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Abstract
This paper presents a decentralized model predictive controller for nonlinear systems that considers interaction between control
inputs. The controller is based on a centralized robust tube-based nonlinear model predictive controller. The main contribution is
a procedure to split the process model into s subsystems in order to construct s robust tube-based controllers ensuring a bounded
linearization error. In order to show the applicability and effectiveness of the development, the proposed controller is tested on
a coupled-tank system and the results are compared with a centralized nonlinear model predictive controller and a cascade PI
controllers scheme.
Keywords: Model predicted control, decentralized control, nonlinear control, robust control.

Resumen
Este artículo presenta un control predictivo descentralizado para sistemas no lineales que considera interacción entre las entradas
de control. El controlador se base en un control no lineal predictivo centralizado basado en tubos. La principal contribución es
el procedimiento de separar el modelo en s subsistemas para contruir s controladores robustos basados en tubos que aseguren
que error de linealización esté acotado. Para demostrar la aplicabilidad y efectividad del desarrollo, el controlador propuesto se
prueba en un sistema de tanques acoplados y los resultados se comparan con un control predictivo no lineal centralizado y un
esquema de controladores PI en cascada.
Palabras clave: Control predictivo, control descentralizado, control no lineal, control robusto.

1 Introduction

Model Predictive Control (MPC) was introduced
as Model Predictive Heuristic Control (Richalet et
al., 1978). With great success from its beginnings
in industrial applications, Dynamic Matrix Control
(DMC) (Cutler & Ramaker, 1979), Generalized
Predictive Control (GPC) (Clark et al., 1987; Clark
et al., 1987) and Predictive Functional Control (PFC)
(Richalet , 1993) were the first linear developments.
The space state formulation was proposed later
opening the possibility to deal with open-loop stable
and unstable systems (Marquis & Broustails, 1988;

Lee et al., 1992; Lee et al., 1994; Morari M. et
al., 1994). This MPC representation facilitated the
stability analysis (Kwon & Byun, 1989; Rawlings
& Musle, 1993; Mayne D. et al., 1993), robustness
against parameter uncertainty, noise and bounded
disturbances (Bemporad & Morari, 1999), and now,
it can be found in the literature MPC developments
for specific applications (e.g. a gyroscopic inverted
pendulum system (Chu & Chen, 2017), a reverse
osmosis unit (Rivas-Perez et al., 2016), a PSA
process (Rumbo-Morales et al., 2018)). Nonlinear
formulations were also developed (Patwardhan et al.,
1990), rendering a nonlinear and possibly non-convex
optimization problem, increasing the complexity of
the solution (Morari & Lee, 1993).
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Robust MPC formulation is the tube-based model
predictive control (tube-based MPC) is another
variation of model predictive control, and was applied
to linear systems (Langson et al., 2004). This scheme
generates tubes that are optimized within the state
space. It is guaranteed that the control law maintains
the desired controlled variables in the tube, despite
model parameter uncertainties. Modifications to this
scheme considered bounded disturbances (Mayne et
al., 2005) and it was extended to nonlinear systems
under additive disturbances (Mayne et al., 2011).

Gonzalez et al. (2011) proposed a controller for
time-varying systems with additive uncertainty. It
is stated that the approach improves the scheme
presented by Langson et al. (2004), due to a larger
generation of the solution feasibility region. As a
consequence, a tube-based MPC scheme applied to
mobile robots modelled as time-varying systems was
presented by Gonzalez et al. (2011).

Cannon et al. (2009) developed a stochastic
tube-based MPC for linear systems with additive
and multiplicative uncertainty. Afterwards, a
tube-based MPC for nonlinear systems was
formulated. This scheme proposes an online system
linearization in order to construct tubes along the
prediction trajectories guaranteeing robustness against
linearization errors (Cannon et al., 2011).

The development of a tube-based MPC scheme
for systems with additive uncertainties was presented
in Limon et al. (2010). These uncertainties are
confined to a bounded polyhedral set, corroborating its
effectiveness through a set of experimental tests in a
four-tank system. In the context of distributed control,
MPC has been developed in distributed form called
Distributed MPC (DMPC), based on the partition
of the system model into several subsystems. From
its conception, DMPC was formulated considering
only state interaction between subsystems and no
interactions between inputs and outputs (Jia &
Krogh, 2001; Camponogara et al., 2002). Later works
addressed the dynamical relationship between inputs
(Venkat et al., 2008) and the entire interaction between
the state, inputs and outputs of the system (Vaccarini
et al., 2009; Sorcia-Vázquez et al., 2015), disturbance
rejection (Zheng et al., 2017), or even considering the
dynamics of the network as it is the data package
dropouts (Zhang et al., 2019).

A novel tube-based distributed MPC was
introduced by Trodden & Richards (2010) for multiple
dynamically decoupled systems. Distributed control
agents exchange plans to achieve a set of coupling
constraints. This algorithm presents robustness against
persistent disturbances and low susceptibility to
communication and computation adverse effects. In
this context, a controller was proposed for robotic
vehicles in order to avoid obstacles (Trodden &
Richards, 2014).

Riverso & Ferrari-Trecate (2012) introduced a
tube-based distributed MPC for linear constrained
systems. This formulation depends on the availability
of a decentralized stabilizing regulator with a
two-layer controller for each subsystem. The
upper controller receives planned trajectories from
neighboring subsystems and the lower controller
generates planned trajectories using MPC. The scheme
applies the tube notation presented by Langson et al.
(2004) for achieving, with respect to the coupling,
robust stability.

Unlike the papers presented before (Trodden &
Richards, 2010; Trodden & Richards, 2014; Riverso &
Ferrari-Trecate, 2012), the proposed controller called
decentralized robust tube-based model predictive
control (DNMPC) is based on the centralized MPC
presented in (Cannon et al., 2011). The main
advantage of the tube-based MPC is that the nonlinear
system model is not used to construct the prediction
model as, in some cases, it can be a model of great
complexity; instead, the prediction model uses a linear
model that is obtained through online linearization at
each step time.

