2009) geometric control, some dynamic
characteristic will be compared. L2/D PI control
had 6 second of stabilizing time in tracking problem
while Maidi et al. (2009) geometric control had 5
second; L2/D PI control had 9 seconds of stabilizing
time in regulator problem while Maidi et al. (2009)
geometric control had 6 seconds;L2/D PI control had
an overresponse of 0.6 ºC second in regulator problem
while Maidi et al. (2009) had 0.4 ºC. That is, the
performance of Maidi et al. (2009) was better than
proposedL2/D PI algorithm, but with four parameters
and with the necessity of first and second derivatives
evaluation (Eq. 28). Geometric L2/D PI algorithm

had good performance with good noise reject, with
only two parameters and without first and second
derivatives evaluation.

4.3 MIMO control with input hot fluid
temperature and flow as control handle
variables

The expansion of CCTHE geometric L2/D PI
algorithm to decentralized MIMO structure is natural.
Actually, Eqs. (5) and (6) with matrices (21) represent
the geometric L2/D PI MIMO algorithm. These Eqs.
are particularly written (including Gaussian white
noise ) as,

dξ1

dt
= r1 − (Tc20 + η) (43)

dξ2

dt
= r2 − (Th1 + η) (44)

Th21 = Th21s + Kp11(r1 − (Tc20 + η)) + Ki11ξ1

+ Kp12(r2 − (Th1 + η)) + Ki12ξ2
(45)

qh = qhs + Kp21(r1 − (Tc20 + η)) + Ki21ξ1

+ Kp22(r2 − (Th1 + η)) + Ki22ξ2
(46)

In this case a pilot plant CCTHE with following
characteristics were modeled: d0 = 0.228 dm,
d01 = 0.251 dm, d1 = 0.38 dm, L = 58.3 dm,
h = 18.4 W·dm−2·ºC−1, Cp = 4185 J·kg−1·ºC−1,
ρ =1kg·dm−3, qc = 0.23dm3·s−1, qhs = 0.237 dm3·s−1,
Tc0=27 ºC, ThN+1s = 57 ºC. In this case the Gaussian
white noise was η = 0.1Z. Eqs. (17) and (18)
were solved with N = 20 and the above variables
until steady state in order to obtain the initial
conditions. L2/D PI MIMO controls were tuned by
procedure detailed in Section 3. Eqs. (5) and (6) with
matrices (21) (or Eqs. 43 to 46) including decoupling
effect (Kp12,Kp21,Ki12,Ki21). In order to include this
decoupling effect during the optimization problem,
two groups of integrals were calculated,

Ie1 =

∫ ∞

0
e′Qedt = K′B′2PyB2K f or w = 0, K′ = [1,0]

(47)

Iu1 =

∫ ∞

0
u′dRuddt = K′B′2PuB2K f or w = 0, K′ = [1,0]

(48)
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Table 3. Characteristics of the CCTHE L2/D PI MIMO controls.
Parametersa φ (Ie, Iu)r=[1(t) 0]ss (Ie, Iu)r=[1(t) 0]sim

(Ie, Iu)r=[0 1(t)]ss (Ie, Iu)r=[0 1(t)]sim

Kp11 = 3.5 Kp22 = 0.36 2.6 (2.96, 1.56) (0.456, 3.87)
Ki11 = 0.58 Ki22 = 0.67 (2.60, 2.17) (0.429,5.39)

Kp12 = −0.94 Kp21 = 0.26
Ki12 = −2.0 Kp22 = 0.11
Kp11 = 4.3 Kp22 = 0.49 5.9 (3.1, 0.76) (2.7, 1.4)
Ki11 = 0.91 Ki22 = 0.09 (0.33, 0.71) (0.26, 1.8)

Kp12 = −1.4 Kp21 = −0.01
Ki12 = −2.9 Ki22 = −0.005
a: Kp1i is dimensionless; Kp2i has dm3 · s−1·ºC−1 units; Ki1i has s−1 units;
Ki2i has dm3·s−2·ºC−1 units.
ss integrals defined in (11) and (12) evaluated with (13) and (14) with K = 1.
sim integrals evaluated with trapezoidal rule from simulation with K = 1.

Ie2 =

∫ ∞

0
e′Qedt = K′B′2PyB2K f or w = 0, K′ = [0,1]

(49)

Iu2 =

∫ ∞

0
u′dRuddt = K′B′2PuB2K f or w = 0, K′ = [0,1]

(50)

And the section 3.3. problem was solved with,

minI(α,β1,β2,γ,δ1, δ2) = Ie1 + Iu1 + Ie2 + Iu2 (51)

as target function.

Fig. 7. Tc20 evolution of CCTHE MIMO L2/D
control. φ < 5.8 continuous line; φ < 2.6 discontinuous
line.

Like there are not previous reported controls for
comparison, two possible solutions for L2/D PI
MIMO controls were reported in Table 3. In this case
it was not possible to keep φ < π/2 and the first
solution was obtained with φ < 2.6. Even that, this
constrain for D region limits the minimization of Iu1
and Iu2 variables. Therefore, in the second solution the
constrain was relaxed to φ < 5.9, which allowed to
decrease the cited integrals (Table 3). Result listed in
Table 3 leads to remark 5.

