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Average velocity profile between a fluid layer and a porous medium:
Brinkman boundary layer
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3Aix-Marseille Université, Institut de Mathématiques de Marseille, UMR-CNRS 7373, Centrale Marseille, 39 rue
F. Joliot-Curie, 13453 Marseille cedex 13, France.

Received: September 8, 2019; Accepted: April 23, 2020

Abstract
It has been mentioned that, the existence of some terms in Darcy’s law are the result of the up-scaling method applied
to the Stokes flow problem at the pore-scale. To address this debate, in this work we perform, at the pore-scale, flow
simulations in a free fluid/porous medium system using different models of granular porous media. The local velocity
obtained from the Stokes equation allows to obtain the Darcy-scale velocity profiles by a direct averaging instead of
using the up-scaled model. The results show the existence of a smooth transition zone in the average velocity profiles
near the free fluid/porous medium inter-region. The size and shape of such transition zone depend on the size of the
averaging domain and they are a result of averaging local quantities and not a result of solving average equations.
In this way, we confirm the existence of an average velocity boundary layer (i.e. Brinkman boundary layer); thus
the pertinence of considering other terms in Darcy’s law can be certainly justified. We have also determined the
extension of the influence of the flow in the free fluid inside the porous medium and the perturbation of the flow in
porous medium on the flow in the free fluid.

Keywords: average velocity, boundary layer, pore-scale simulations, Stokes flow.

Resumen
Se dice que la existencia de algunos términos en la ley de Darcy son resultado del método de escalamiento aplicado
al problema de flujo de Stokes a la escala de poro. En este trabajo, para tratar de aclarar esta situación, hemos
realizado simulaciones del flujo a la escala de poro, en un sistema fluido libre-medio poroso usando diferentes
modelos de medio poroso con partı́culas. La velocidad local obtenida permitió la obtención del perfil de velocidad
promedio a la escala de Darcy a través del promediado directo y no de la solución de un modelo promedio. Los
resultados muestran la existencia de una zona de transición en los perfiles de velocidad promedio en la cercanı́a de
la inter-región medio poroso/fluido libre. El tamaño y forma de tal zona depende de la dimensión del dominio de
promediado. Esto es el resultado de promediar cantidades locales y no de la solución de ecuaciones promedio. De
esta manera, se confirma la existencia de una capa lı́mite (capa lı́mite de Brinkman) y por ello puede ser pertinente
el considerar otros términos en la ley de Darcy. También, se el alcance del efecto del flujo en el fluido libre sobre el
medio poroso y la perturbación provocada por el medio poroso en el flujo del fluido libre.

Palabras clave: velocidad promedio, capa lı́mite, simulaciones a la escala de poro, flujo de Stokes.
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1 Introduction

There are many chemical engineering operations or
processes that use porous materials, in order to
increase the volumetric surface area to separate or
transform chemical species that are carried by the
surrounding fluid (Bird et al., 2002; Froment et al.,
2010; Seader et al., 2016). In this way, in the
process design, the modeling of the transport between
fluids and porous media must be considered. Under
many operation conditions the convective transport
can not be neglected, as a consequence the velocity
distribution in a fluid/porous medium inter-region is
required. Similar situations can be also found in many
natural processes, for example, cellular scaffolds (Yu,
2012), canopy flow (Clark et al., 2007; Macdonald,
2000; Shavit et al., 2009), benthic boundary layers
(Boudreau and Jorgensen, 2001; Jørgensen, 2001),
forest fire modeling (Margerit and Séro-Guillaume,
2002; Séro-Guillaume and Margerit, 2002), and many
others.