The decentralized robust tube-based model
predictive control, with the characteristic of online
linearizing each nonlinear local model, considers
that the system has control input interactions, as it
is the interaction type most frequently found in the
process industry. Interacting control inputs are sent
through a Local Area Network (LAN) to each local
subcontroller, where the main assumption is that the
controller only introduces one sample-time delay.

The paper has the follow structure: Section 2
presents the background on MPC; Section 3 addresses
the development of the decentralized MPC scheme;
Section 4 presents the numerical results obtained from
applying the centralized MPC, the decentralized MPC
and cascade PI scheme to a four-tank process; finally,
conclusions are presented in Conclusions.

1136 www.rmiq.org



Sorcia-Vázquez et al./ Revista Mexicana de Ingeniería Química Vol. 19, No. 3 (2020) 1135-1151

( )u k (   )u k i k+

C
H

P
H

k k

Output

Input

(    )y k i k+

( )y k

( )r k (    )r k i k+

P
k H+

C
k H+

Fig. 1. Model Predictive Control Strategy.

2 Preliminaries of Model
Predictive Control

Model Predictive Control (MPC), as it was mentioned
in the introduction, was introduced in the late seventies
and has developed considerably since then. The term
Model Predictive Control does not designate a specific
control strategy but rather an ample range of control
methods which make explicit use of a model of
the process in order to obtain the control signal by
minimizing an objective function or a cost function.
These design methods lead to controllers which have
practically the same structure and present adequate
degree of freedom. The main ideas appearing, in
greater or lesser degree, in the predictive control
family are:

• explicit use of a model to predict the process
output at future time instance (horizon);

• calculation of a control sequence minimizing an
objective or cost function; and

• receding strategy, so that at each instant the
horizon is displaced towards the future, which
involves the application of the first control
signal of the sequence calculated at each step
(Camacho & Bordons, 2007).

MPC presents a series of advantages over other
methods, amongst which the following stand out:

• The predictive control is very intuitive, so it

becomes particularly attractive to staff with only
a limited knowledge of control.

• It can be used to control a great variety of
processes; the multivariable case can easily be
dealt with; it intrinsically has compensation for
dead times.

• It introduces feed forward control in a natural
way to compensate for measurable disturbances.

• The resulting controller is an easy-to-implement
control law.

• Its extension to the treatment of constraints
is conceptually simple, and these can be
systematically included during the design
process.

• It is very useful when future references (robotics
or batch processes) are known.

• It is a totally open methodology based on
certain basic principles which allows for future
extensions (Camacho & Bordons, 2007, 2007).

The methodology of all the controllers belonging
to the MPC family is characterized by the following
strategy, represented in Fig. 1:

1. The future outputs for a determined horizon N,
called the prediction horizon, are predicted at
each instant t using the process model. These
predicted outputs y(k + i|k) (for i = 1 . . .HP)
depend on the known values up to instant k (past
inputs and outputs) and on the future control

www.rmiq.org 1137
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signals u(k + i|k) (for i = 0 . . .HC), which are
those to be sent to the system and calculated.

2. The set of future control signals is calculated
by optimizing a determined criterion to keep
the process as close as possible to the reference
trajectory r(k+i) (which can be the setpoint itself
or a close approximation of it). This criterion
usually takes the form of a quadratic function
of the errors between the predicted output
signal and the predicted reference trajectory.
The control effort is included in the objective
function in most cases.

3. The control signal u(k|k) is sent to the process
whilst the next control signals calculated are
rejected, because at the next sampling instant
y(k + 1) is already known and step 1 is repeated
with this new value and all the sequences
are brought up to date. Thus the u(k + 1|k +

1) is calculated (which in principle will be
different from the u(k + 1|k) because of the
new information available) using the receding
horizon concept (Camacho & Bordons, 2007,
2007).

In order to implement this strategy, the basic
structure shown in Fig. 2 is used. A model is used
to predict the future plant outputs, based on past and
current values and on the proposed optimal future
control actions. These actions are calculated by the
optimizer taking into account the cost function (where
the future tracking error is considered) as well as the
constraints. The process model plays, in consequence,
a decisive role in the controller. The chosen model
must be able to capture the process dynamics to
precisely predict the future outputs and be simple to

implement and understand. As MPC is not a unique
technique but rather a set of different methodologies,
there are many types of models used in various
formulations (Camacho & Bordons, 2007).

Regarding the robust MPC methodology based
on tubes (Cannon et al., 2011), this methodology
is based on the construction of ellipses along the
prediction trajectory in order to generate bounds on
the linearization errors of each linear model.

The construction of a tube for a given predicted
trajectory is depicted in Fig. 3. From the referred
figure, there is a given predicted trajectory whose
initial point is x0. At the point x0

k + zk, the uncertainty
due to the linearization errors is contained within the
set E(Vk,β

2
k), as well as the predicted system state

xk. The next step is to find the set E(Vk+1,β
2
k+1)

for the next predicted state x0
k+1 + zk+1. This process

is repeated until the end of the prediction horizon
N. The ellipse generated by the set E(VN ,β

2
N), as a

consequence, is contained in the ellipse generated by
the terminal set E(V̂,1). This terminal is calculated
off-line (Buerger, 2013).

The robust MPC based on tubes presents some
advantages respect the basic MPC controllers:

• It is a nonlinear control scheme, which
considers the complete dynamic of the system.

• This control strategy generate linear models of
the process along the predicted trajectory.

• It is a robust control technique, which generate
bounds around the linearization errors.

• The process can be controlled at any operation
point without having to make modifications.

Optimizer Process
(   )u k k

Predictor

( )r k

ˆ(   )y k i k+

( )y k

Fig. 2. Basic structure of Model Predictive Controller.
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Fig. 3. Predicted state trajectory contained in a tube
(Buerger, 2013).

On the other hand, the robust MPC also presents
some disadvantages:

• Linear matrix inequalities (LMI) are involved
that must be resolved online.

• The solution of the optimization problem
requires high computational resources.

• It is highly complex to implement the controller
in real time, because it requires solving a second
order cone program.

The details of the centralized robuts MPC are
shown in the Appendix. The following section
presents the development of the decentralized robust
model predictive control.