Remark 5 � In Table 3 results can be observed that
like Ie1 ∈ L2, Ie2 ∈ L2, Iu1 ∈ L2 and Iu2 ∈ L2,
the integrals can be reduced simultaneously in the
minimization of I = Ie1 + Iu1 + Ie2 + Iu2. Instead, the
typical action control square integral is competitive
with error square integral. Table 3 results represent
a case in which Ie1, Ie2, Iu1 and Iu2 are non-
competitive.�

The two solutions were simulated with,

r =

37.9 t < 0
38.9 t > 0

Tc0 =

39.1 t < 100s
40.1 t > 100s

(52)

The results are plotted in Figs. 7 to 10. Both
solutions had similar behaviors in the first target
variable (Tc20), but the φ < 5.9 control performs better
for the second target variable (Th1). The noise in
control actions (Figs. 9 and 10) were closely but with
a bit better rejection capacity by φ < 5.9 control. That
is, the reduction of Iu1 and Iu2 integrals guaranties
the noise rejection. The robustness of proposed L2/D
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PI MIMO geometric control can be appreciated in
integrals listed in Table 3. The integrals analytically
solved with Eqs. (47)-(50) and linearized model have
even greater value than those obtained numerically
with non-linear model (Eqs. 17 and 18). This result
demonstrates that L2/D PI MIMO geometric control
holds the performance even with uncertainness in
parameters.

Fig. 8. Th1 evolution of CCTHE MIMOL2/D control.
φ < 5.8 continuous line; φ < 2.6 discontinuous line.

Fig. 9. Th21 evolution (first handle control variable)
of CCTHE MIMO L2/D control. φ < 5.9 continuous
line; φ < 2.6 discontinuous line.

Fig.10. qh evolution (second handle control variable)
of CCTHE MIMO L2/D control. φ < 5.9 continuous
line; φ < 2.6 discontinuous line.

Conclusions

It was demonstrated that problem defined in Eqs. (1)
to (7) represents a non-competitive L2/D parametric
geometric control, which improve the potential
(described in remarks 1-5) of any control algorithm
that can be represented by this problem as optimal-
robust control. The tuning algorithm based on this
definition found two sets of parameters duple (Kp,Ki)
under L2/D PI SISO criterion (as examples of linear
control algorithms), for continuous concentric tubes
heat exchanger (CCTHE) with similar performance
and robustness than other geometric controls with
three and four parameters. The L2/D PI algorithm
was easily extended to a CCTHE decentralized MIMO
control. The CCTHE MIMO L2/D control was an
example in which errors integrals vs control signals
were non-necessarily competitive like it was stated in
remark 2.
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Appendix A

� Theorem 1

For system defined with Eqs. (3)-(10) in minimal
realization, with a zero pole in α, β1 β2, γ, δ2
and δ2, and with A Hurwitz,

Iu =

∫ ∞

0
u′dRuddt = K′B′2PuB2K

f or w = 0, r = 1(t)K (A.1)

where

A′Pu + PuA +
(
A−1

)′
C′2RC2

(
A−1

)
= 0 (A2)

Proof

Analytical solution (for matrices with constant
elements) of Eq. (8)-(10) is,

X = A−1
(
eAt − I

)
(B2K) (A3)

y = C1A−1
(
eAt − I

)
(B2K) + D12K (A4)

u = C2A−1
(
eAt − I

)
(B2K) + D22K (A5)

Like the system described with Eqs. (3)-(10) is
in minimal realization with A Hurwitz implies,

lim
t→∞

C1A−1eAtB2K = 0 and

lim
t→∞

C2A−1eAtB2K = 0 (A6)

and with a zero pole in α, β1 β2, γ, δ1 and δ2
(integral action), under a step disturbance the
error has not off set (e(t) ∈ L2+) implies,

lim
t→∞

y = r = K, lim
t→∞

u = u∞ = −C2A−1B2K + D22K

(A7)

Therefore from A(5), A(6) and (A7),

u− u∞ = C2A−1eAtB2K

And therefore,

Iu =

∫ ∞

0
u′dRuddt

= K′B′2

∫ ∞

0

(
eAt

)′ (
A−1

)′
C′2RC2A−1eAtdtB2K

(A8)

By the other hand, Θ = eAt is the solution of,

dΘ
dt

= AΘ with Θ(t) = 1 (A9)
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Lyapunuv function of Eq. (A9) is V(t) = Θ′PuΘ

and its derivative,

V̇(t) = Θ′(A′Pu + PuA)Θ = Θ′RΘ (A10)

Like A is Hurwitz V̇(t) ≤ 0 ∀t or,

A′Pu + PuA = −R where R is positive de f inite
(A11)

Defining from (A8) R =
(
A−1

)′
C′2RC2

(
A−1

)
and from (A11),

∫ ∞

0

(
eAt

)′ (
A−1

)′
C′2RC2A−1eAtdt = −

∫ ∞

0
Θ
′RΘdt

=

∫ ∞

0
V̇(t)dt = −V(t)∞0 = Pu

(A12)

which proof the theorem.�
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