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Abstract
The linear quadratic regulator (LQR) method is generalized to allow synthesis of PID controllers in MIMO processes. The
proposed method is sequentially applied to produce proportional, integral and derivative actions. Three major usages are
conceived for the proposed methodology: (i)�de novo� design of PID controllers, (ii) addition of derivative action to existing
PI controllers and (iii) diagonalization of PID gain matrices. The two last procedures can be applied to controllers designed
with different methodologies. The developed method was applied to the�de novo� design of a centralized PID controller for a
three input-three output distillation column as well as the addition of derivative action to existing both centralized and multiloop
PI controllers for a nonlinear continuous stirred tank reactor (CSTR). The proposed LQR method allowed the synthesis of
centralized and multiloop PID controllers with better characteristics for set-point tracking, disturbance rejection, limited use of
control signal and insensitivity to plant model uncertainty than those reported by other authors.
Keywords: Lyapunov function, quadratic index, quadratic optimal control, robust control, state-space model.

Resumen
Se generalizó el método de reguladores lineales cuadráticos (LQR, por sus siglas en inglés) para permitir la sı́ntesis de
controladores PID en procesos con múltiples entradas y múltiples salidas. El método propuesto se aplica secuencialmente
para producir las acciones proporcional, integral y derivativa. Se conciben tres usos principales para la metodologı́a propuesta:
(i) el diseño �de novo� de controladores PID, (ii) la adición de la acción derivativa a controladores PI existentes y (iii)
la diagonalización de las matrices de ganancias PID. Adicionalmente, los dos últimos procedimientos se pueden aplicar a
controladores diseñados con diferentes metodologı́as. El método desarrollado se aplicó al diseño�de novo� de un controlador
centralizado PID para columna de destilación de tres entradas-tres salidas ası́ como a la adición de la acción derivativa a
controladores existentes PI centralizados y multilazo para un reactor continuo de tanque agitado (CSTR, por sus siglas en
inglés) no lineal. El método LQR propuesto permitió la sı́ntesis de controladores PID centralizados y multilazo con mejores
caracterı́sticas de seguimiento de referencia, rechazo a perturbaciones, uso limitado de la señal de control e insensibilidad a
incertudumbre en el modelo de la planta que aquellos reportados por otros autores.
Palabras clave: control óptimo cuadrático, control robusto, modelo en espacio de estados, función de Lyapunov, ı́ndice
cuadrático.

1 Introduction

Nowadays, proportional-integral (PI) and
proportional-integral-derivative (PID) algorithms are
the preferred control methods for most modern

industrial processes because they have a simple
structure and can be designed to exhibit both good
performance and robustness characteristics (Flores-
Estrella et al., 2016; Salazar-Pereyra et al., 2016;
Estévez-Sánchez et al., 2017; Besta et al., 2018; Cruz-
Rojas et al., 2019; Ma et al., 2019).
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However, when processes have multiple-
input/multiple-output (MIMO) dynamics with
complex interactions among variables, such as most
chemical processes (Pathiran and Jagadeesan, 2018),
the design of PI/PID controllers simultaneously
achieving a correct control system operation
(adequate set-point tracking, disturbance rejection and
insensibility to model uncertainty) is not an easy task
(Liu et al., 2010; Maghade and Patre, 2012; Ram and
Chidambaram, 2015; Besta et al., 2018); moreover, the
application of tuning methods developed for single-
input/single-output (SISO) plants to individual control
loops may compromise performance and stability (Vu
and Lee, 2010; Nandong and Zang, 2014).

The quadratic optimal control is a state-
space design methodology based on determining
a multivariate feedback controller (a.k.a. linear
quadratic regulator or LQR), through minimization
of a quadratic performance index of both control
and state variables (Estévez-Sánchez et al., 2017).
The trade-off between the acceptable deviation
in the trajectories of the state variables and
control signals is adjusted by the elements of two
weighting matrices (Das et al., 2013). The LQR
approach can be also used to obtain output feedback
(proportional) or PI controllers. For MIMO processes,
the controllers produced by using the LQR approach
have a centralized structure, and recent studies have
demonstrated that LQR method can be applied to
obtain diagonal PI control structures (Estévez-Sánchez
et al., 2017). However, the synthesis of controllers
including the derivative action via the LQR method
is restricted to SISO plants based on first and second
order plus time delays transfer functions (He et al.,
2000; Srivastava et al., 2016).

The number of adjustable parameters for an o ×
o square MIMO process using a centralized PID
controller is 3 × o × o. Thus, the PID control
design for a 2 × 2 MIMO system involves the
tuning of 12 parameters, but the number of involved
variables increases up to 27 and 48 for 3 × 3 and
4 × 4 MIMO processes, respectively. It is clear
that the optimization problem of finding the control
parameters set achieving process stability as well as
some other performance measures quickly escalates
in size and complexity (Pathiran and Jagadeesan,
2018), specially when considering that no previous
information about the feasible solution space is
known. This problem can be simplified by considering
a multiloop control whenever the process allows for
it or existing control hardware does not have the
capacity to implement the centralized structure. In

this case, an o × o MIMO process only has 3 ×
o adjustable gains. However, as opposed to other
methods such as the covariance matrix adaptation
evolution strategy (Iruthayarajan and Saskar, 2010)
or the preference ranking organization methods for
enrichement evaluations (Rodrı́guez-Mariano et al.,
2015), the searching task for optimal parameters in
LQR methodology does not directly occur in the
original space of controller gains but in the space of
weighting matrix elements and full centralized o × o
PI controllers can be obtained by adjusting as few as
o parameters in single or sequential steps (Estévez-
Sánchez et al., 2017), vastly reducing the dimension
of the optimization problem.

The objective of this work is to generalize the LQR
methodology to allow the synthesis of full centralized
PID controllers with good performance and robustness
characteristics. This method is based on the sequential
synthesis of proportional, integral and derivative
actions with o adjustable parameters in each step.
Furthermore, the addition of derivative action to
existing PI controllers as well as the diagonalization
of PID gain matrices are also considered.