3 Nonlinear decentralized robust
model predictive control

The present section addresses the nonlinear
decentralized robust model predictive control
(DNMPC). This control scheme is an extension of the
centralized robust tube-based model predictive control
(Cannon et al., 2011).

3.1 Nonlinear decentralized robust model
predictive control

The development of the decentralized robust model
predictive control considers the following nonlinear

systems general definition conformed by s subsystems
with interaction between control inputs

xi|k+1 = fi
(
xi|k,u1|k, . . . ,us|k

)
, (1)

where xi|k ∈ R
ni and ui|k ∈ R

mi are the state
and the control signal vectors for each subsystem,
respectively. In (1), fi is continuous and differentiable
for all (xi,ui) in an operating region, and fi(0,0) = 0
with i = 1, . . . , s.

The design is based on a local optimal regulation
problem for each subsystem with respect a local
quadratic cost function

Ji =

∞∑
k=0

(
‖xik‖

2
Qi

+ ‖uik‖
2
Ri

)
, (2)

subject to decentralized lineal restrictions of the form

Fixik + Giuik ≤ hi, k = 0,1, ..., (3)

where Fi ∈ R
nui×ni , Gi ∈ R

nui×mi . It is assumed that the
state of each subsystem xi is measured at each time
step k .

For each local subsystem, state and control
input trajectories from time instant k to the
horizon N are stipulated as well as the interacting
control input predictions over the k − 1 time
instant. These considerations are defined as{
x0

ik+l|k,u
0
ik+l|k, l = 0, ...,N − 1

}
in the following

expression, in concordance to the model (1)

x0
i(k+l+1)|k = f

(
x0

i(k+l)|k,u
0
i(k+l)|k,u

0
j(k+l)|k−1, . . .

. . . ,u0
s(k+l)|k−1

) ,

with x0
ik|k = xik representing the measured current state

for each local subsystem and j = 1, ..., s, j,i.
The subsystem state and control input are

redefined as function of the predicted state and input,
therefore

xik+l|k = x0
ik+l|k + xδik+l|k,

uik+l|k = u0
ik+l|k + uδik+l|k,

(4)

for l = 1, ...,N − 1 with xδik+l|k = 0. uδik+l|k is
parametrized as the sum of a decentralized control law
and a feedforward term vi,

uδik+l|k = Kik+l|kxδik+l|k + vik+l|k. (5)

In order to synthesize the DNMPC scheme a
decentralized linear time-variant model is used, with
the following general form

xδik+l+1|k = Φik+l|k xδik+l|k + Bik+l|kvik+l|k + wik+l|k, (6)
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Let us point out that this model is derived from
the linearization of the nonlinear model (1) around
x0

ik+l|k,u
0
ik+l|k

Φik+l|k = Aik+l|k + Bik+l|kKik+l|k;

Aik+l|k =
∂ f
∂xik

∣∣∣∣x0
ik+l|k ,u

0
ik+l|k

,

Bik+l|k =
∂ f
∂uik

∣∣∣∣x0
ik+l|k ,u

0
ik+l|k

,

with wik+l|k representing the linearization error for
each subsystem. Predictions for l ≥ N are determined
from the linearization error of (1), around the target
setpoint (xik,uik) = (0,0) and a decentralized fixed
feedback control law K̂ixik

xik+l+1|k = Φ̂ixik+l|k + ŵik+l|k; (7)

uik+l|k = K̂ixik+l|k, (8)

for l = N,N + 1, ..., where Φ̂i = Âi + B̂iK̂i, with Âi =
∂ f i
∂xik

∣∣∣∣
(0,0)

, B̂i =
∂ f i
∂uik

∣∣∣∣
(0,0)

.

A boundary condition from the linearization errors
wi and ŵi of each subsystem can be used to bound
the predicted cost and to determine a robust feasible
constraint set. Since fi is continuos and differentiable,
exits a convex set Ωi ⊂ R

ni×(ni+mi) such that wik ∈

Ωi
[

xδik
> uδ

ik
>

]>
. It is assumed that Ωi is polytopic

with vertices
[

Ci
j Di

j

]
, j = 1, ..., p , so

wik ∈ Co
{
Ci

jx
δ
ik + Di

ju
δ
ik, j = 1, ..., p

}
. (9)

In a similar way, the errors ŵik+l|k of the linear
dynamic approximation (7) with l ≥ N , will reside
within the convex set

ŵik ∈ Co
{
Ĉi

jxik + D̂i
juik, j = 1, ..., p

}
. (10)

In order to achieve the linearization error boundary
on the predicted trajectories of each subsystem, a tube
is constructed containing the arised predicted state
component generated from the linearization errors.
The tube is used to compute local bounds on the cost
and constraints in the DNMPC optimization for each
subsystem.

Prediction xδik+l|k is divided for the local subsystem
in a nominal component zik+l|k and a component eik+l|k,
depending uniquely on the linearization error wik+l|k:

xδik+l|k = zik+l|k + eik+l|k (11a)

zik+l+1|k = Φik+l|kzik+l|k + Bik+l|kvik+l|k (11b)
eik+l+1|k = Φik+l|keik+l|k + wik+l|k, (11c)

with zik|k = eik|k = 0.

3.2 Construction of the decentralized tubes
with fixed and variable cross sections

A fundamental part of the DNMPC scheme is
to generate bounds around the linearization error
component eik+l+1|k and the state prediction xik+l|k of
each subsystem. These boundaries are ellipses with
fixed or variable cross sections

eik+l|k ∈ E(Vik+l|k,β
2
ik+l|k), l = 1, ...,N (12a)

xik+l|k ∈ E(V̂i,1), l ≥ N, (12b)

where E(Pi,ρ
2
i ), for Pi > 0, denotes the ellipsoidal

set E(Pi,ρ
2
i ) =

{
xi : x>i Pixi ≤ ρ

2
i

}
, for each subsystem.

