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Abstract
Zinc oxide nanoparticles (ZnO NPs) due to their unique properties have diverse applications in different fields of life. Bacterial
synthesis of ZnO NPs is an eco-friendly, simple and inexpensive way. In this study, among eighteen bacterial isolates, eight
confirmed ZnO NPs synthesis. On the basis of sharp absorption peak at 354 nm, growth conditions for gram positive Bacillus
cereus H-SC1 were further optimized. Under different optimum parameters such as incubation temperature 37ºC, pH 9, inorganic
salt (NH2)2SO4, SDS as surfactant, substrate (ZnSO4·7H2O) concentration 0.01 M and reaction time of two days under
light condition, the ZnO NPs obtained had sharp peak at 352 nm and wide band gap of 3.5 eV. FTIR spectra indicated
presence of amines and carbonyl groups as stabilizing agents. The scanning electron micrograph showed irregular shaped
ZnO NPs and Zeta sizer indicated size ranging from 58.77-63.3 nm with PDI of 0.529. ZnO NPs exhibited negative zeta
potential -7.39 mV. The antimicrobial assay by well diffusion method showed direct relationship of antibacterial activity with
concentration of nanoparticles against Escherichia coli BTCB201, Staphylococcus aureus BTCB203 and Salmonella typhi
BTCB202. Conclusively, bio-transformed ZnO NPs have great potential as alternative to conventional antibiotics and as drug
delivery tool.

Keywords: Zinc Oxide NPs, Bacillus cereus, SEM, FTIR, ZnO NPs antimicrobial activity.

Resumen

Las nanopartículas de óxido de zinc (ZnO NP) debido a sus propiedades únicas tienen diversas aplicaciones en diferentes campos
de la vida. La síntesis bacteriana de ZnO NPs es una forma ecológica, simple y económica. En este estudio, entre dieciocho
aislados bacterianos, ocho confirmaron la síntesis de ZnO NP. Sobre la base de un pico de absorción agudo a 354 nm, las
condiciones de crecimiento para Bacillus cereus H-SC1 gram positivo se optimizaron aún más. Bajo diferentes parámetros
óptimos, tales como temperatura de incubación 37ºC, pH 9, sal inorgánica (NH2) 2SO4, SDS como tensioactivo, concentración
de sustrato (ZnSO4·7H2O) 0.01 M y tiempo de reacción de dos días en condiciones de poca luz, los NP de ZnO obtenidos
tuvieron un pico agudo a 352 nm y banda ancha de 3.5 eV. Los espectros de FTIR indicaron la presencia de aminas y grupos
carbonilo como agentes estabilizantes. La micrografía electrónica de barrido mostró ZnO NPs de forma irregular y el tamaño de
Zeta indicaba un tamaño que oscilaba entre 58,77 y 63,3 nm con un PDI de 0,529. Los NP de ZnO exhibieron potencial zeta
negativo -7.39 mV. El ensayo antimicrobiano por el método de difusión de pozos mostró una relación directa de la actividad
antibacteriana con la concentración de nanopartículas contra Escherichia coli BTCB201, Staphylococcus aureus BTCB203 y
Salmonella typhi BTCB202. En conclusión, los NP de ZnO biotransformados tienen un gran potencial como alternativa a los
antibióticos convencionales y como herramienta de administración de fármacos.

Palabras clave: NPs de óxido de zinc, Bacillus cereus, SEM, FTIR, actividad antimicrobiana de ZnO NPs.
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1 Introduction

Metals nanoparticles have numerous applications due
to their unique properties. Chemical and physical
modes of synthesis are widely reported, however,
nanoparticles that are produced by microbes are
superior as compared to those produced by other
known ways. The microbial route of synthesis is
environment friendly and usage of costly chemicals is
reduced by this way (De Silva et al., 2020; Li et al.,
2011; Taranath and Patil, 2016; Zheng et al., 2017).
Nanoparticles that are synthesized by this way have
shown high catalyst reactivity, large surface area as
well as better interaction between enzyme and the
metal salt (Bhattacharya and Mukherjee, 2008). The
extracellular biosynthesis of zinc oxide nanoparticles
occured outside the bacterial cell. The mechanism
entailed secretion of reduction enzymes like NADPH
dependant reductase by bacteria in the supernatant
solution of bacterial culture. The NADPH dependant
reductase initiated reduction by transfer of electrons
from NADPH to form NADP+. The resulting electrons
are attained by zinc ions that are present on the
outside surface of cell and these ions are reduced to
form elemental zinc oxide nanoparticles (Li et al.,
2011; Zhang et al., 2011). The extracellular method of
biosynthesis of nanoparticles is given preference over
intracellular method beacuse it is cheap and devoid of
the process of complex downstreaming (Ovais et al.,
2018).