For incompressible flow of a Newtonian fluid in
and around a porous medium, when the motion is slow
enough, the local velocity of a fluid is governed by the
Stokes and the continuity equations. These must be
solved subject to the non-slip boundary condition at
the solid-fluid interfaces along with certain boundary
conditions at the entrances and exits of the system.
However, due to the disparity of characteristic length-
scales and the complex geometry of a porous medium,
the solution of the pore-scale model is a tremendous
computational challenge. For such reason, a more
convenient approach is to model the fluid flow in terms
of average equations. In this sense, it is generally
accepted that the flow in the bulk of a porous medium
(ω−region) is governed by the Darcy’s law, which in
vector form can be written as

〈
vβ

〉
ω

= −Kβω

µβ
·
(
∇
〈
pβ

〉β
ω
− ρβg

)
(1)

where Kβω is the permeability tensor of the bulk of
the porous medium, 〈vβ〉ω is the superficial average
velocity (also known as the filtration velocity or the
Darcy’s velocity) and 〈pβ〉βω is the intrinsic average
pressure. These two kind of average quantities are
defined in terms of the integration of their pore-scale
counterpart in the fluid domain Vβ contained within an
averaging domain V (i.e., representative elementary
volume or REV) by

〈ϕ〉 |x =
1
V

∫

r∈Vβ(x)

ϕ|rdV where ϕ = pβ, vβ (2a)

〈ϕ〉β |x =
1

Vβ(x)

∫

r∈Vβ(x)

ϕ|rdV (2b)

which are related by 〈ϕ〉 |x = εβ(x)〈ϕ〉β|x, where
εβ(x) is the fluid volume fraction that can be position
dependent. In eqs. (2), we have used x and r to indicate
the position vectors that locate the centroid of the
averaging volume and of any point in the system,
respectively.

Another proposal to describe the fluid velocity in
the porous medium is the Darcy-Brinkman equation
(Brinkman, 1949a,b), which is given by

0 = −∇
〈
pβ

〉β
ω

+ρβg+µe f f ∇2
〈
vβ

〉
ω
−µβK−1

βω ·
〈
vβ

〉
ω

(3)

where µe f f is the effective viscosity of the porous
medium. Both Darcy and Darcy-Brinkman equations
are results of up-scaling the Stokes flow problem,
that require the imposition of several reasonable
restrictions. In general, due to the disparity of
characteristic length-scales, these equations are only
valid in the bulk of the porous medium (Whitaker,
1999). As a consequence, in many cases, the Brinkman
correction to Darcy’s law is negligible for most
of the porous region. However, due to the rapid
variations of the fluid volume fraction and velocity
at the boundaries of the porous medium, Darcy’s law
does not necessarily holds near the porous media
boundaries (Goharzadeh et al., 2005). For this reason,
the Brinkman correction is often kept, which arises
the possibility of keeping another contributions of
the same order of magnitude (i.e., terms that contain
porosity spatial variations) (Whitaker, 1999).
On the other hand, for the aforementioned average
model, the fluid velocity in the free fluid (η−region)
is governed by the Stokes equation, where the
local pressure and velocity are replaced by their
corresponding averages, i.e., ϕβ ⇒

〈
ϕβ

〉β
η

(Ochoa-
Tapia and Whitaker, 1995a).

0 = −∇
〈
pβ

〉β
η

+ ρβg + µβ∇2
〈
vβ

〉
η

(4)

It should be noted that, we have used the subscripts
ω and η to indicate variables or effective coefficients
associated to the homogeneous porous medium and
clear fluid, respectively.
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Porous medium

Fig. 1. Schematic view of the experimental setup used by Beavers and Joseph (1967).

The completion of the model given by the Darcy’s
equation or Darcy-Brinkman equation for the porous
medium region and Stokes average equation for the
fluid region requires coupling boundary conditions.
For the system shown in Fig. 1, Beavers and Joseph
(1967) proposed an empirical boundary condition
analogous to Newton’s cooling law to couple the
Darcy’s velocity 〈vβ〉ω with the slip velocity of
the fluid at the free fluid/porous medium interface
〈vβ〉η|y=0, which is given by

d〈vβ〉η
dy

∣∣∣∣∣∣
y=0

=
αBJ√
Kβω

(
〈vβ〉η

∣∣∣∣
y=0
− 〈vβ〉ω

)
(5)

where αBJ is an empirical slip coefficient. In addition,
Beavers and Joseph (1967) set-up an experimental
system consisting of a channel partially filled with
a porous medium (see Fig. 1). In this way, they
determined the fluid flow through the free fluid region
and the αBJ coefficient was obtained by fitting their
experimental data.