From (12b), E(V̂i,1) is a local subsystem restriction
terminal set, which is invariant under (7) and (8),
therefore, it is required

Φ̂ixi + ŵi ∈ E(V̂i,1),∀ŵi ∈ Co
{(

Ĉi
j + D̂i

jK̂i
)
xi
}
,

∀xi ∈ E(V̂i,1).
(13)

It is also required, for E(V̂i,1), to be feasible
with respect to (3) in order to satisfy the input/state
restrictions over an infinite prediction horizon. This is
accomplished if

(Fi + GiK̂i)xi ≤ hi,∀xi ∈ E(V̂i,1). (14)

In order to obtain the matrices K̂i and V̂i for each
subcontroller, a semidefinite program (SDP) is solved
off-line to maximize the local terminal set E(V̂i,1)
subject to (13) and (14). Thus, being Ŝi, Ŷi the problem
solution:

max det
Ŝi,Ŷi

(Ŝi)

s. t. Ŝi (Âi + Ĉi
j)Ŝi + (B̂i + D̂i

j)Ŷi

∗ Ŝi

 ≥ 0, j = i, ..., p h2
iq FiqŜi + GiqŶi

∗ Ŝi

 ≥ 0,q = 1, ...,nc,

(15)
the volume of E(V̂i,1) is maximized with V̂i = Ŝ−1

i and
K̂i = ŶiŜ−1

i , where V̂i is the local ellipse generator set
and K̂i is the local feedback gain.

With the previously mentioned in mind, two kind
of tubes can be constructed from the gain K̂i and the
set V̂i: (i) fixed cross section tubes and (ii) variable
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cross section tubes. Gains based on variable cross
section tubes can be computed by solving a local SDP:

max
Ŝi,Ŷi,γi

γi

s. t.

Si ≥ γiIi

 Si (Aik+l+1|k + Ci
j)Si + (Bik+l+1|k + Di

j)Yi

∗ V−1
ik+l+1|k

 ≥ 0,

j = 1, ..., p,
(16)

and, finally, by defining Vik+l|k = S−1
i , Kik+l|k = YiS−1

i ,
variable cross section tubes are obtained. Fixed cross
section tubes can be computed by solving the SDP (15)
with Vik+l|k = V̂i, Kik+l|k = K̂i.

3.3 Decentralized cost function

A local cost function for each DNMPC subcontroller
is given by:

Ji(xik,uik) =

N−1∑
k=0

(∥∥∥xik+l|k
∥∥∥2

Qi
+

∥∥∥uik+l|k
∥∥∥2

Ri

)
+

∥∥∥xik+N|k
∥∥∥2

Pi
,

(17)

where Pi is a local weighting matrix optimized off-line
by solving the SDP

min tr
Pi

(Pi)

s. t.
Pi − (Φ̂i + Ĉi

j + D̂i
jK̂i)>Pi(Φ̂i + Ĉi

j + D̂i
jK̂i)

≥Qi + K̂>i RiK̂i,
j = 1, . . . , p,

(18)
Each cost function term from (17) is individually

represented as Jix,l, Jiu,l, for l = 0, . . . ,N − 1, and Jix,N

Jix,l =
∥∥∥∥x0

ik+l|k + zik+l|k

∥∥∥∥Qi
+ βik+l|k

∥∥∥∥V−1/2
ik+l|k

∥∥∥∥Qi
(19a)

Jiu,l =
∥∥∥∥u0

ik+l|k + Kik+l|kzik+l|k + vik+l|k

∥∥∥∥Ri
(19b)

+ βik+l|k

∥∥∥∥Kik+l|kV−1/2
ik+l|k

∥∥∥∥Ri
(19c)

Jx,N =
∥∥∥∥x0

ik+N |k + zik+N|k

∥∥∥∥Pi
+ βik+N |k

∥∥∥∥V̂−1/2
i

∥∥∥∥Pi
(19d)

Proposition 3.1 Consider a decentralized nonlinear
system (1), a terminal set and a set of gains varying
along the prediction trajectory, obtained by solving
(15-16), that generate fixed or variable cross section
tubes. Considering local cost functions of the form
(17) a Decentralized Nonlinear Model Predictive

Control (DNMPC) can be obtained if the following
conical problem is feasible:

(v∗ik,β
∗
ik) = min

vik ,βik

N−1∑
l=0

(J2
ix,l + J2

iu,l) + J2
ix,N

s. t.
(20a)

zik+l+1|k = Φik+l|kzik+l|k + Bik+l|kvik+l|k (20b)
βik+l+1|k ≥ λl, jβik+i

+
∥∥∥∥(Ci

j + Di
jKik+l|k)zik+l|k + Di

jvik+l|k

∥∥∥∥ (20c)

Jix,l ≥
∥∥∥∥x0

ik+l|k + zik+l|k

∥∥∥∥Qi
+ βik+l|k

∥∥∥∥V−1/2
ik+l|k

∥∥∥∥Qi
(20d)

Jiu,l ≥
∥∥∥∥u0

ik+l|k + Kik+l|kzik+l|k + vik+l|k

∥∥∥∥Ri

+ βik+l|k

∥∥∥∥Kik+l|kV−1/2
ik+l|k

∥∥∥∥Ri
(20e)

hiq ≥ (Fiqx0
ik+l|k + Giqu0

ik+l|k) + (Fiq + GiqKik+l|k)zik+l|k

+ Giqvik+l|k + βik+l|k
∥∥∥(Fiq + GiqKik+l|k)

∥∥∥V−1
ik+l|k

(20f)

for l = 1, . . . ,N − 1, y

zik|k = 0 (20g)
βik|k = 0 (20h)

1 ≥
∥∥∥∥x0

ik+N |k + zik+N |k

∥∥∥∥V̂
+ βik+N|k (20i)

Jix,N ≥
∥∥∥∥x0

ik+N |k + zik+N|k

∥∥∥∥Pi
+ βik+N |k

∥∥∥V̂i
∥∥∥Pi

(20j)

where λl, j = 1 if a variable cross section tubes are used

or λl, j =
∥∥∥∥Φik+l|kV̂−1/2

i

∥∥∥∥V̂i
+

∥∥∥∥(Ci
j + Di

jK̂i)V̂−1/2
i

∥∥∥∥V̂i
if a

fixed cross section tubes are used.
From Proposition 3.1, Algorithm 1 is established.