The inorganic zinc oxide nanoparticles have
peculiar semi-conducting, photocatalytic, electrical,
antibacterial, dermatological and optical properties
(El Filali et al., 2015; Ovando-Medina et al., 2018;
Wang, 2008). As compared to other nanoparticles,
zinc oxide nanoparticles are inexpensive and have less
toxicity; therefore, they have many applications (Kim
et al., 2017). The ZnO NPs which have size less than
100 nm are considered biocompatible and suitable
for biomedical applications (Jiang et al., 2018). In
biomedical field, these NPs have applications like anti-
cancer, anti-bacterial, anti-diabetic, anti-inflammation,
healing of wound, drug delivery, bio-sensors and bio-
imaging (Zhang and Xiong, 2015; Kim et al., 2017).
Zinc oxide nanoparticles are not harmful to normal
body cells of humans at concentration of upto 100
ug/ml and these can also be used as an alternative
to antibiotics (Siddiqi et al., 2018). ZnO NPs are
graded by US Food and Drug Administration (FDA)
as generally recognised as safe (GRAS) (Jiang et

al., 2018). Zinc oxide nanoparticles are non-toxic
and easily diffuse in the food and prevent bacterial
growth that is why these are used as food additives,
preservatives in food packaging, and also preserve
colors. Reportedly, there are no adverse effects of ZnO
NPs on humans as daily requirment of zinc in human
body is 10-15 mg and human body conatains 2-3 g
of zinc (Siddiqi et al., 2018; Xie et al., 2011). In
agricultural field, ZnO NPs can be effectively used
as fungicide (He et al., 2011). In field of cosmetics
because of UV-blockage properties of zinc oxide
nanoparticles, they are used frequently in products
of personal care such as sunscreens and cosmetics
(Newman et al., 2009). ZnO NPs are dermally safe
to use upto 1000 mg/kg body weight (Ryu et al.,
2014). In textile industry, ZnO NPs are used in order
to provide anti-bacterial properties and UV-absorbing
properties to the textile fabrics (Wang et al., 2005).

The biosynthesis of ZnO NPs was reported by
using Acinetobacter schindleri SIZ7, Aeromonas
hydrophila, Rhodococcus pyridinovorans and
Aspergillus niger (Jayaseelan et al., 2012; Kundu et
al., 2014; Busi et al. 2016; Ibrahem et al., 2017). Zinc
oxide nanoparticles of 68.41 nm size were reported
to be synthesized by Lactobacillus salivarius (Salman
et al., 2018). Using Candida albicans, biosynthesis
of 20 nm sized ZnO NPs was done (Shamsuzzaman
et al., 2017). The inadverent and long-term exposure
to ZnO NPs can damage vulenarable human cells.
Reportedly, the concentration dependent cytoxicity
was examined and ZnO NPs of 50 nm size at
concentration of 100 ug/ml reduced cell viability of
human lung cells (Sahu et al., 2013). The mechanism
proposed for anti-bacterial activity is generation
of reactive oxygen species (ROS) like hydrogen
peroxide that is very strong oxidizing agent and it
causes harm to microbial cell (Sawai, 2003). On
increasing the dose of particle, time of treatment
and synthesis method, the nanoparticles become
more effective (Dobrucka and Dlugaszewska, 2016).
Zinc oxide nanoparticles with average size of 30
nm cause bacterial cell death (Jiang et al., 2018).
ZnO NPs can stop growth of Gram positive as well
as Gram negative bacteria (Fernando et al., 2018).
ZnO NPs of 13 nm size were reported to inhibit
Escherichia coli and Staphylococcus aureus growth
at concentrations of 3.4 mM and >1 mM, respectively
(Reddy et al., 2007). The antibacterial activity of ZnO
NPs was reported against Pseudomonas aeruginosa,
Aspergillus flavus, Staphylococcus aureus, Bacillus
subtilis and Campylobacter jejuni (Xie et al., 2011;
Jayaseelan et al., 2012; Lakshmi et al., 2012; Ibrahem
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et al., 2017). The present study was intended towards
bacterial synthesis of ZnO NPs which is an eco-
friendly method having antimicrobial potential against
multidrug resistant pathogens.