2 Theory

2.1 Outline of the studied system

The following linear time-invariant (LTI) system is
able to represent a wide range of chemical engineering
processes equipped with a linear controller:

ẋ = ax + b1w + b2u (1)

y = cx + d1w + d2u (2)

ξ̇ = αξ + βe (3)

u = γξ + δe + KIq (4)

q =

∫ t

0
edt (5)

e = r − y (6)

where x ∈ Rn×1, w ∈ Rs×1, u ∈ Rc×1, y ∈ Ro×1,
q ∈ Ro×1, r ∈ Ro×1 and ξ ∈ Rs×1 are the system state,
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exogenous signal, control, measured output, output
error, set-point and control state vectors, respectively.
Here, a ∈ Rn×n, b1 ∈ R

n×m, b2 ∈ R
n×c, c ∈ Ro×n,

d1 ∈ R
o×m, d2 ∈ R

o×c, α ∈ Rs×s, β ∈ Rs×o,
γ ∈ Rc×s, δ ∈ Rc×o and KI ∈ R

o×c. Eqs. (3)-(4) are
able to represent a wide range of linear controllers
with proportional, integral and derivative actions, as
follows:

• Proportional (P) control.

α = 0; β = 0; γ = 0; δ = KP; KI = 0
(7)

• Proportional-integral (PI) control.

α = 0; β = 0; γ = 0; δ = KP (8)

• Proportional-integral-derivative (PID) control
with filter. Eqs. (3) and (4) do not allow
representation of improper transfer functions
such as the ideal PID controller. Thus, PID
structure must be modified with a filter to turn it
into a proper function. However, since controller
gains are not contained in a single matrix such
as KP or KI , the state-space representation of
this structure is not as straightforward as for
the P or PI controls. The transfer function of a
PID controller with filter relating the i-th control
variable with the j-th error signal is given by

ui (s)
e j (s)

=

(
kPi j +

kIi j

s
+ kDi js

) (
1

τi js + 1

)
(9)

The above equation has the following state-
space observable canonical form representation

dξi j

dt
= αi jξi j + βi je j (10)

ui = γi jξi j + δi je j + kIi jq j (11)

αi j = −1/τi j; βi j = 1; γi j =
kPi j

τi j
− kIi j −

kDi j

τ2
i j

;

δi j =
kDi j

τi j
(12)

The i× j controllers can be grouped in the state-
space representation given by eqs. (3) and (4)
with the following definitions

α∗i = diag
([
αi1 αi2 . . . αio

])
∈ Ro×o

(13)

α = diag
([
α∗1 α∗2 . . . α∗c

])
∈ Rco×co

(14)

β∗i = diag
([
βi1 βi2 . . . βio

])
∈ Ro×o

(15)

βT =
[
β∗1 β∗2 . . . β∗o

]
∈ Ro×co (16)

γ∗i =
[
γi1 γi2 . . . γio

]
∈ R1×o (17)

γ = diag
([
γ∗1 γ∗2 . . . γ∗c

])
∈ Rc×co (18)

δ =


δ11 . . . δ1o
...

...
δc1 . . . δco

 ∈ Rc×o (19)

KI =


kI11 . . . kI1o
...

...
kIc1 . . . kIco

 ∈ Rc×o (20)

2.2 Outline of the LQR methodology

Let us consider the following LTI system equipped
with a full-state feedback controller

Ẋ = AX + B1W + B2U (21)

Y = CX (22)

U = −KX (23)

where X ∈ RN×1, W ∈ RS×1, U ∈ RC×1 and Y ∈

RO×1 are the system state, exogenous signal, control
and measured output. The system coefficients have
dimensions A ∈ RN×N , B1 ∈ R

N×E , B2 ∈ R
N×C ,

C ∈ RO×N and K ∈ RC×O. LQR methodology can
be applied to obtain the optimal full-state feedback
controller described in Eq. (23) by minimizing the
infinite-horizon cost function

J =

∫ ∞

0
(XT Q̂X + UT R̂U)dt (24)

where Q̂ ∈ RN×N is a positive-definite (or positive-
semidefinite) matrix and R̂ ∈ RC×C is a positive-
definite matrix. The matrices Q̂ and R̂ modify the
trade-off between permisible error and magnitude of
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control signals, respectively. The optimal feedback
gains are calculated as

K = R̂−1BT
2 P (25)

where P is obtained from the solution of the algebraic
Ricatti equation:

AT P + PA + PB2R̂B2P + Q̂ = 0 (26)

LQR methodology allows the estimation of classical
P and PI controllers for system (1)-(6) by introducing
proper variable definitions for X, W, U, Y, A, B1, B2,
C, Q̂, R̂ and K as follows:

• Proportional (P) control.

X = x; Y = y; A = a; B1 = b1; B2 = b2;

C = c; K = KPc (27)

• Proportional (PI) control.

YT =
[

y q
]

; A =

[
a 0
−c 0

]
;

C =

[
c 0
0 Ir

]
; K =

[
−KPc KI

]
(28)

• Integral action added to a P control (Estévez-
Sanchez et al., 2017).

YT = q; A =

[
a − b2KPc 0
−c 0

]
;

C =
[

0 Ir

]
; K = −KIC (29)

In the case of the one-step or sequential synthesis
of integral action,

XT =
[

x q
]

; B1 =

[
b1
0

]
; B2 =

[
b2
0

]
(30)

In all cases,

U = u; W = w; Q̂ = CT QC; R̂ = R (31)

2.3 Synthesis of derivative action via LQR
approach

Estévez-Sánchez et al. (2017) proposed that integral
action could be sequentially applied to a plant
already equipped with a P controller by using LQR
methodology. For achieving this purpose, the plant is
set in closed-loop with the proportional gains but it is
left in open-loop with the integral action. In this work,
the same idea is explored for the synthesis of derivative
action; the plant is set in closed-loop with PI gains,
while the derivative action is in open-loop. Thus, the
following state-space representation is proposed:

Y = ẏ; A =

[
a − b2KPc b2KI

−c 0

]
;

C = [Ir + cb2KD]−1
[
−ca + cb2KPc −cb2KI

]
;

K = −KDC (32)

where the remaining variables are defined as in eqs.
(30) and (31). Unlike the synthesis of the integral
action, in this case the open-loop matrix C also
contains the derivative gains. Thus, the following
iterative procedure is proposed to the synthesis of the
derivative action:

1. Assemble A and B2.

2. Initialize KD = 0.

3. Assemble C and Q̂.

4. Estimate K with Eq. (25) and then KD from
definition given in Eq. (32) as KD = −KC−1.

5. Repeat steps (3)-(5) until KD no longer changes
between iterations.

Multiloop versions of centralized PID controllers
can be obtained through a sequential method. The
diagonalization of derivative gains matrix is based
on its Jordan decomposition, extending the original
method reported by Estévez-Sánchez et al. (2017) for
PI gains. The method is as follows:

1. Assemble A and B2.

2. Initialize R̂ = I.

3. Assemble C and Q̂.

4. Solve Eq. (26) to get P and estimate K with Eq.
(25).
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5. Calculate KD from definition given in Eq. (32)
as KD = −KC−1.