For the case in which Darcy’s law is used, several
theoretical and experimental works seeking to address
the coupling situation have been presented. Many
of them have used as a system a channel partially
filled with a porous medium. Other studies have
focused on the determination of αBJ , where it has
been found to depend strongly on the microstructure of
the boundaries of the porous medium (Beavers et al.,
1970; Morad and Khalili, 2009; Richardson, 1971;
Taylor, 1971).

In contrast, to couple the Darcy-Brinkman
equation with the Stokes average equation, Ochoa-
Tapia and Whitaker (1995a), using the volume
averaging method, derived a jump boundary condition
for the stress. For the system used by Beavers and

Joseph (1967), it takes the following form

ε−1
βω

d〈vβ〉ω
dy

∣∣∣∣∣∣
y=0
−

d〈vβ〉η
dy

∣∣∣∣∣∣
y=0

=
βOTW√

Kβω

〈vβ〉ω
∣∣∣
y=0 (6)

where βOTW is a dimensionless coefficient of the
order of one, which was determined by adjusting the
experimental data reported by Beavers and Joseph
(1967). Several studies have focused on its theoretical
determination (Chandesris and Jamet, 2006, 2007;
Goyeau et al., 2003; Valdés-Parada et al., 2009).
In the derivation of this boundary condition an
important step is the use of a generalized transport
equation (GTE) for momentum transport, which is
similar to the Brinkman equation, with the difference
that the effective coefficients are position dependent,
the effective viscosity is equal to µβ/εβ(x) and
considers a second viscous term known as the second
Brinkman correction (Ochoa-Tapia and Whitaker,
1995a,b; Valdés-Parada et al., 2007). This GTE has
the property that it is continuously reduced from the
average form of Stokes equation in the bulk of the
free fluid to Darcy’s equation in the bulk of the
porous medium. In this way, it includes the existence
of a transition zone in the average velocity profile
in the inter-region between the homogeneous parts
of the system. Other works have used a simplified
form of GTE to derive boundary conditions and to
predict the associated coefficients (Chandesris and
Jamet, 2006, 2007; Goyeau et al., 2003; Valdés-Parada
et al., 2013, 2009, 2007). The GTE has also been
involved in the derivation of boundary conditions for
multidimensional flow (Angot et al., 2017). However,
in some cases the existence of a transition zone is seen
as a consequence of particular average momentum
models, and not as a result of averaging the local
velocity profile.
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Recently, Ochoa-Tapia et al. (2017) addressed
this situation by assuming that the porous medium,
in a system like Beavers-Joseph’s, is consolidated
and formed by capillary pores of the same diameter,
where the flow occurs in the same direction that the
free fluid flow in the upper channel. The laminar
flow assumption allowed those authors to obtain
analytic expressions for the average velocity profiles
everywhere in the system. In this way, they showed
the existence of a continuous transition zone between
the velocity of the bulk of the porous medium (Darcy’s
velocity) and the one in the bulk of the fluid region,
which include the so called Brinkman boundary layer
(Goharzadeh et al., 2005; Morad and Khalili, 2009).
However, the geometry used in that work does not
allow mass and momentum transfer between the two
regions of the system. Therefore, for other type of
porous media, the existence of a transition zone in
the average velocity profiles near of their boundaries
may be questionable. For such reason, in this paper,
in order to confirm the existence of a transition zone
near the porous medium boundaries as a direct result
of averaging local quantities, we extend the work of
Ochoa-Tapia et al. (2017) using granular porous media
micro-structures, which consist of periodic arrays of
horizontal cylinders or prisms perpendicular to the
main flow direction. These configurations for the
porous media allow mass and momentum transfer
between the free fluid and the one in the porous media,
thus the conclusions drawn in this work may retain
generality. With this in mind, this paper is organized
as follows: In Section 2, the free fluid/porous medium
system and the micro-scale model that governs the
total mass and momentum transfer are presented.
Then, the solution method of the micro-scale model
in the fluid/porous medium system is described. In
this way, the domain of application of Stokes model
for the channel system is determined. Finally, in the
same section, the specific averaging operators and
average velocity profiles from the direct numerical
simulation (DNS) solution are presented. In addition,
the existence of a transition layer for the average
velocity inside the porous medium is confirmed.
After that, in Section 3, the local velocity profiles
and the determination of the distance of influence
of the flow in one homogeneous region on the
other is shown. Finally, some discussion and the
corresponding conclusions are presented in Sections
5 and 6.