This algorithm describes the steps to follow in order to
apply the DNMPC scheme.

4 Four-tank system

The four-tank process is a multivariable plant of
interconnected tanks, used to validate the proposed
DNMPC scheme. The process has two direct current
pumps and two three-way valves that distribute the
flow generated by the pumps to the tanks. The process
model representing its dynamics can be partitioned
into two subsystems. Depending on the partition done
on the process model, this process can exhibit input or
state interaction (Johansson, 2000).

The Fig. 4 shows the quadruple-tank schematic
diagram. The output flow of Tank 2 feeds Tank 1 and
the output flow of the Tank 3 feeds Tank 4.
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Algorithm 1 (DNMPC)

1: Offline: Compute V̂i,K̂i by solving (15) that define the terminal set and control law. Solve (18) to compute the
terminal weight matrix Pi.

2: Online: set k = 0:

3: Find initial conditions u0
i0,x

0
i0 using the interacting input prediction u

−→
0
j0|k−1.

4: Initialize iter=1. Given u0
ik, calculate x0

ik that satisfies (1) with x0
ik|k = xik.

5: Linearize the model (1) around u0
ik, x0

ik without considering the inputs to determine Aik+l|k,Bik+l|k for l =

0, . . . ,N − 1.

6: If a variable cross section tubes are used, calculate Vik+l|k and Kik+l|k by solving (16) for l = N − 1, . . . ,0 with
xδik|k = 0,

7: Else, assign Vik+l|k = V̂i, Kik+l|k = K̂i for fixed cross section tubes.
8: Solve (20) to determine v∗ik.
9: Determine xik,uik satisfying (1), (4), (5) with vik = v∗ik by means of: (a) the use of (4) and (5) to calculate uik+l|k

given xik+l|k,vik+l|k,x0
ik+l|k,u

0
ik+l|k; (b) the use of (1) to calculate xik+l|k; for i = 0, . . . ,N − 1 con xδk|k = 0.

10: If iter< Maxiters and ‖v∗k‖ ≥ tolerance, assign x0
k = xk, u0

k = uk, iter=iter+1 and return to step 5.

11: Else, assign
u0

ik+1 =
{
uik+1|k, . . . ,uik+N−1|k,K̂xik+N|k+1

}
and implement uk = uk|k + v∗k|k.

12: Acquire through the LAN the predicted control inputs trajectories of the interacting subsystems u
−→

0
j0|k−1.

13: Increment the index k = k + 1 and return to step 3.

Tank

2

Tank

3

Tank

1
Tank

4 Pump 1

v1

Pump 2

v2

Valve 1Valve 2

Fig. 4. Four tanks system scheme.

Regarding the output flow of the pumps, the flow
of the Pump 2 feeds Tank 1 and Tank 3 through valve
2; the flow of the Pump 1 feeds Tank 2 and Tank 4
through valve 1. Considering the structure of the tank
system, the system partitioning can be done in two
ways: (i) considering Tanks 1 and 2 as Subsystem
1 and Tanks 3 and 4 as Subsystem 2, obtaining
input interactions but not states interactions; and (ii)
considering Tanks 1 and 3 as Subsystem 1 and Tanks
2 and 4 as Subsystem 2, obtaining interaction between
states but not between inputs. For the application of
the DNMPC scheme, the first option was selected.

4.1 Four-tank system model

The nonlinear model of the four-tank system is
computed from the interaction between the input and
output flows. This model is given by the following
differential equations:

ḣ1 = −
a1

A1

√
2gh1 +

a2

A1

√
2gh2 +

(1− γ2)k2

A1
v2 (21)
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ḣ2 = −
a2

A2

√
2gh2 +

γ1k1

A2
v1

ḣ3 = −
a3

A3

√
2gh3 +

γ2k2

A3
v2

ḣ4 = −
a4

A4

√
2gh4 +

a3

A4

√
2gh3 +

(1− γ1)k1

A4
v1,

where ẋ = [ḣ1, ḣ2, ḣ3, ḣ4]>, x = [h1,h2,h3,h4]>, u =

[v1,v2]>, hi the level of tank i, vi the voltage applied
to the pump i and the rest of the parameter values are
shown in Table 1 defining the physical geometry of the
system.

As it was described at the beginning of this section,
the model (21) is partitioned as follows: Subsystem 1
is conformed by the equations of Tanks 1 and 2

ḣ1 =−
a1

A1

√
2gh1 +

a2

A1

√
2gh2

+
(1− γ2)k2

A1
v2;

ḣ2 = −
a2

A2

√
2gh2 +

γ1k1

A2
v1;

(22)

and Subsystem 2 is conformed by the equations of
Tanks 3 and 4

ḣ3 =−
a3

A3

√
2gh3 +

γ2k2

A3
v2;

ḣ4 =−
a4

A4

√
2gh4 +

a3

A4

√
2gh3

+
(1− γ1)k1

A4
v1.

(23)

With the partitioned system, Subsystem 1 has the
state vector x1 = [h1,h2] and Subsystem 2 has the
state vector x2 = [h3,h4]. The main control input of
Subsystem 1 is u1 = v1, which corresponds to the

pump 1 shared with Subsystem 2 through valve 1. In
a similar way, the main control input of Subsystem 2
is u2 = v2 (pump 2) shared with Subsystem 1 through
valve 2.

4.2 Numerical results

4.2.1 Centralized controller application

In order to apply the centralized controller to the plant,
a discrete-time model of the four-tank process with
the state xk = [h1(kT ),h2(kT ),h3(kT ),h4(kT )]> and
sampling time T = 3 s is computed online, with the
initial condition x0 = [5,2,2,6]> and N = 15. For the
setpoints xr = [10.8,4.9,3.8,10.1]>, ∀t ∈ [0,75] and
xr = [15,6.7,5.7,14.4]>, ∀t ∈ [75,150], and weight
matrices Q = 20 × I, R = 0.1 × I, with I defined
as an identity matrix of compatible dimensions. The
terminal set parameters K̂ and V̂ are computed off-line
subject to bounds |x− xr | ≤ 2× [1,1,1,1]>. The pump
control signals have the following constraints[

0
0

]
≤ u ≤

[
10
10

]
where u = [v1,v2]>.