6. Get the Jordan matrix decomposition of KD

as KD = VDV−1 where D and V contain the
eigenvalues and eigenvectors of KD.

7. Set KD = D.

8. Calculate KD from definition given in Eq. (32)
as KD = −KC−1.

9. Estimate R̂ from Eq. (25) as R̂ = BT
2 PK−1

10. Repeat steps (4)-(9) until KD no longer changes
between iterations.

PI gain matrices can be diagonalized in the same way
as reported by Estévez-Sánchez et al. (2017).

2.4 Multivariable PID controller design for
the Ogunnaike distillation column

The proposed methodology was applied to the �de
novo� design of a centralized PID controller for a
three input-three output distillation column.

2.4.1 Process model

Consider a 19-plates distillation column to separate
ethanol from water, having variable feed and side
stream draw-off locations (Ogunnaike et al., 1983).
This system has the following transfer matrix
representation:

G(s) =


0.66e−2.6s

6.7s+1
−0.61e−3.5s

8.64s+1
−0.0049e−s

9.06s+1
1.11e−6.5s

3.25s+1
−2.36e−3s

5.0s+1
−0.012e−1.2s

7.09s+1
−34.68e−9.2s

8.15s+1
46.2e−9.4s

10.9s+1
0.87(11.61s+1)e−s

(3.89s+1)(18.8s+1)


(33)

The transfer matrix (33) was written in the
state-space form of eqs. (1)-(2) where the delay
terms were aproximated as a series of first
order systems. The transportation lags of u1, u2
and u3 were divided before approximation as
e−9.2s = e−1.3s−1.3s−1.95s−1.95s−1.35s−1.35s, e−9.4s =

e−1.5s−1.5s−0.5s−2s−1.95s−1.95s and e−1.2s = e−0.5s−0.5s−0.2s,
respectively. Thus, the largest delay chain for each
control variable can be used to generate the shorter
lag terms. For example, the partition of e−9.2s in g31(s)
also produces the terms e−2.6s and e−6.5s required in
g11(s) and g21(s), respectively. In this way, a total of

15 first order models were neccesary to approximate
the 9 transportation lag terms in Eq. (33). The
time constants of these auxiliary first order models
represented between the 5.5 and 60% of the smallest
one found in the original transfer functions of Eq. (33).
In this case, x ∈ R25×1, u ∈ R3×1 and y ∈ R3×1. The
non-zero elements of matrices a = f−1â, b2 = f−1b̂2
(f, â ∈ Rn×n) and C are: f1,1 = f2,2 = 1.3, f3,3 = 6.7,
f4,4 = f5,5 = 1.95, f6,6 = 3.25, f7,7 = f8,8 = 1.35,
f9,9 = 8.15, f10,10 = f11,11 = 1.5, f12,12 = 5,
f13,13 = f19,19 = f20,20 = 0.5, f14,14 = 8.64, f15,15 = 2,
f16,16 = f17,17 = 1.95, f18,18 = 10.9, f21,21 = 9.06,
f22,22 = 3.89, f23,23 = 1, f24,24 = 0.2, f25,25 = 7.09,
â1,1 = â2,2 = â3,3 = â4,4 = â5,5 = â6,6 = â7,7 =

â8,8 = â9,9 = â10,10 = â11,11 = a12,12 = a13,13 =

a14,14 = a15,15 = â16,16 = â17,17 = â18,18 = â19,19 =

â20,20 = â21,21 = â22,22 = â24,24 = â25,25 = −1,
â2,1 = â4,2 = â5,4 = â7,5 = a8,7 = a11,10 = a13,11 =

a15,13 = â16,15 = â17,16 = â20,19 = â23,22 = a24,20 = 1,
â3,2 = 0.66, â6,5 = 1.11, â9,8 = −34.68, â12,11 = −2.36,
â14,13 = −0.61, â18,17 = 46.2, â21,20 = −0.0049,
â22,20 = 0.87, â23,23 = −1/18.8, â25,24 = −0.012,
b2,1,1 = b2,10,2 = b2,19,3 = 1, c1,3 = c1,14 = c1,21 =

c2,6 = c2,12 = c2,25 = c3,9 = c3,18 = 1, c3,22 =

11.61/18.8, c3,23 = −1/18.8 − (1/18.8)(11.61/18.8).
Matrices b1, d1 and d2 do not exist in this system.

2.4.2 Screening of control weights for the synthesis
of PID controllers

Matrices Q and R were considered to be diagonal
during the controller synthesis, a common choice in
other studies dealing with LQR methodology (Das
et al., 2013; Estévez-Sánchez et al., 2017). In this
system, output y3 (a temperature value) is not in
the same magnitude order as outputs y1 and y2
(composition data). If Q is diagonal then∫ ∞

0
YT QYdt =

O∑
i=1

qii

∫ ∞

0
Y2

i dt (34)

Elements in Q must be chosen in such a way that
each integral of squared output errors has the same
magnitude order; thus, the ratio qii/q33 (i = 1, 2)
should be in the range of 10 to 100. In this study,
controllers were obtained by exploring the resulting
combinations of the diagonal elements in R in the
following ranges:

• Synthesis of the proportional action

Q =

 100 0 0
0 100 0
0 0 1

 ;
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log10 R =

 0, . . . , 2 0 0
0 1, . . . , 3 0
0 0 −2, . . . ,−1


(35)

• Synthesis of the integral action

Q =

 100 0 0
0 100 0
0 0 10

 ;

log10 R =

 4, . . . , 6 0 0
0 5, . . . , 6 0
0 0 −1, . . . , 3


(36)

• Synthesis of the derivative action

Q =

 100 0 0
0 100 0
0 0 1

 ;

log10 R =

 1, . . . , 2 0 0
0 0, . . . , 1 0
0 0 −2, . . . ,−1


(37)

A logarithmic step size of 0.1 (base 10) was
considered in all cases.