2 Materials and methods

2.1 Sample collection and isolation

The soil sample was collected from Lahore College
for Women University, Pakistan. Different isolates of
bacteria were isolated by serial dilution method from
soil sample (Karadayi et al., 2017).

2.2 Biosynthesis of ZnO nanoparticles

For biosynthesis of ZnO NPs, inoculation of each
bacterial isolate was done in 500 ml conical flask
containing 100 ml of autoclaved nutrient broth and
then incubation was done at 37°C for 24hrs in
shaking incubator (IRMECO, Germany) at 121 rpm.
After incubation, bacterial growth was measured at
600 nm using UV 1100 Spectrophotometer (Robus
technologies, UK). Culture was centrifuged at 6500
rpm for 20 minutes and supernatant was saved for
further processing whereas pellet was discarded. For
bio-reduction of metal, zinc sulphate hepta-hydrate
solution (0.01 M) was mixed with cell free extract in
1:1 ratio. The mixture was incubated at 37°C, 121 rpm
in shaking incubator (IRMECO, Germany) for 48 hrs.
After 2 days of incubation, colour change and UV-
absorbance (200-1000 nm) of reaction mixture was
observed (Busi et al., 2016).

2.3 Optimization of different parameters

Based upon the colour, duration and excitation
peak of ZnO NPs single isolates was selected
and further optimized at different physicochemical
conditions. The different parameters optimized were:
Incubation temperatures ranging from 30ºC, 37ºC,
40ºC, 45ºC and 50ºC (Nagarajan and Kuppusamy,
2013; Sundaraselvan and Quine, 2017; Gupta et al.,
2018). pH ranging from 5, 6, 7, 8 and 9 (Nagarajan
and Kuppusamy, 2013; Gupta et al., 2018; Jamdagni et
al., 2018; Mohammadi and Ghasemi, 2018). Inorganic
salts of 1 mM concentration of each Magnesium
sulphate (MgSO4), sodium chloride (NaCl), copper
sulphate (CuSO4), ammonium sulphate ((NH4)2SO4)
and monopotassium phosphate (KH2PO4) was used

(Bae et al., 2002; Sastry et al., 2013). Similarly,
different surfactants sodium dodecyl sulphate (SDS),
ethylenediamine tetraacetic acid (EDTA), Tween 80,
Tween 20, and polyethylene glycol (PEG) of 1
mM concentration were used. Different substrate
concentration of ZnSO4·7H2O i.e. 0.005 M, 0.05 M,
0.001M, 0.01 M and 0.1 M and incubation time i.e.
0 minutes, 30 minutes, 1 hour, 2 hours, 1 day and 2
days along with light and dark conditions were also
observed (Dalai et al., 2012; Morsy, 2014).

2.4 Molecular identification of isolate of
bacteria by 16S rDNA sequencing

On the basis of 16S rDNA sequence, identification of
bacterial isolate H-SC1 was done through First Base
Company (Singapore) using sequencing primers 785F
5’ (GGA TTA GAT ACC CTG GTA) 3’ and 907R
5’ (CCG TCA ATT CMT TTR AGT TT) 3’ (Hasan
et al., 2019). PCR primers used were 27F 5’ (AGA
GTT TGA TCM TGG CTC AG) 3’ and 1492R 5’
(TAC GGY TAC CTT GTT ACG ACT T) 3’. The
phylogenetic tree was constructed using Mega 5.05
software (Busi et al., 2016; Kumar et al. 2008). The
isolate H-SC1 was identified as Bacillus cereus (NCBI
Genbank Accession No. MN181367).