2 The Stokes problem in a
channel partially filled with a
porous medium

2.1 Fluid-porous medium system and local
model

The system under consideration is shown in Fig.
2, which is an schematic view of the system used
by Beavers and Joseph (1967) to experimentally
determine the effect of the porous medium boundaries
on the flow of a fluid flow through the upper gap in
the channel. The system consists of a channel partially
filled with a homogeneous porous medium made of a
rigid solid phase (σ−phase). The characteristic lengths
of both homogeneous regions, Lη and Lω, as well
as the corresponding to the sampling volume, r0, are
shown in Fig. 2. The same fluid phase that saturates
the porous medium flows over it. The fluid region
above the porous medium is identified as the η−region
and the region occupied by the porous medium is
identified as the ω−region. The flow is assumed to be
stationary, incompressible, and slow enough to neglect
inertial effects. On the basis of these assumptions, for
a Newtonian fluid, the governing equations for mass
and momentum transfer are
Continuity equation

∇ · vβ = 0 in the β − phase (7a)

Stokes equation

0 = −∇pβ + ρβg + µβ∇2vβ in the β − phase (7b)

where vβ is the local velocity, pβ is the local pressure,
µβ is the dynamic viscosity, ρβ is the density and
g = −gj is the gravity vector. Eqs. (7a) and (7b) must
be solved subject to the non-slip boundary condition at
the solid-fluid interfaces (Aβσ) given by

vβ = 0 at Aβσ (7c)

This boundary condition also must be satisfied at the
surface of the horizontal plates that bound the channel.
In addition, to complete the statement of the boundary
value problem, it is necessary to provide the boundary
conditions at entrances and exits of the system (Aβ,e).
In the case here considered, the flow is driven by a
fixed pressure drop between the entrance and exit of
the channel, which can be expressed by

− ∂pβ
∂x

=
pβ|x=0 − pβ|x=L

L
= constant for all y (7d)
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In Fig. 2, portions (i.e., samples) of the system
in different locations are shown: (a) in the bulk of
η−region, (d) in the bulk of the ω− region, and (b), (c)
and (e) in the three inter-regions. Along this work, we
will use the term inter-region to identify those zones
in which the microstructure of the system undergoes
rapid changes and, as a consequence, the volume
fraction and other effective coefficients change rapidly.