2.4.3 2.4.3 Closed-loop indices for the selection of
PID control

Once the relative importance of each output is
determined with Q, all LQR controllers minimize Eq.
(24) for the selected control weight R. However, it
is worth noting that the index (24) does not contain
the real output or control signals, but it contains
extended output or control signals conveniently defined
to achieve the synthesis of the required control
action (proportional, integral or derivative). Thus, the
selection of the LQR controllers for different control
weights must be further refined through estimating
additional performance and robustness indices. These
indices can be evaluated by considering the following
closed-loop representation of the plant given by eqs.
(1)-(6):

z = Az + B1w + B2r (38)

y = C1z + D11w + D12r (39)

u = C2z + D21w + D22r (40)

A =

 a − b2δ∆c b2∇γ b2∇KI
−β∆c α − β∆d2γ −β∆d2KI
−∆c −∆d2γ −∆d2KI

 ;

B1 =

 b1 − b2δ∆d1
−β∆d1
−∆d1

 ; B2 =

 b2∆δ
β − β∆d2δ
Ir − ∆d2δ


(41)

C1 =
[

∆c ∆d2γ ∆d2KI

]
; D11 = [∆d1] ; D12 = [∆d2δ]

(42)

C2 =
[
−δ∆c ∇γ ∇KI

]
; D21 = [−δ∆d1] ; D22 = [∇δ]

(43)

∆ = [Ir − d2δ]−1
∇ = Ic − δ∆d2 (44)

The integrals of squared output errors (Iy) and squared
control signals (Iu) allow to quantify the ability of the
controller to accurately follow a reference or reject a
disturbance and its associated energy usage:

Iy =

∫ ∞

0
(r − y)TQ(r − y)dt (45)

Iu =

∫ ∞

0
(u∞ − u)TR(u∞ − u)dt (46)

Here, matrices Q and R allow the selection of
the desired output or control signal, respectively.
Garcı́a-Alvarado and Ruiz-López (2010) and Vargas-
González et al. (2013) demonstrated that, if the system
does not have steady-state error, indices Iy and Iu

are finite and have analytical solutions when step
or impulse forcing functions are applied to r (servo
problem, r = k2) and w (regulator problem, r = k1),
eliminating the requirement of performing system
simulations. These solutions are given by

Ik
j−i = ΩT

i PΩi (47)

where i represents r (regulator problem) or s (servo
problem), j represents u (for control signal) or y (for
output error signal) and k represents p (for impulse
forcing function) or s (for step forcing function).
Matrix P is evaluated from the following Ricatti
equation:

ATP + PA + VT
k C

T
j X jC jVk = 0 (48)

where Ωr = B1k1, Ωs = B2k2, Cu = C2, Cy = C1,
Vp = I, Vs = A−1, Xu = R and Xy = Q. Notice that
u∞ = 0 for regulator problems.
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Table 1. Controller gains for the Ogunnaike distillation column.

Control settings
Parameter WI1 VU2 KO3 XI4 DH5 LQR6

kP,11 0.980 2.250 0.318 1.226 1.521 0.967
kP,12 -0.698 0 0 -0.076 -0.291 0.337
kP,13 2.10E-2 0 0 1.0E-3 5.0E-3 8.0E-3
kP,21 0.351 0 0 0.575 0.591 -4.0E-3
kP,22 -0.638 -0.49 -0.191 -0.221 -0.386 -0.444
kP,23 -2.0E-2 0 0 4.70E-4 -1.0E-3 -6.0E-3
kP,31 0.637 0 0 61.10 29.22 -3.764
kP,32 -8.20E-2 0 0 13.94 8.928 -8.831
kP,33 4.921 4.830 2.549 2.854 0.841 8.156
kI,11 0.350 0.316 5.70E-2 0.183 0.380 0.153
kI,12 -0.388 0 0 -2.30E-2 -7.20E-2 3.80E-2
kI,13 -9.0E-3 0 0 2.08E-4 1.0E-3 -2.03E-4
kI,21 0.209 0 0 0.066 0.147 2.10E-2
kI,22 -0.478 -7.60E-2 -4.70E-2 -4.40E-2 -9.60E-2 -1.086
kI,23 -1.20E-2 0 0 4.31E-5 -3.0E-4 -1.0E-3
kI,31 2.549 0 0 6.744 7.306 0.144
kI,32 -3.582 0 0 1.966 2.232 -0.386
kI,33 -1.20E-2 1.553 0.796 0.229 0.210 3.545
kD,11 1.566 5.805 6.30E-2 0 0 0.177
kD,12 -0.821 0 0 0 0 8.0E-2
kD,13 -2.0E-2 0 0 0 0 5.0E-3
kD,21 -1.571 0 0 0 0 0.322
kD,22 -1.316 -1.651 -0.159 0 0 -0.979
kD,23 3.0E-3 0 0 0 0 -1.40E-2
kD,31 -0.710 0 0 0 0 -0.703
kD,32 -0.889 0 0 0 0 -1.365
kD,33 4.160 49.07 0.159 0 0 3.990
τ11 - 2.58 - - - -
τ12 - 0 - - - -
τ13 - 0 - - - -
τ21 - 0 - - - -
τ22 - 3.37 - - - -
τ23 - 0 - - - -
τ31 - 0 - - - -
τ32 - 0 - - - -
τ33 - 10.16 - - - -
1Iruthayarajan and Baskar (2010). 2Vu and Lee (2010). 3Kosáková and Veselý (2007). 4Xiong et al. (2007). 5Ram
and Chidambaram (2015). 6This work.