2.5 Characterization of ZnO NPs

The characterization of biosynthesized ZnO NPs
was done by FTIR spectrometer IRTracer-100
(SHIMADZU, NA), Scanning electron microscope
EVO LS 10 (ZEISS, USA) and Zeta sizer Nano Range
(Malvern, UK). FTIR was used to find the functional
groups attached to ZnO NPs (Busi et al., 2016).
Topological information of the ZnO NPs was done
by scanning electron microscope (model) (Datta et al.,
2017). Zeta sizer gave information about the size and
potential of the of ZnO NPs (Kavitha et al., 2017).

2.6 Anti-bacterial activity of zinc oxide
nanoparticles against multi-drug
resistant bacteria

The antimicrobial activity of bio-synthesized
zinc oxide nanoparticles against multidrug
resistant bacteria like Escherichia coli BTCB201,
Staphylococcus aureus BTCB203 and Salmonella
typhi BTCB202 was tested by agar well diffusion
method (Jaidev and Narasimha, 2010). Inoculum of
pathogen used was set according to 0.5 Mcfarland
standard (McFarland, 1907). Different concentrations
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of the ZnO NPs 0.1 ug/ml to 0.6 ug/ml were used to
study the antibacterial activity (Busi et al., 2016).

2.7 Statistical analysis

All the experiments were carried out in triplicates. One
way ANOVA was used for finding out the significant
difference (p ≤ 0.05) between means of different
parameters by SPSS program along with application
of Duncan’s multiple range test (Duncan, 1955).

3 Results and discussion

3.1 Biosynthesis of ZnO NPs

The synthesis of ZnO NPs by Bacillus cereus
MN181367 was indicated by colour change from pale

yellow to fluorescent yellow (Fig. 1-a). The synthesis
of ZnO NPs was further confirmed by its UV-Vis
spectrum which showed sharp peak at minimum
wavelength of 354 nm with maximum absorbance
of 1.772 (Fig. 1-c). The UV-Vis spectrophotometer
analysis of all other 18 isolates was also done (Fig.
1-b). The absorption peaks within wavelength of 350
nm-380 nm indicated synthesis of nano-sized ZnO
particles. Nano-sized ZnO particles upon synthesis
showed increase in band gap and the absorption
spectrum shifts towards the lower wavelength (Singh
et al., 2019). ZnO NPs of bulk size were reported
in other studies with absorption peaks of higher
wavelengths in the range of 360 nm-381 nm (Awwad
et al., 2020; Jayaseelan et al., 2012; Shamsuzzaman et
al., 2017).

 

Fig. 1 (a) Bacterial isolate H-SC1 producing fluorescent yellow colour indicating synthesis of ZnO 
NPs; (b) UV-Vis spectrophotometer analysis of all bacterial isolates; (c) UV-Vis 
spectrophotometer analysis of bacterial isolate H-SC1 synthesizing ZnO NPs; (d) Colonial 
morphology of bacterial isolate H-SC1; (e) Gram positive rods of Bacillus cereus H-SC1 at 100X 
oil immersion.  
 

 

Fig. 1 (a) Bacterial isolate H-SC1 producing fluorescent yellow colour indicating synthesis of ZnO NPs; (b) UV-Vis
spectrophotometer analysis of all bacterial isolates; (c) UV-Vis spectrophotometer analysis of bacterial isolate H-
SC1 synthesizing ZnO NPs; (d) Colonial morphology of bacterial isolate H-SC1; (e) Gram positive rods of Bacillus
cereus H-SC1 at 100X oil immersion.
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Fig. 2 (a) UV-Vis spectrophotometer analysis of biosynthesized ZnO NPs from Bacillus cereus 
MN181367 under different incubation temperatures; (b) UV-Vis spectrophotometer analysis of 
biosynthesized ZnO NPs from Bacillus cereus MN181367 at different pH ranges; (c) UV-Vis 
spectrophotometer analysis of biosynthesized ZnO NPs from Bacillus cereus MN181367 by 
different inorganic salts; (d)  UV-Vis spectrophotometer analysis of biosynthesized ZnO NPs from 
Bacillus cereus MN181367 by using different surfactants; (e) UV-Vis spectrophotometer analysis 
of biosynthesized ZnO NPs from Bacillus cereus MN181367 at different substrate concentrations; 
(f) UV-Vis spectrophotometer analysis of biosynthesized ZnO NPs from Bacillus cereus 
MN181367 at different reaction times. 
 