2.2 Solution of the local model

In order to solve the local model in the channel system,
as a first approximation, we assume that the porous
media consist of horizontal cylindrical or prism-
shaped particles, whose main axis are perpendicular
to the main flow direction. All the calculations are
restricted to the arrangements of the unit cells shown
in Fig. 3. In this way, due to the fully developed
flow assumption, the velocity field is periodic in the

x direction, thus it is enough to carry out the solution
in a subdomain as the one shown in Fig. 4. As a
consequence, the pressure drop is constant in the x
direction and the velocity field must satisfy

vβ(r) = vβ(r + `i) (8)

where ` is the characteristic length of the periodic
unit cell and i the unit vector in the x direction. In
addition, to avoid unnecessary calculations, instead of
using the non-slip boundary condition at the lower
plate of the channel, only a part of the porous medium
is considered. This is because far enough inside the
porous medium the local velocity profile is periodic in
the two directions. In this way, the size Lω must be
chosen in such way that the symmetry condition can
be imposed in the horizontal border of the unit cell.

nβ · ∇vβ = 0 at y = −Lω (9)

x

y Lh

Lw

Flow

(e) Wh-
Inter-region

(d) Homogeneous regionh-

(c) h-w
Inter-region

b-phase

s-phase

(b) Homogeneous regionw-(a) Ww-
Inter-region

02r

V

Fig. 2. Close ups of the samples in homogeneous regions and inter-regions of the channel system used by Beavers and Joseph
(1967). The characteristic lengths of the homogeneous regions and the sampling volume are Lη, Lω, and r0, respectively.
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s-phase

b-phase

(a) (b) (c)

s-phase

b-phase

l l

ls ls ls
s-phase

b-phase

l

Fig. 3. Cross section of the unit cells for the bulk of the porous medium: (a) cylinders in line, (b) staggered cylinders, and (c)
square prisms in line.

Then, for simplicity, we introduce the following
dimensionless variables

X =
x
`

; Y =
y
`

; u =
vβ`ρβ
µβ

; p =
`2ρβ(pβ + ρβyg)

µ2
β

(10)
Thus, eqs. (7)-(9) take the form

∇ · u = 0 β − phase (11a)

0 = −∇p + ∇2u β − phase (11b)
B. C. 1 u = 0 at Aβσ (11c)
B. C. 2 u = 0 at Y = Lη/` (11d)
B. C. 3 nβ · (∇u) = 0 at Y = −Lω/` (11e)

u(r/`) = u(r/` + i) (11f)

− ∂p
∂X

=

(
pβ|x=0 − pβ|x=L

L

)
µ2
β

ρβ`3 = C for all Y

(11g)
where the dimensionless constant C, is used to define
the magnitude of the pressure drop, which must be
small enough to satisfy the Stokes flow assumption.
In Eqs. (11), ∇ indicates the dimensionless differential
operator.

Following Eidsath et al. (1983), to generate
the flow field, the dimensionless local pressure is
decomposed according to

p = 〈p〉βds + p̃ (12)

Here 〈p〉βds, is the intrinsic average of p, that must be
evaluated according to

〈p〉βds =
1

Vβ,ds

∫

Vβ,ds

pdV (13)

where Vβ,ds is the fluid locus in the periodic solution
domain shown in Fig. 4. Furthermore, the pressure

deviation p̃, that was introduced in Eq. (12), must
satisfy the restriction

〈p̃〉βds = 0 (14)

Since the pressure drop, given by Eq. (7d), is
constant in the bulk of both homogeneous regions, the
dimensionless pressure drop may be written as

∇〈p〉β = −Ci (15)

At this point, the local problem that must be solved in
the free fluid/porous medium system is totally defined,
and it is the following

∇ · u = 0 β − phase (16a)

0 = −∇ p̃ + Ci + ∇2u β − phase (16b)
B. C. 1 u = 0 at Aβσ (16c)
B. C. 2 u = 0 at Y = Lη/` (16d)
B. C. 3 nβ · (∇u) = 0 at Y = −Lω/` (16e)

u(r/`) = u(r/` + i) (16f)
p̃(r/`) = p̃(r/` + i) (16g)

The solution of this problem is carried out using
the finite element solver COMSOL Multiphysics 5.2.
The porosity of the bulk of the porous medium, εβω,
depends on the configuration in each of the unit cells
shown in Fig. 3, and its value is obtained once the
ratio `σ/` is fixed. It should be noted that if C = 0 the
problem becomes homogeneous. In this way, due to
the linearity of the boundary value problem, it is only
necessary to solve for one value of C, the solutions
for other values can be obtained by the appropriate
up-scaling.
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Lh