On the other hand, if system has steady-state
error (as it happens with a proportional controller),
the indices Iy and Iu do not reach a limit as t → ∞
and thus an upper limit for integration must be
provided. Corresponding solutions in this case are
more elaborated and were provided by Estévez-
Sánchez et al. (2017). The quadratic performance
indices Iy and Iu were evaluated for the set-point

tracking of different forcing functions where each
element in k2 ∈ R

3×1 belongs to the set {−1, 0, 1}. A
total of 13 reference changes (among 27 possibilities)
were obtained in this way as k2 = 0 is not considered
and forcing functions k2 and −k2 have the same
indices. A final time of 200 min was considered to
evaluate the integrals for the proportional controller.
Finally, the insensitivity to model uncertainty of
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control systems was quantified by the index (Ruiz-
López et al., 2006):

φ = max
[
abs

(
imag(eig(A))
real(eig(A))

)]
(49)

Minimization of φ has been shown to reduce the
H∞-norm of the closed-loop and sensitivity transfer
matrices, which are classical robustness measures
(Ruiz-López et al., 2006). Table 1 summarizes
selected LQR controller as well as other PI and PID
settings reported in literature.

Synthesis of PID controllers based on LQR
approach, the estimation of performance indices (Iy,
Iu and φ) and simulations were performed with the
Matlab R2012a (MathWorks Inc., Natick, MA, USA).

2.4.4 Testing of the robustness properties of control
system

All parameters in Eq. (33) were subjected to a random
upward or downward 20% variation of their original
values, resulting Eq. (50). Robustness properties of
control systems were tested as their ability to stabilize
perturbed model (50) while reducing the degradation
in quadratic indices of error and control signals in
comparison to those obtained with nominal system
(33).

G(s) =


0.528e−3.12s

5.36s+1
−0.732e−4.2s

10.368s+1
−0.00588e−0.8s

10.872s+1
0.888e−7.8s

3.9s+1
−2.832e−2.4s

4.0s+1
−0.0144e−0.96s

5.672s+1
−27.744e−11.04s

6.52s+1
55.44e−11.28s

8.72s+1
1.044(9.288s+1)e−0.8s

(3.112s+1)(22.56s+1)


(50)

2.5 Adding of derivative action to existing
PI controllers for a nonlinear CSTR

A remarkable characteristic of the proposed
methodology is that it can be used to add the derivative
action to PI controllers, as described follows. Let us
consider a model of a well-mixed nonlinear CSTR
with a first order exothermic irreversible reaction and
multiple steady-states according with the equations

dC
dt

=
F
V

(
C f −C

)
− k0 exp

(
−

E
RT

)
C (51)

dT
dt

=
F
V

(
T f − T

)
+
−∆H
ρCP

k0 exp
(
−

E
RT

)
C (52)

being V = 100 L, C f = 1 mol/L, k0 = 7.2×10−10

L/min, E/R = 104 K, T f = 350 K, Tc f = 350 K,

ρ = ρc = 1000 g/L, Cp = Cpc = 1 cal/g/K,
∆H = −2.5 cal/mol and h = 7×105 cal/min/K. The
feed streams are constrained by 60 ≤ F ≤ 140 and
63.41 ≤ Fc ≤ 103.41 L/min. Eqs. (51)-(52) have the
following state-space representation

[
x1
x2

]
=

[
−9.998 −4.679 × 10−2

1799.6 7.325

] [
x1
x2

]
+

[
1 0
0 1

] [
w1
w2

]
+

[
9 × 10−3 0

−8.854 × 10−1 −8.775 × 10−1

] [
u1
u2

]
(53)

[
y1
y2

]
=

[
1 0
0 1

] [
x1
x2

]
(54)

where x1 = C − Css, x2 = T − Tss, w1 = C f − C f ss,
w2 = T f − T f ss, u1 = Q − Qss, u2 = Qc − Qcss,
y1 = x1 and y2 = x2. Chen et al. (2002) applied
a linear matrix inequality (LMI) approach based on
H∞ theory to design a centralized robust PI controller
for this CSTR. Later, Ruiz-López et al. (2006) found
the gains for a robust centralized PI controller by
using a multiobjective optimization approach. These
controllers are summarized in Table 2 and labeled as
CHPI and RLPI, respectively. Centralized derivative
action was further added to these controllers using
the proposed methodology; the obtained controllers
are designated as CHPID and RLPID. In this work,
the synthesis of multiloop PID controllers was also
explored by using two different approaches. Estévez-
Sánchez et al. (2017) obtained diagonal versions of
the controllers proposed by Chen et al. (2002) and
Ruiz-López et al. (2006), labeled as ESPI1 and ESPI2,
respectively. The first approach involves adding
the centralized derivative action to the multiloop
controllers reported by Estévez-Sánchez et al. (2017);
thus, diagonalization is applied after the addition
of a new action. These controllers are designated
as ESPID1 and ESPID2. In the second approach,
diagonalization is applied after the full centralized PID
controllers are obtained. Here, diagonalization was
applied to CHPID and RLPID controllers, resulting in
the gain sets DIAG1 and DIAG2, respectively.

Centralized PI controllers consider all input-
output interactions. Thus, they are designed without
a preconceived proper pairing. However, two-pairings
options for the output and control variables exist for
the multiloop controllers. Here, only the pairs {C, F}
and {T, Fc} are considered for the diagonalization
procedure (the dominant pairing as determined by the
RGA method).
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Table 2. Controller gains for the CSTR.

Control settings KP KI KD

CHPI1 5783 27.81
−8724 −137.7

63687 252.6
−30645 −1129 −

ESPI12 14778 0
0 −89.20

61083 0
0 −1062 −

RLPI3 7732 0
−13770 −673.6

93938 142.3
−97506 −6634 −

ESPI22 9967 0
0 −669.5

93092 0
0 −6546 −

CHPID4 Same as CHPI
−0.411 2.6E − 2
617.1 −0.595

ESPID14 Same as ESPI1
−3.1E − 2 0

0 3.97E − 4

RLPID4 Same as RLPI
−12.18 2.2E − 2
8384 −10.41

ESPID24 Same as ESPI2
−9.0E − 3 0

0 −147.9

DIAG15 1.290 0
0 −91.33

61138 0
0 −1059

1.638 0
0 −5.041

DIAG26 9081 0
0 −667.5

93113 0
0 −6544

−0.355 0
0 −13.49

1Chen et al. (2002). 2Estévez-Sánchez et al. (2017). 3Ruiz-López et al. (2006). 4Derivative action added to indicated PI
controller. 5CHPID control after diagonalization procedure. 6RLPID control after diagonalization procedure.