Fig. 2 (a) UV-Vis spectrophotometer analysis of biosynthesized ZnO NPs from Bacillus cereus MN181367 under
different incubation temperatures; (b) UV-Vis spectrophotometer analysis of biosynthesized ZnO NPs from Bacillus
cereus MN181367 at different pH ranges; (c) UV-Vis spectrophotometer analysis of biosynthesized ZnO NPs from
Bacillus cereus MN181367 by different inorganic salts; (d) UV-Vis spectrophotometer analysis of biosynthesized
ZnO NPs from Bacillus cereus MN181367 by using different surfactants; (e) UV-Vis spectrophotometer analysis
of biosynthesized ZnO NPs from Bacillus cereus MN181367 at different substrate concentrations; (f) UV-Vis
spectrophotometer analysis of biosynthesized ZnO NPs from Bacillus cereus MN181367 at different reaction times.

3.2 Effect of incubation temperature

The optimum incubation temperature for ZnO NPs
synthesis by Bacillus cereus MN181367 was selected
to be 37ºC because of sharp absorption peak with
maximum absorbance of 1.92 at lower wavelength
of 354 nm which indicated nano-sized ZnO particles
(Fig. 2-a). The high temperature led to high reaction
kinetics which caused increased reduction of metal
ions into elemental nanoparticles (Nagarajan and
Kuppusamy, 2013; Mohammadi and Ghasemi, 2018;
Yusof et al., 2019). Temperature has effect on
bacterial growth varying the levels of enzymes
and thereby affects nanoparticles synthesis, as
mesophilic microbes do not tolerate high temperatures
therefore by them nanoparticles synthesis at elevated
temperature is not suitable (Roopan et al., 2013). In
some studies synthesis of ZnO NPs was observed at

different temperatures from 25 ºC to 90 ºC and gave
absorption peaks in the range of 355-368 nm (Gupta
et al., 2018; Jamdagni et al., 2018; Yusof et al., 2019).

3.3 Effect of pH

In this study, Bacillus cereus MN181367 at pH 9 gave
sharper peak with maximum absorbance (1.956) at the
lower wavelength of 354 nm (Fig. 2-b). The higher
pH caused increase in reduction of metal ions to form
nanoparticles. The pH actually altered the electrical
charges of biomolecules and these biomolecules
changed the reducing as well as capping ability and
affected synthesis of nanoparticles. The increase in
pH from 4 to 8 gave absorption peaks at higher
wavelengths (red shift) indicating synthesis of large
sized nanoparticles while increase in pH from 8-10
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indicated blue shift (lower wavelength) of absorption
peaks and synthesized small sized nanoparticles
(Nagarajan and Kuppusamy, 2013; Mohammadi and
Ghasemi, 2018). Synthesis of ZnO NPs was observed
from pH 4 to pH 14 in other studies giving absorption
peaks in the range of 365nm-373 nm (Gupta et al.,
2018; Mohammadi and Ghasemi, 2018).

3.4 Effect of inorganic salts

The salt (NH4)2SO4 was considered optimum for
ZnO NPs synthesis because it gave sharper absorption
peak with maximum absorbance of 1.981 at the
lower wavelength of 354 nm (Fig. 2-c). The
metal ions addition caused increase of growth and
production of enzyme which resulted in reduced size
of nanoparticles. Genomic and proteomic responses
are generated by microbes in regulation of metal
homeostasis and results in attachment of heavy metals
to cell by membrane proteins in reaction mixture
that results into NPs synthesis (Sintubin et al., 2009;
Schluter et al., 2014).