Lw

Unit cell

Flowy

x

b-phase

s-phase

ls

l

y

y Lh=

y Lw= -

x

(a)

(b)

(d)

(e)

M

Averaging volume,V

M

M

02r

(c)

M

M

M

M

Fig. 4. Periodic domain for the solution of the pore-scale problem. The samples in different regions of the periodic domain are
shown in the: (a) wall/porous medium inter-region, (b) homogeneous porous medium, (c) fluid/porous medium inter-region, (d)
homogeneous fluid region, and (e) fluid/wall inter-region.

For the calculations, we considered a channel with
Lη = 103` and Lω = 102`. Thus, the complete height
of the channel is Lη + Lω = 1.1 x 103`. In general,
this leads to a disparity of characteristic length-scales
of at least two orders of magnitude between the pore-
scale and the macroscopic system, which satisfies that
` � Lη, Lω.

The statement of the flow problem, given by eqs.
(16), shows that the intention of this paper is to restrict
the analysis to non-inertial flow cases. However, it is
worth to analyze that, if there are some cases in which,
even when in the bulks of the homogeneous regions
the flow is non-inertial, the flow is inertial in the inter-
region. This analysis is carried out in the following
subsection.

2.3 Limit of application of Stokes flow
model in the channel system

In the following paragraphs, the maximum value of
C for which Eq. (16b) can be used is determined. To
this end, the DNS results obtained with the eqs. (16)
are compared with the ones obtained when Eq. (16b)
is replaced by the dimensionless Navier-Stokes (N-S)
equation, given by

u · ∇u = −∇ p̃ + Ci + ∇2u, in the β − phase (17)

In Table 1, the maximum difference percentages

between the velocity magnitudes obtained with Navier
Stokes and Stokes models are reported for different
values of the dimensionless pressure drop and two
values of εβω. As it should be, the difference
percentage between the results obtained with the two
models increases as C is augmented. In the row for
C = 10−5, it can be observed that, the difference
percentage between the results obtained with the two
models is no larger than 1.2x10−3. This suggests
that, the inertial contributions can be neglected for
C ≤ 10−5. It is worth mentioning, that the largest
differences between the two model predictions are
found in the free fluid/porous medium inter-region.

In addition, some of the results obtained for the
flow in the free fluid/porous medium inter-region with
the N-S equation, for different values of C, are shown
in figs. 5 and 6. In the first of them, Fig. 5, it is apparent
that the shape of the contour plots for the velocity
magnitude obtained with C = 10−5 and C = 10−4 are
the same; it could be said that, the field corresponding
to C = 10−4 is almost the same that the one for C =

10−5 multiplied by 10. Then, if one is willing to accept
the error indicated in Table 1, the inertial contributions
could be neglected even for C ≤ 10−4. In figs. 5c
and d the distortion of the flow fields, for C = 0.1
and C = 1 with respect to C = 10−5 are much more
evident. The previous comments are confirmed by the
comparison of the streamlines shown in Fig. 6. There
is not a noticeable difference between the figs. 6a and
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Table 1. Maximum difference percentage between the local velocities predicted by Navier-Stokes and Stokes models for different
values of the dimensionless pressure drop, C. The results are for cylindrical particles, Lη = 103` and Lω = 102`.

C εβω = 0.4 εβω = 0.8
10−5 0.00120 1.61x10−4

10−4 0.01204 1.61x10−3

10−3 0.12090 1.63x10−2

10−2 1.22278 1.67x10−1

0.1 8.25514 4.91
1 18.6852 19.29

b. However, the stream lines behavior for C = 0.1
and C = 1 around the two solid particles in contact
with the free fluid are clearly different. Navier-Stokes
model must be used for these values of C. It should
be emphasized that, the results are for the particular
configuration shown in Fig. 4 and may depend on
Lη/`.