In Fig. 5, left column, the evolution of tank levels
with centralized MPC and variable gain tubes is
shown, and the right column shows the evolution tank
levels with centralized MPC with fixed gain tubes. Top
sub-plots present the evolution of levels in the (h1,h2)
plane, and bottom sub-plots the evolution of levels in
the (h3,h4) plane. From the referred figure, the tank
levels reach a steady state within the terminal set V̂,
but it can not be plotted easily as it is in R4.

The Fig. 6 shows the tank levels evolution using
the centralized MPC with fixed gains and cross section
tubes. The tank levels converge successfully to desired

Table 1: Quadruple-Tank parameters

Parameter Variable Value Units

Pump gains (k1,k2) (3.35,3.33) [cm3/Vs]
3-way valves (γ1,γ2) (0.6,0.7)
Area Tanks 1 and 2 (A1,A2) 28 [cm2]
Area Tanks 3 and Discharge constant of Tanks 1 and 2 (a1,a2) 0.071 [cm2]
Discharge constant of Tanks 3 and 4 (a3,a4) 0.057 [cm2]
Level sensor gains kc 0.5 [V/cm]
Gravitational constant g 981 [cm/s2]
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reference. Tanks 2 and 3 present an overshot and Tanks
1 and 4 have a smooth convergence due to the fact that
the output flow of the pumps enter directly to the Tanks
2 and 3. Bottom sub-plot presents the control signals
applied to the pumps, with values within the defined
limits.
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Fig. 6. Tank levels and control signals for the
centralized controller with fixed gains.
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Fig. 7. Tank levels and control signal for the
centralized controller with variable gains.

The Fig. 7 shows the results obtained when the
centralized MPC with variable gains and cross section
tubes is used. As in the results obtained when fixed
gain and cross section tubes were applied, tank levels
converge to the desired reference. It can be observed
that the level evolution is similar with respect to
the results obtained with the fixed gains and cross
section tubes. The pump control signals present slight
differences compared with the results shown in Fig. 6.

4.2.2 Decentralized controller application

Addressing the application of the DNMPC scheme,
two discrete models of the tank systems with the states
x1k = [h1(kT ),h2(kT )]>, x2k = [h3(kT ),h4(kT )]> and
sampling time T = 3 s are computed online, with
the initial conditions x0

1 = [5,2], x0
2 = [2,6]> and

N = 15. The initial conditions and the prediction
horizon are similar to those used in the centralized
scheme. The setpoints are divided for each subsystem
as x1r = [10.8,4.9]>, x2r = [3.8,10.1]>, ∀t ∈ [0,75]
and x1r = [15,6.7]>, x2r = [5.7,14.4]>, ∀t ∈ [75,150],
and weight matrices Q1 = Q2 = 0.1× I, R1 = R2 = 1.

Fig. 8 shows the evolution of tank levels with
the decentralized MPC. The left column presents the
results obtained with variable gain tubes and the
second column presents the results obtained with fixed
gain tubes. In both cases, levels reach a steady state
within the terminal sets. Each setpoint xir generate
its own terminal set and, unlike the previous result,
it is possible to plot the terminal sets because each
subsystem belongs to R2.

Fig. 9 presents the evolution of tank levels for a
single step time k. As it is observed, the predicted
trajectory (grey line) is in the tube generated by the
ellipses (solid black) and the initial trajectory x0

i0 is
represented by the dashed black line. Both trajectories
converge to the terminal set (dashed ellipse). The left
column of the figure shows the results obtained with
variable gain tubes and the right column shows the
results obtained with fixed gain tubes. The variable
gain tubes generate ellipses with a larger cross section
than the ellipses generated by the fixed gain tubes, this
represents a better disturbance rejection, which allows
for larger perturbations xδi , uδi for each subsystem.

Fig. 10 presents tank levels with the decentralized
MPC using fixed gain tubes. The tank levels converge
to the desired setpoint and, in comparison with the
results obtained with the centralized controller, Tanks
2 and 3 have smaller overshoots. In the same way, Fig.
11 presents the results with the decentralized MPC
using variable gain tubes. As in the results obtained
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with fixed gains, the tank levels converge to desired
setpoint. Comparing the results of the Fig. 10 and Fig.
11, the behavior of the levels is similar, only the pump
control signals present slight differences, which can be
observed at the bottom of the figures.
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Fig. 8. Evolution of the tank levels and their
convergence to the terminal sets with the decentralized
controller.
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Fig. 10. Tank levels and control signals for the
decentralized controller with fixed gains.
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Fig. 11. Tank levels and control signals for the
decentralized controller with variable gains.

In order to make a more fair comparison of
the proposed controller performance, a cascade PI
controllers scheme was applied. Fig. 12 depicts the PI
scheme. Kp1 = 0.6203, Ki1 = 0.0113, Kp2 = 0.2219,
Ki2 = 2.4188 × 10−4, Kp3 = 0.6203, Ki3 = 0.0113,
Kp4 = 8.6661, Ki4 = 1.7168. Fig. 13 presents the
results with the cascade PI controllers. As observed
in the figure, the response obtained is too slow with
these controllers, taking into account the same initial
conditions and references which were established for
predictive controllers.
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Table 2. Costs obtained with centralized MPC, decentralized MPC and cascade PI.
Controller Je Ju J

Centralized MPC fixed gains 159.49 992.93 1152.42
Centralized MPC variable gains 159.41 993.83 1153.24
Decentralized MPC fixed gains 209.59 955.74 1165.33
Decentralized MPC variable gains 213.87 954.5 1168.37
Cascade PI controllers 2206.28 12809.21 15015.49
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+ +
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−
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v1
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Fig. 12. Cascade PI controllers applied to the four tank system.
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Fig. 13. Tank levels and control signals for cascade PI
controllers.