3.5 Effect of surfactants

The surfactant SDS was considered suitable for ZnO
NPs synthesis because it gave sharper absorption
peak with maximum absorbance of 2.149 at the
lower wavelengths of 352 (Fig. 2-d). Surfactants
form an absorption layer on nanoparticles and stops
aggregation of particles by increasing repulsion forces
between these particles. SDS was selected because
it causes the large production of small sized stable
ZnO NPs. However in another study uniform ZnO
NPs were synthesized in the presence of polyethylene
glycol 2000 (Morsy, 2014).

3.6 Effect of substrate (ZnSO4·7H2O)
concentration

The substrate concentration of 0.01 M was considered
optimum for zinc oxide nanoparticles synthesis
because of sharper peak at smaller wavelength of
352 nm and maximum absorption of 2.151 (Fig. 2-
e). As the concentration of Zn+2 increased, it caused
increase in absorption and shaper peaks were obtained
and growth of nanoparticles was also enhanced but
if concentration of substrate is increased beyond
threshold value then it caused broadening of peaks
and less absorbance and reduced ZnO NPs synthesis
(Mohammadi and Ghasemi, 2018). In other studies
0.1 M zinc sulphate was considered optimum where

absorption peaks were obtained at 356 nm and 373 nm
(El Waseif et al., 2017; El Waseif, 2019).

3.7 Effect of incubation time

Incubation time of 2 days was considered optimum
as sharp peak was obtained 352 nm, with maximum
absorption of 2.201 (Fig. 2-f). The increase of reaction
time showed increased formation of ZnO NPs because
of metal ions conversion to elemental nanoparticles
(Gupta et al., 2018). The optimum time studied for
ZnO NPs synthesis was reported to be 3-2 hours to
2 days in other studies giving absorption peaks at
wavelength range of 363 nm-365 nm (Kalaiselvi et al.,
2016; Gupta et al., 2018).

3.8 Effect of light and dark condition

The light condition for ZnO NPs biosynthesis was
considered optimum as UV-Vis spectrum showed
sharper absorption peak at 352 nm with wide band
gap of 3.5 eV (Fig. 3-a). The band gap was increased
and as result absorption peak was obtained at lower
wavelength and reduced size of ZnO NPs (Singh et
al., 2019).

3.9 Bacterial identification

The colony morphology of Bacillus cereus MN181367
was observed to be opaque, large sized, flat, irregular
shaped and white pigmented (Fig. 1-d). The Gram
staining showed Gram positive rods (Fig. 1-e). The
molecular identification indicated bacterial isolate H-
SC1 identified as Bacillus cereus as it showed 99%
similarity with Bacillus cereus (Fig. 3-c).

3.10 Fourier transform infrared spectroscopy
(FTIR)

FTIR spectrum of ZnSO4.7H2O (control) showed
the peaks at wavenumbers of 501.49 cm−1 (C-
I stretching), 601.79 cm−1 (C-Br stretching),
648.08 cm−1 (C-Br stretching), 759.95 cm−1 (C-Cl
stretching), 825.53 cm−1 (C-Cl stretching), 864.11
cm−1 (C-H bending), 887.26 cm−1 (C=C bending),
1091.71 cm−1 (C-O stretching), 1288.45 cm−1 (C-O
stretching) and 1334.74 cm−1 (O-H bending), 1419.61
cm−1 (O-H bending), 1635.64 cm−1 (C=C stretching),
3005.10 cm−1 (C-H stretching) and 3332.99 cm−1

(N-H stretching) (Fig. 4-a). After bio-reduction, ZnO
NPs were synthesized and their FTIR spectra showed
peaks at the wavenumbers of 667.37 cm−1, 1635.64
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cm−1, 2360.87 cm−1, 3336.85 cm−1 and 3996.51 cm−1

which corresponded to presence of different functional
groups H-Br stretching (alkyl halides class), C=C
stretching (conjugated alkene), O=C=O stretching
(compound class of carbon dioxide), N-H stretching
(secondary amines) and O-H stretching (class of
alcohol), respectively. The absorption peaks in the
range between 400 cm−1 to 600 cm−1 were assigned
as zinc oxide nanoparticles. The absorption bands in
this FTIR spectrum at 482.20 cm−1, 513.07 cm−1

and 597.93 cm−1 were particularly assigned as the
stretching vibrations of ZnO NPs.