In the following paragraphs, using the information
from the DNS for the channel system, we evaluate the
Reynolds numbers in the bulk of the homogeneous
regions which are given by

Reη =
ρβvβ,maxLη

µβ
, Repω =

ρβ〈vβ〉ωd
µβ

(18)

where vβ,max and 〈vβ〉ω are the maximum velocity
in the free flow region and the superficial average
velocity in the bulk of the porous medium,
respectively. These results will help in further studies
to determine when can the flow be treated as non-
inertial in the whole channel domain. In this way,
by using Eq.(10), the Reynolds numbers can also be
written as follows

Reη =
Lηumax

`
(19)

Repω =
`σ
`

Kβω

`2 C (20)

In this last equation, Darcy’s law has been used to
replace 〈vβ〉ω. In order to evaluate Repω, for a given C,
it is necessary to know Kβω, which can be obtained, as
explained latter in Sec. 3.3, for a given porous medium
microstructure and εβω. However, the evaluation of
Reη requieres the solution of the Stokes problem to
obtain umax once Lη/` is fixed.

In Table 2 the values of both Reynolds numbers
for the bulks of the homogeneous regions are reported.
The values indicate the conservative upper limit for the
use of Stokes model in the bulk of the free fluid and in
the bulk of the porous medium. In addition, in Table 3
the Reynolds number for different positions inside the
inter-region are shown. These values indicate that the
flow around the first and second solid particle may not
correspond to Stokes regime.

Table 2. Reynolds numbers of both homogeneous regions of the channel partially filled with a porous medium for several values
of εβω. The results are for cylindrical particles, C = 10−5, Lη = 103`, and Lω = 102`.

εβω Repω Reη
0.3 6.98x10−10 1250
0.4 4.96x10−9 1250
0.5 1.50x10−8 1251
0.6 3.28x10−8 1251
0.7 6.00x10−8 1251
0.8 9.79x10−8 1251
0.9 1.44x10−7 1251
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Fig. 5. Effect of the dimensionless pressure drop, C, on the local velocity magnitude in a neighborhood of the free fluid/porous
medium inter-region predicted by the Navier-Stokes equation model. The DNS is for cylindrical particles, Lη = 103`, Lω = 102`,
and εβω = 0.8.

Table 3. Particle Reynolds numbers in the free fluid/porous medium inter-region using a porous medium made of cylinders in
line for different values of the dimensionless pressure drop, C. In all the calculations we used Lη = 103`, Lω = 102`, and two
values of εβω.

Rep(y/`)

εβω y/` C = 10−5 C = 10−4 C = 0.1 C = 1
0.4 1.5 7.01 x10−3 7.01 x10−2 70.0 697

0.5 2.65 x10−3 2.65 x10−2 26.4 261
-0.5 7.41 x10−5 7.41 x10−4 0.70 5.51
-1.5 1.24 x10−8 1.24 x10−7 1.24 x10−4 1.24x10−3

-2.5 1.24 x10−8 1.24 x10−7 1.24 x10−4 1.24x10−3

0.8 1.5 4.54x10−3 4.54x10−2 45.3 451
0.5 2.02x10−3 2.02x10−2 20.1 200
-0.5 1.48x10−4 1.48x10−3 1.44 13.1
-1.5 5.31x10−8 5.31x10−7 5.58x10−4 6.31x10−3