This pairing was also used by Chen et al.
(2002) and Estévez-Sánchez et al. (2017) to obtain
multiloop controllers. Allowable output concentration
and temperature errors are around 0.1 mol/L and
5 ◦C. Then, q11/q22 ≈ 100 − 1000. The quadratic
indices Iy and Iu were evaluated for the servo and
regulator problems with step forcing functions by
using kT

1 =
[

0.05 5
]

and kT
2 =

[
0.005 5

]
.

2.6 Convergence of the proposed algorithm

The estimation of KD is based on a fixed-point
iteration method, particularly an implicit multivariable
implementation. On a general level, the convergence
of these methods depends on the form of the iterative
function, the derivative of the function at the fixed
point and the initial value (Burden and Faires, 2010);
however, both the implicit and multivariable form of
the iterative matrix function makes extremely difficult,
if not impossible, to provide an analytical result of
the convergence conditions. In current study, the form
of the iterative function is fixed; thus, algorithm

convergence can be only controlled trough the initial
value. Three different scenarios were explored to force
the proposed algorithm to not converge or to produce
derivative gains making Ogunnaike system unstable
when added to the starting PI gains (a stabilizing
controller).

1. Synthesis of derivative action starts from an
unstable PID controller (the PI portion stabilize
the system but the addition of starting KD makes
it unstable). Derivative gains were initialized
as a destabilizing KD set where each gain
is a random number between -100 and 100.
The same starting KD was used with multiple
combinations of R. A total of 10 KD sets were
tested in this way.

2. The algorithm starts from a stabilizing PID
controller, where KD was generated and tested
in the same way as above.

3. KD gains are initialized as random numbers
between -100 and 100 (the resulting starting
control can either stabilize or destabilize the
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system). A different starting KD was paired with
a unique R in the explored region.

The combinations of R where the same as the
originally explored by setting KD = 0 (1331
combinations) in Section 2.4.2. A total of 27591
controllers were synthesized in the three scenarios.

3 Results and discussion

3.1 Synthesis of centralized PID controller
for Oggunaike distillation column

Quadratic indices Iy and Iu obtained after
the synthesis of proportional action were in
the ranges of 8685-1.23E5 and 2.90E4-3.04E6,

respectively. The proportional controller selected
at this stage was obtained under weight elements
{log10 r11, log10 r22, log10 r33} = {1.1, 1.9,−2}
with corresponding indices {Iy, Iu, φ} =

{1.80E4, 8.56E5, 2.693}. This controller was further
extended with the integral action, resulting in a
reduction of the output error (243.1 ≤ Iy ≤ 299.9)
and control signal (2.76E5 ≤ Iu ≤ 4.12E5) quadratic
indices. The PI controller obtained at this stage
has weight elements {log10 r11, log10 r22, log10 r33} =

{3.6, 4.1,−0.1} with corresponding indices {Iy, Iu, φ} =

{297.6, 3.22E5, 3.819}. Finally, the quadratic indices
Iy and Iu were in the ranges of 258.3-280.4 and
2.78E5-4.90E5 after synthesis of the derivative
action. The derivative gains were obtained using
the weight elements {log10 r11, log10 r22, log10 r33} =

{1.1, 0.9,−1.7} with corresponding indices {Iy, Iu, φ} =

{271.36, 3.26E5, 2.037}.

Fig. 1. Effect of the screening of control weights on the resulting quadratic index of each output error during the
synthesis of derivative action via LQR approach for the Ogunnaike distillation column. Yellow dot corresponds to
selected PID controller with weight elements {log10 r11, log10 r22, log10 r33} = {1.1, 0.9,−1.7}.

Fig. 2. Effect of the screening of control weights on the resulting quadratic index of each control signal during the
synthesis of derivative action via LQR approach for the Ogunnaike distillation column. Yellow dot corresponds to
selected PID controller with weight elements {log10 r11, log10 r22, log10 r33} = {1.1, 0.9,−1.7}.
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The effect of the screening of control weights on
the resulting indices Iy and Iu during the synthesis
of the derivative action is shown in figs. 1 and 2,
respectively. For clarity purpose, each contribution
to the indices is shown. These figures reveal two
main characteristics of the quadratic indices: (1)
they minimize in different directions and (2) they
span different value ranges. The performance of
LQR controllers depends on the selection of the
control weight matrices determining the trade-off

between acceptable output error and magnitude of
the control signal. Thus, the synthesis procedure
represents a complex multiobjective optimization
problem requiring special methodologies to refine
further the control characteristics as has been shown in
some previous studies (Das et al., 2015). Nonetheless,
the proposed sequential approach to PID controller
synthesis reduces the problem dimension when
compared to other methods where optimization occurs
in the original space of controller gains. The resulting
PID controller gains (labeled as LQR) are summarized
in Table 1.

Quadratic indices (Iy and Iu) obtained with LQR
controller as well as using PI and PID settings
reported in literature are shown in Table 2 for
nominal (left) and perturbed (right) models. The
indices Iy = 271.36 and Iu = 3.26E5 obtained
with the state-space model and analytical solutions
are shown as {Iy1, Iy2, Iy3} = {94.25, 43.98, 133.2}
and {Iu1, Iu2, Iu3} = {718.3, 4767, 3.20E5} for each
output and control variable, respectively. These indices
are calculated as {Iy1, Iy2, Iy3} = {96.03, 62.55, 1070}
and {Iu1, Iu2, Iu3} = {572.5, 676.7, 5.52E5} when
using original matrix transfer model and numerical
integration of simulation results. Differences
between indices calculated with analytical and