The comparison of FTIR spectra of control and
ZnO NPs was done, it was observed that after
bio-reduction peaks from 756.95 cm−1 to 1419.61
cm−1 were removed indicating removal of different
functional groups and on the other hand, peaks at
2360.87 cm−1 and 3996.51 cm−1 appeared indicating

class of carbon dioxide and alcohol group added.
It was observed that biosynthesized ZnO NPs have
more stability for a very longer time without causing
any agglomeration due to presence of different
biomolecules and proteins on their surface (Ovais et
al., 2018). The alcoholic groups have capability of
binding with metals therefore promoting capping and
stability and stopping agglomeration. FTIR spectra of
ZnO NPs, in other studies, showed Zn-O stretches at
466.77 cm−1, 482 cm−1, 513 cm−1, 515 cm−1, 584
cm−1 and 612 cm−1 (Awwad et al., 2020; Dobrucka
and Dlugaszewska, 2016; Maruthupandy et al., 2016;
Kavitha et al., 2017). The peaks at 3479.58 cm−1,
1656.36 cm−1 and 1750 cm−1 referred to presence of
O-H stretch (hydroxyl group of alcohols), C=C stretch
(aromatic alkenes) and C=O stretch (carboxylic acid),
respectively (Maruthupandy et al., 2016; Kavitha et
al., 2017).

Fig. 3 (a) UV-Vis spectrophotometer analysis of biosynthesized ZnO NPs from Bacillus cereus 
MN181367 under light and dark conditions; (b) SEM of ZnO NPs biosynthesized by Bacillus 
cereus MN181367 appeared to be irregular shaped; (c) Phylogenetic tree of Bacillus cereus 
MN181367. 
 

Fig. 3 (a) UV-Vis spectrophotometer analysis of biosynthesized ZnO NPs from Bacillus cereus MN181367 under
light and dark conditions; (b) SEM of ZnO NPs biosynthesized by Bacillus cereus MN181367 appeared to be
irregular shaped; (c) Phylogenetic tree of Bacillus cereus MN181367.
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Fig. 4 FTIR spectrum indicating comparison of functional groups attached to ZnO NPs and 
ZnSO4.7H2O. 
 

 

Fig. 4 FTIR spectrum indicating comparison of functional groups attached to ZnO NPs and ZnSO4·7H2O.

 

Fig. 5 (a) Zeta size of ZnO NPs biosynthesized by Bacillus cereus MN181367; (b) Zeta potential 
of ZnO NPs biosynthesized by Bacillus cereus MN181367; (c) Antimicrobial activity of ZnO NPs 
against Escherichia coli BTCB201, Staphylococcus aureus BTCB203 and Salmonella typhi 
BTCB202. Each value is the mean obtained from three triplicates. Superscripts on bars indicated 
significant difference at p ≤ 0.05 by Duncan’s Multiple Range Test; (d) Zones of inhibition 
produced by ZnO NPs against Escherichia coli BTCB201; (e) Zones of inhibition produced by 
ZnO NPs against Staphylococcus aureus BTCB203; (f) Zones of inhibition produced by ZnO NPs 
against Salmonella typhi BTCB202. 

 

 

 

Fig. 5 (a) Zeta size of ZnO NPs biosynthesized by Bacillus cereus MN181367; (b) Zeta potential of ZnO NPs
biosynthesized by Bacillus cereus MN181367; (c) Antimicrobial activity of ZnO NPs against Escherichia coli
BTCB201, Staphylococcus aureus BTCB203 and Salmonella typhi BTCB202. Each value is the mean obtained
from three triplicates. Superscripts on bars indicated significant difference at p ≤ 0.05 by Duncan’s Multiple Range
Test; (d) Zones of inhibition produced by ZnO NPs against Escherichia coli BTCB201; (e) Zones of inhibition
produced by ZnO NPs against Staphylococcus aureus BTCB203; (f) Zones of inhibition produced by ZnO NPs
against Salmonella typhi BTCB202.
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3.11 Scanning electron microscope (SEM)

The biosynthesized ZnO NPs were observed in
scanning electron microscope. SEM results indicated
that they were irregular shaped (Fig. 3 b). While in
another study ZnO NPs were reported to be like nano-
wires, spheroidal, rod shaped, geometrical shaped,
irregular shaped and nano-rods (Hassan et al., 2020;
Lopez-Cuenca et al., 2019; Umamaheswari et al.,
2018).