A more accurate way to obtain a measure of the
performance and differences between the controllers
is to evaluate the following cost function

J =

k f∑
k=1

‖xk − xrk‖
2
QJ︸         ︷︷         ︸

Je

+

k f∑
k=1

‖uk‖
2
RJ︸ ︷︷ ︸

Ju

(24)

where QJ = I and RJ = I with I as an identity matrix
of proper dimensions.

Table shows the results obtained after evaluating
the cost function (24) for the applied MPC controllers
and cascade PI schemes. As can be seen from the
table, the centralized MPC scheme has almost the
same performance with respect to the decentralized
MPC controller. Taking into account each term of the
cost function, the centralized controller has a better
performance related to the tracking error, but the
centralized controller has a lower control effort. Using
the centralized controller, the tank levels converge
faster than the decentralized controller. This is because
the centralized controller has a higher control effort.
Regarding the performance of the cascade scheme, it
is observed in the table that this controller has poor
performance with respect to the performance of the
MPC controllers. Table shows these facts.

Conclusions

In this paper, a decentralized MPC development
based on robust tubes is presented. Both schemes,
the centralized MPC and the decentralized MPC,
were applied to a four-tank process. The numerical
results show that there are slight differences between
the performance of the controllers. Analyzing the
cost of each controller, it was observed that the
centralized controller has a higher control effort
than the decentralized controller. In the case of the
tracking error, the centralized controller has a better
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performance than the decentralized controller. With
the centralized controller, the tank levels reach the
desired setpoint faster. This is because, unlike the
decentralized controller, the centralized controller has
complete system information at each sampling time.
Regarding the performance and computational cost
of each controller, controllers with fixed gain tubes
have a lower computational cost than controllers with
variable gain tubes, eliminating the need for the
use of a more complex controller. Referring to the
results obtained from the cascading PI controllers,
it was observed that this control scheme could not
improve the performance of the MPC controllers. This
is related to the fact that classical PI controllers do
not have access to complete information about the
states and the interaction of control inputs. Another
important fact is that PI controllers are linear. These
controllers can only regulate a nonlinear system in a
small region of operation.
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Appendix

Centralized robust tube-based model
predictive control

The centralized robust tube-based MPC design
considers a global nonlinear model (Cannon M. et al.,
2011).

xk+1 = f (xk,uk) , (A.1)

where xk ∈ R
n and uk ∈ R

m are the state and the control
input, respectively. f is continuous and differentiable ∀
(x,u) in a operating region and f (0,0) = 0. The control

problem is established as an optimal regulator with
respect to the quadratic cost

J =

∞∑
k=0

(
‖xk‖

2
Q + ‖uk‖

2
R

)
, (A.2)

subject to linear constraints of the form

Fxk + Guk ≤ h, k = 0,1, ...; (A.3)

for F ∈ Rnu×n, G ∈ Rnu×m, considering the state xk
measured at each sample k, with R > 0 and Q ≥ 0.

The state and the control predicted trajectories
at sample k over an N-step horizon are defined by{
x0

k+i|k,u
0
k+i|k, i = 0, ...,N − 1}. From model (A.1), as a

consequence,

x0
k+i+1|k = f

(
x0

k+i|k,u
0
k+i|k

)
,

with x0
k|k = xk.

The system state and control input are defined in
terms of the state and control predicted trajectories

xk+i|k = x0
k+i|k + xδk+i|k, uk+i|k = u0

k+i|k + uδk+i|k,

for i = 1, ...,N − 1, with xδk+i|k = 0, and parametrizing
uδk+i|k as the sum of a linear feedback control law and
a feedforward v

uδk+i|k = Kk+i|kxδk+i|k + vk+i|k. (A.4)

A centralized time-varying linear model is used to
set the restrictions, described by

xδk+i+1|k = Φk+i|k xδk+i|k + Bk+i|kvk+i|k + wk+i|k. (A.5)

This model is derived from the linearization of the
global nonlinear model (A.1) around x0

k+i|k,u
0
k+i|k

Φk+i|k = Ak+i|k + Bk+i|kKk+i|k;

Ak+i|k =
∂ f
∂xk

∣∣∣∣∣
x0

k+i|k ,u
0
k+i|k

,Bk+i|k =
∂ f
∂uk

∣∣∣∣∣
x0

k+i|k ,u
0
k+i|k

,

and wk+i|k is the linearization error. Matrices Ak+i|k
and Bk+i|k are updated along the predicted trajectory at
each step time. Predictions for i ≥ N are determined
from the linearization of (A.1) about the target set-
point (xk,uk) = (0,0) (around the state space origin),
and a fixed control law K̂xk

xk+i+1|k = Φ̂xk+i|k + ŵk+i|k; (A.6)

uk+i|k = K̂xk+i|k, (A.7)

for i = N,N + 1, ..., where Φ̂ = Â + B̂K̂, with

Â =
∂ f
∂xk

∣∣∣∣∣
(0,0)

, B̂ =
∂ f
∂uk

∣∣∣∣∣
(0,0)

.
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Matrices Â and B̂ are terminal matrices calculated
off-line.

Bounds on the linearization error w and ŵ can
be used to bound the predicted cost and to determine
robustly feasible constraints. Since f is continuous and
differentiable, exits a convex set Ω ⊂ Rn×(n+m) such
that wk ∈ Ω

[
xδk

T uδ

k
T

]T
. It is assumed that Ω is

polytopic with vertices
[

C j D j
]
, j = 1, ..., p , as a

result

wk ∈ Co
{
C jxδk + D juδk, j = 1, ..., p

}
(A.8)

where Co denotes the convex hull. Similarly, for i ≥ N
the errors ŵk+i|k necessarily lie within the convex set

ŵk ∈ Co
{
Ĉ jxk + D̂ juk, j = 1, ..., p

}
. (A.9)

In order to bound the effects of the linearization
errors on predicted trajectories, a tube is constructed
containing the component of the predicted state
appearing from the linearization errors. The tube is
used to derive bounds on the cost and constraints in
the nonlinear MPC optimization.