numerical solutions result because process delays
are approximated in state-space representation. For
the first output, the WI control exhibits the best
performance (lowest value) and proposed LQR control
is ranked in fifth place. However, the proposed
controller is the best ranked for the second and
third outputs, while exhibiting a moderate use of the
control signals. Table 2 also shows the φ index, which
provides a measure of the robustness properties of
the control system, regardless it is calculated for the
approximated state-space representation. The lower
the φ value the more insensitive the control system
is to model uncertainty (Ruiz-López et al., 2006).
Thus, this index was also minimized during the
synthesis of PID controller via the LQR method to
guarantee the selected gains would stabilize not only
the state-space model, but also the original transfer
matrix model as well as its perturbed version. As
expected, the selected LQR controller also stabilized
the perturbed model, with a φ value (2.0) comparable
to those of the other stabilizing controllers (1.2-3.4);
however, the WI controller, with the highest φ value
(5.1) among all tested settings, failed to stabilize the
perturbed model. As a result, these settings were the
least robust, even if WI controller achieved a fast
reference tracking (low Iy values) for the nominal
system. The performance of XI and DH controls
(both centralized PI settings) degraded in terms of
Iy and Iu for all variables (indices become bigger). VU
controller degraded five out of six indices in perturbed
model, while remaining controllers (KO and LQR)
only degraded four indices. Overall, the controllers
ranked in the order KO(0.37%) < VU (6.93%) < DH
(35.3%) < LQR (44.5%) < XI (107.3%) in terms of
relative degradation of cummulative quadratic index
of error (Iy1 + Iy2 + Iy3).

Table 3. Quadratic indices of control systems for the Ogunnaike distillation column.1

Control settings Iy1 Iy2 Iy3 × 10−3 Iu1 Iu2 Iu3 × 10−5 φ

WI 57.41/-2 84.22/-2 4.679/-2 1.77E4/-2 2.70E4/-2 101.2/-2 5.105
VU 50.78/57.61 180.8/96.87 6.867/7.436 187.0/1364 127.6/390.9 4.085/7.020 3.378
KO 225.0/271.1 103.5/68.48 1.560/1.556 1924/2118 529.8/957.0 7.232/12.79 1.237
XI 83.05/107.3 116.2/189.6 29.451/61.16 246.5/1357 67.98/325.3 1.412/3.734 1.239
DH 55.57/71.52 103.8/192.1 52.180/70.57 44.60/1365 18.83/251.8 1.415/3.396 1.197
LQR 96.03/103.5 62.55/38.23 1.070/1.633 572.5/1470 676.7/500.36 5.527/8.262 2.037
1Quadratic indices were evaluated with nominal (left values) and perturbed (right values) models. Values represent the sum of
indices obtained under the reference changes kT

2 = [1 0 0], [0 1 0], [0 0 1], [1 1 0], [1 0 1], [0 1 1], [1 -1 0], [-1 0 1], [0 1 -1],
[1 1 -1], [1 -1 1], [-1 1 1] and [1 1 1]. Robustness index was evaluated with state-space model. Lower numbers represent better
performance.
2Unstable process.
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Fig. 3. Response of the Ogunnaike distillation column to a unit-step set-point change in first output (kT
2 = [1 0

0]). Numbers in parentheses represent the quadratic indices of the plotted variable (lower numbers represent better
performance).

On the other hand, the rank became LQR(49.5%)
< VU (72.1%) < KO (76.7%) < DH (141.0%) <
DH (165.0%) in terms of relative degradation of
cummulative quadratic index of control signal (Iu1 +

Iu2 + Iu3). Therefore, proposed LQR controller is
equilibrated in terms of fast reference tracking, low
usage of the control signals and robustness properties.
A comparison of selected controllers (LQR, VU, KO,
XI and DH) during simulation of a unit step change in

first output (kT
2 = [1 0 0]) is shown in Fig. 3 for the

nominal system. Here, the control systems are ranked
in the order LQR (72.8) < KO (151.8) < VU (752.1)
< XI (3136) < DH (5369) in terms of the quadratic
index of output error. On the other hand, they rank
as XI (12.7E3) < DH (13.2E3) < LQR (41.4E3) <
VU (41.8E3) < KO (75.4E3) in the quadratic index
of control signal.
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3.2 Addition of derivative action to
centralized PI control for a CSTR

The obtained quadratic indices Iy and Iu under both
set-point tracking and disturbance rejection scenarios
for the original nonlinear model are summarized
in Table 4. In general, PID controllers showed
better performance indices that their PI counterparts.
For example, 20 out of 32 indices improved when
centralized or multiloop controllers added with the
derivative action (CHPID, RLPID, ESPID1 and
ESPID2) were tested in the nonlinear CSTR. Table
also shows the quadratic indices for DIAG1 and
DIAG2 controllers obtained by diagonalization of
their centralized counterparts (CHPID and RLPID),
where it is verified that multiloop controllers behave
in a similar way as the original ones. The results
demonstrate that diagonal PID controllers can be
obtained by starting from centralized or diagonal PI

gains. An indicative simulation with both setpoint
changes (C = Css + 0.005 mol/L and T = Tss + 5 K
at t = 0 min) and input disturbances (C f = C f ss +

0.05 mol/L and T f = T f ss + 5 K at t = 1 min)
is presented in Fig. ?? for CHPI, CHPID, RLPI
and RLPID controllers. These simulations show that
addition of derivative action improved original PI
controllers by allowing a tighter set-point tracking
while reducing the control signal usage, especially in
Fc, where it eliminates signal saturation in periods
no longer than 30 s. Two main conclusions can be
drawn from results presented in this section: (1) the
proposed LQR method generalizes other PI controller
tuning methodologies by allowing the synthesis of the
derivative action and (2) diagonalization procedure
allows the development of multiloop controllers
behaving in a similar way to their corresponding
centralized versions.

Fig. 4. Response of the nonlinear CSTR to both set-point changes and input disturbances using centralized PI and
PID controllers.
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Table 4. Quadratic indices of control systems for the CSTR.1

Control settings
Index CHPI CHPID ESPI1 ESPID1 DIAG1 RLPI RLPID ESPI2 ESPID2 DIAG2

I s
y1−s × 105 4.597 3.481 1.506 0.8612 1.602 1.139 0.5355 0.8417 0.6790 1.874

I s
y2−s 2.975 2.6943 2.605 2.011 2.683 2.449 1.937 1.976 1.821 2.972

I s
y1−r × 108 1.337 1.239 1.356 1.539 1.361 1.639 1.516 1.331 1.461 1.352

I s
y2−r × 106 223.2 295.5 664.2 663.6 674.4 2.296 713.9 13.68 0.1432 13.91

I s
u1−s 115.5 68.24 46.47 47.84 47.10 26.15 28.40 47.94 48.00 72.42

I s
u2−s 602.9 485.7 725.6 561.5 735 694.3 569.9 668.6 606.4 371.0

I s
u1−r × 101 1.802 1.361 1.441 1.653 1.500 1.854 2.300 1.506 1.700 1.516

I s
u2−r × 101 6.179 21.07 11.06 3.862 19.22 2.626 76.43 3.012 2.189 1.616

1Evaluated from the numerical integration of simulation results using original nonlinear system. Lower numbers represent better performance. u1∞ = 136.5 and
u2∞ = 125.2 for the servo problem. u1∞ = 94.7 and u2∞ = 114.2 for the regulator problem.