3.12 Zeta sizer

Zeta sizer indicated size of ZnO NPs to be 58.77-63.3
nm with PDI of 0.529 with 99.65% intensity (Fig. 5-
a). Results indicated nano-sized and monodispersed
ZnO particles. Reportedly, the PDI value less than
0.7 is reported to be indication for monodispersed
nanoparticles (Umar et al., 2019). Sizes of ZnO
NPs were reported as 112.87 nm and 82.31 nm and
PDI values were 0.326 and 0.262 in other studies
(Hayeemasae et al., 2018; Umar et al., 2019).

3.13 Zeta potential

The results indicated that ZnO NPs exhibited negative
zeta potential 7.39 mV (Fig. 5-b). The magnitude of
zeta potential value showed stability of nanoparticles.
The negative zeta potential indicated that NPs have
net negative charge on their surface. The value of zeta
potential between -10 mV to +10 mV of nanoparticles
is considered almost neutral (Clogston and Patri,
2011). Negative zeta potential of 23.92 mV was
reported in other study which indicated higher stability
of ZnO NPs (Abdelhakim et al., 2020).

3.14 Anti-bacterial activity of ZnO NPs
against multidrug resistant bacteria

The antimicrobial activity of biosynthesized ZnO
NPs was evaluated by measurement of diameter of
inhibitory zones against three different pathogenic
multidrug resistant bacteria i.e. Escherichia coli
BTCB201, Staphylococcus aureus BTCB203 and
Salmonella typhi BTCB202 (Fig. 5-c, Fig. 5-d, Fig.
5-e, Fig. 5-f). ZnO NPs at 0.6 ug/ml concentration
showed 8-folds increase in antimicrobial activity
as compared to 0.1 ug/ml concentration against
Escherichia coli BTCB201. In case of Staphylococcus
aureus BTCB203, the inhibitory zone obtained at
0.6 ug/ml concentration of ZnO NPs showed 11-
folds increase as compared to inhibitory zone obtained
at 0.3 ug/ml concentration while at 0.1 ug/ml and

0.2 ug/ml, no zone of inhibition was formed. ZnO
NPs at concentration of 0.6 ug/ml showed inhibitory
zone of 24 mm for Salmonella typhi BTCB202
that was 1.71 folds higher than the inhibitory zone
(14 mm) obtained at concentration of 0.2 ug/ml
while at 0.1 ug/ml, no zone was obtained. On the
other hand, ZnO NPs at 0.6 ug/ml gave inhibitory
zone of 24 mm against Escherichia coli BTCB201
and Salmonella typhi BTCB202 which was 1.09
folds higher than the inhibitory zone (22 mm)
obtained against Staphylococcus aureus BTCB203.
The results indicated that the inhibitory effect of zinc
oxide nanoparticles increased with the increase of
concentration. The sizes as well as the concentrations
of ZnO nanoparticles are very significant factors in
anti-microbial activity of ZnO NPs (Liu et al., 2009;
Nilavukkarasi et al., 2020). Direct interaction of zinc
oxide nanoparticles to the cell surface of bacteria
causes cell membrane to become permeable and also
triggers oxidative stress by inactivation of enzymes
eventually causing death of the cell (Gupta et al.,
2018). Reportedly, ZnO NPs showed antibacterial
activity against Bacillus subtilis and Escherichia coli
and with Escherichia coli gave maximum zone of
inhibition of 15 mm and 16 mm (Meruvu et al., 2011;
Mohammadi and Ghasemi, 2018).

Conclusion

Conclusively, bacterially synthesized ZnO
nanoparticles from Bacillus cereus MN181367 have
potential as antimicrobial agent against multidrug
resistant pathogens at very low concentration and
therefore have promising future.
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