The prediction of xδk+i|k is divided into a nominal
component zk+i|k and a component ek+i|k which
depends only on the linearization wk+i|k:

xδk+i|k = zk+i|k + ek+i|k (A.10a)

zk+i+1|k = Φk+i|kzk+i|k + Bk+i|kvk+i|k (A.10b)
ek+i+1|k = Φk+i|kek+i|k + wk+i|k, (A.10c)

with zk|k = ek|k = 0. The constructed tubes will have an
ellipsoidal cross section

ek+i|k ∈ E(Vk+i|k,β
2
k+i|k), i = 1, ...,N (A.11a)

xk+i|k ∈ E(V̂,1)i ≥ N, (A.11b)

where E(P,ρ2), for P > 0 denotes the ellipsoidal set
E(P,ρ2) =

{
x : xT Px ≤ ρ2

}
.

From (A.11b), E(V̂,1) is a terminal constraint
set which must be invariant under (A.6) and (A.7),
requiring that

Φ̂x + ŵ ∈ E(V̂,1),∀ŵ ∈ Co
{(

Ĉ j + D̂ jK̂
)
x
}
,

∀x ∈ E(V̂,1).
(A.12)

It is also required a feasible E(V̂,1) with respect
to (A.3), in order to ensure the achievement of the
input and state constraints over an infinite prediction
horizon. From this consideration,

(F + GK̂)x ≤ h,∀x ∈ E(V̂,1). (A.13)

In order to obtain the matrices K̂ and V̂, a semidefinite
program (SDP) is solved off-line to maximize the
local terminal set E(V̂,1) subject to (A.12) and (A.13).
Thus, being Ŝi, Ŷi the problem solution:

max det
Ŝ,Ŷ

(Ŝ)

s. t.[
Ŝ (Â + Ĉ j)Ŝ + (B̂ + D̂ j)Ŷ
∗ Ŝ

]
≥ 0, j = i, ..., p[

h2
q FqŜ + GqŶ
∗ Ŝ

]
≥ 0,q = 1, ...,nc,

(A.14)
then the volume of E(V̂,1) is maximized with V̂ = Ŝ−1

y K̂ = ŶŜ−1. Notice that [·]q denotes the qth row of [·].

Two different types of tubes can be constructed: (i)
time-varying cross section tubes and feedback gains
and, (ii) fixed cross section tubes and feedback gains.
In order to construct a time-varying tube and feedback
gains, the following SPD in variables S, Y, γ is defined

max γ
S,Y,γ

s. t.
S ≥ γI[

S (Ak+i|k + C j)S + (Bk+i|k + D j)Y
∗ V−1

k+i|k

]
≥ 0,

j = i, ..., p,
(A.15)

as a result, by considering Vk+i|k = S−1, Kk+i|k =

YS−1, the variable cross section tubes are computed.
The fixed cross section tubes, on the other hand, are
obtained by defining Vk+i|k = V̂, Kk+i|k = K̂.

The cost function to optimize is

J(xk,uk) =

N−1∑
k=0

(∥∥∥xk+i|k
∥∥∥2

Q +
∥∥∥uk+i|k

∥∥∥2
R

)
+

∥∥∥xk+N|k
∥∥∥2

P ,

(A.16)
where P is computed off-line from

min tr
P

(P)

s. t.
P− (Φ̂+ Ĉ j + D̂ jK̂)>P(Φ̂+ Ĉ j + D̂ jK̂) ≥Q + K̂>RK̂,
j = 1, . . . , p,

(A.17)

The cost function (A.16) is divided into individual
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terms lx,i, lu,i, for i = 0, . . . ,N − 1, and lx,N

lx,i =
∥∥∥∥x0

k+i|k + zk+i|k

∥∥∥∥Q
+ βk+i|k

∥∥∥∥V−1/2
k+i|k

∥∥∥∥Q
(A.18a)

lu,i =
∥∥∥∥u0

k+i|k + Kk+i|kzk+i|k + vk+i|k

∥∥∥∥R
(A.18b)

+ βk+i|k

∥∥∥∥Kk+i|kV−1/2
k+i|k

∥∥∥∥R
(A.18c)

lx,N =
∥∥∥∥x0

k+N |k + zk+N|k

∥∥∥∥P
+ βk+N |k

∥∥∥V̂−1/2
∥∥∥P (A.18d)

Finally, the solution of the centralized MPC
is obtained by solving the following optimization
problem

(v∗k,β
∗
k) = min

vk ,βk

N−1∑
i=0

(l2x,i + l2u,i) + l2x,N
s. t.

(A.19a)

zk+i+1|k = Φk+i|kzk+i|k + Bk+i|kvk+i|k (A.19b)

βk+i+1|k ≥ λi, jβk+i +
∥∥∥(C j + D jKk+i|k)zk+i|k + D jvk+i|k

∥∥∥
(A.19c)

lu,i ≥
∥∥∥∥u0

k+i|k + Kk+i|kzk+i|k + vk+i|k

∥∥∥∥R

+ βk+i|k

∥∥∥∥Kk+i|kV−1/2
k+i|k

∥∥∥∥R
(A.19d)

hq ≥ (Fqx0
k+i|k + Gqu0

k+i|k) + (Fq + GqKk+i|k)zk+i|k

+ Gqvk+i|k + βk+i|k
∥∥∥(Fq + GqKk+i|k)

∥∥∥V−1
k+i|k

(A.19e)

for i = 1, . . . ,N − 1, and
zk|k = 0 (A.19f)
βk|k = 0 (A.19g)

1 ≥
∥∥∥∥x0

k+N |k + zk+N|k

∥∥∥∥V̂
+ βk+N |k (A.19h)

lx,N ≥
∥∥∥∥x0

k+N|k + zk+N |k

∥∥∥∥P
+ βk+N |k

∥∥∥V̂
∥∥∥P (A.19i)

where λi, j = 1 if a variable tube cross sections are used
or λi, j =

∥∥∥Φk+i|kV̂−1/2
∥∥∥V̂ +

∥∥∥(C j + D jK̂)V̂−1/2
∥∥∥V̂ if a

fixed tube cross sections are used.
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