3.3 Effect of starting guess on synthesis of
derivative gains

The derivative action is synthesized on top of a
stabilizing PI controller, which can be obtained by
solving a non-iterative standard LQR problem (as
in the distillation column example) or any other
method (as in the CSTR example). The algorithm
was initialized by setting KD = 0 (algorithm starts
from a PI control which is let to evolve into a
PID one) during screening of control weights for the
synthesis of PID controllers (as described in Section
2.4.2) and later tested with random both stabilizing or
destabilizing initial KD sets (as described in Section
2.6). In all cases, the proposed method neither failed
to produce derivative actions causing the system to
become unstable or failed to asymptotically approach
a limit solution. Moreover, the same stabilizing KD

was obtained no matter the starting value for a given
control weight matrix R.

4 Conclusions

The LQR methodology was generalized to allow
tuning of centralized PID controllers with better
characteristics for set-point tracking, disturbance
rejection, limited use of control signal and insentivity
to plant model uncertainty than several previosly
reported methods. The sequential nature of the
proposed approach allows adding the derivative
action to existing PI controllers tuned with other
methodologies, enhancing their operation and
obtaining simplified multiloop structures from
centralized controllers while mostly retaining their
original characteristics.
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Nomenclature

a,â,b1, open-loop state-space matrices
b2,b̂2,c,
d1,d2,f
A,B1,B2, C LQR state-space matrices
A,B1,B2, closed-loop state-space matrices
C1,C2, D11,
D12,D21, D22
c,C number of control variables
D eigenvalues of KP, KI or

KD (Rc×r, c = r)
e error vector (Ro×1)
I quadratic performance index
J quadratic performance index for

LQR problem
K state feedback gains in LQR problem

solution
k a given element in either KP, KI

or KD

k1 magnitude for forcing function in
regulator problem

k2 magnitude for forcing function in
servo problem

KP,KI ,KD proportional, integral and derivative
gain matrices
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n,N number of state variables
o,O number of measured output variables
m, M number of exogenous variables
P solution to Riccati equation in LQR

problem RN×N

q integral output state (Ro×1)
Q, Q̂ output weight matrices: original (Rc×r)

and LQR (Rc×r) representations, r
espectively

Q output weight matrix for closed-loop
response

r reference vector (Rr×1)
R, R̂ control weight matrices: original(Rr×r)

and LQR (Rr×r) representations,
respectively

R control weight matrix for closed-loop
response (Rc×c)

s,S number of control state variables
t time
V eigenvectors of KP, KI or KD

(Rc×r, c = r)
u,U control vectors: original (Rc×1) and

LQR (RC×1) systems,
respectively

w,W exogenous signal vectors: original
(Rm×1) and LQR (RM×1) systems,
respectively

x,X open-loop state vectors: original
(Rn×1) and LQR (RN×1) systems,
respectively

y,Y measured output vectors: original
(Ro×1) and LQR (RO×1) systems,
respectively

z closed-loop state vector (R(n+s+r)×1)

Greek symbol
α,β,γ,δ control state-space matrices
φ robustness index
τ filter time constant
ξ control state (Rs×1)

Subscripts
∞ final steady-state
I for integral action
P for proportional action
D for derivative action
r for regulator problem
s for servo problem
ss for steady-state
u for control signal
y for output signal

Superscripts

p for an impulse forcing function
s for a step forcing function
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Ruiz-López, I.I., Rodrı́guez-Jimenes, G.C., Garcı́a-
Alvarado, M.A. (2006). Robust MIMO PID
controllers tuning based on complex/real ratio of
the characteristic matrix eigenvalues. Chemical
Engineering Science 61, 4332-4340.

Salazar-Pereyra, M., Lugo-Leyte, R., Bonilla-
Blancas, A.E., Méndez-Lavielle, F., Lugo-
Méndez, H.D. (2016). Theoretical analysis of
thermal control of evaporator of refrigeration
system with HFC-134a. Revista Mexicana de
Ingenierı́a Quı́mica 15, 291-297.

Srivastava, S., Misra, A., Thakur, S.K., Pandit, V.S.
(2016). An optimal PID controller via LQR for
standard second order plus time delay systems.
ISA Transactions 60, 244-253.

Vargas-Gonzales, S., Rodrı́guez-Jimenes, G.C.,
Garcı́a-Alvarado, M.A., Carrillo-Ahumada, J.
(2013). Relation between first order dynamic
parameters with PI control parameters in Nash
equilibrium. In: Proceedings of the International
Conference on Mechatronics, Electronics and
Automotive Engineering. ICMEAE, 123-6.

Vu, T.N.L., Lee, M. (2010). Independent design
of multi-loop PI/PID controllers for interacting
multivariable processes. Journal of Process
Control 20, 922-933.

Xiong Q., Wen-Jian., C., Mao-Jun., H. (2007).
Equivalent transfer function method for PI/PID
controller design of MIMO processes. Journal
of Process Control 17, 665-673.

712 www.rmiq.org


	 Introduction
	Theory
	Outline of the studied system
	Outline of the LQR methodology
	Synthesis of derivative action via LQR approach
	Multivariable PID controller design for the Ogunnaike distillation column
	Adding of derivative action to existing PI controllers for a nonlinear CSTR
	Convergence of the proposed algorithm

	Results and discussion
	Synthesis of centralized PID controller for Oggunaike distillation column
	Addition of derivative action to centralized PI control for a CSTR
	Effect of starting guess on synthesis of derivative gains

	Conclusions