-2.5 1.23x10−7 1.23x10−6 1.23x10−3 1.23x10−2

2.4 Average velocity profile from direct
numerical simulations

In order to analyze the flow in the free fluid/porous
medium system at the macroscale (i.e., at Darcy’s
scale), in the following lines we obtain the average
velocity profiles by averaging the local velocity

profiles. The averaging volume that could be used for
this purpose is shown in the Fig. 2. Nevertheless, due
to the periodic geometry of the subdomain used for
the DNS, it is convenient to choose as the averaging
volume a parallelepiped with a rectangular cross-
sectional area tangent to the main flow direction, such
as the one shown in Fig. 4. The cross-sectional area
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Fig. 6. Effect of the dimensionless pressure drop, C, on the stream lines in the neighborhood of the free fluid/porous medium
inter-region predicted by the Navier-Stokes equation model. The DNS is for cylindrical particles, Lη = 103`, Lω = 102`, and
εβω = 0.8.

of the averaging domain is 2r0`, where r0 is one half
of the height of the samples and ` is the width of the
samples. In this way, the intrinsic average operator,
given by (2b), may be written as

〈ux〉β|y0 =
1

εβ(y0)2r0`

y=y0+r0∫

y=y0−r0

x=x0+ 1
2 `∫

x=x0− 1
2 `

mβ(r)ux (x, y) dxdy

(21)
where mβ(r) is a phase indicator function defined as

mβ(r) =

{
1 if r ∈ Vβ(x)
0 if r < Vβ(x) (22)

Notice that, we are only interested in obtaining
the component of the dimensionless velocity in the
direction of the pressure drop, namely ux = u · i.
This is because the main changes of the velocity
profile at the macroscale are along this direction. In
this way, we obtained the average velocity profile
along the vertical direction using the Eq. (21). In the
following paragraphs, the average velocity results will
be presented as follows

u∗ =
〈ux〉β
umax

(23)

where umax = max
(
〈ux〉β

)
. In Fig. 7, the average

velocity profiles resulting from DNS, for εβω =

0.4 and five sample sizes r0/` (1, 2, 5, 10 and 15)
are reported. In Fig. 7a, we show the superimposed
average velocity profiles in the whole domain of
the channel for three microstructures of the porous
medium. However, at this level of amplification, it is
not possible to categorically conclude if the size of the
averaging volume or the microstructure of the porous
medium have some significant effect on the average
velocity profiles. For that reason, in Fig. 7b , the close
up of the profiles in the neighborhood of the maximum
velocity is shown.

Then, it is clear that, for the same fluid volume
fraction, there is not a significant effect of the porous
medium configuration or the sample size on any of the
velocity profiles in the free flow part of the system.
Finally, in Fig. 7c, the close up of the average velocity
profiles in the free fluid/porous medium inter-region
−r0 ≤ y ≤ r0 is shown. Note that, at y = 0 the
clear fluid ends, therefore, the samples corresponding
to y ≥ +r0 are fully located in the fluid and the ones for
y ≤ −r0 are fully located in the porous medium. These
results show that the velocity profiles take Darcy’s
velocity value for y . −r0. Therefore, the thickness
of Brinkman’s layer is approximately r0.
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Fig. 7. Intrinsic average velocity profiles obtained from DNS for a channel partially filled with a particulate porous medium. For
(a) the open gap of the channel and part of the porous medium, (b) the maximum velocity region, and (c) the free fluid/porous
medium inter-region. In all simulations we fixed C = 10−5, Lη = 103`, Lω = 102`, and εβω = 0.4. The sample sizes r0 are the
reported in Part (c) of this figure.

In the same way, for most of the channel system,
there is not a noticeable difference when comparing
the DNS average velocity profiles shown in Fig.
7, with ones obtained from the analytic expressions
for stratified porous medium formed by parallel
cylindrical capillary pores (Ochoa-Tapia et al., 2017)
and the corresponding to stratified porous medium
formed by parallel plates reported in Appendix A of
this paper. Even more, as it is shown in Fig. 8, the DNS
and analytic results also coincide in the inter-region.

In addition, the comparison of the velocity profiles
obtained for different εβω values shows negligible
differences almost for the whole channel system.

For such reason, we limit the comparison of the
predictions to the inter-region neighborhood where,
at this level of amplification, appreciable differences
are located. This can be observed in Fig. 9, where
the results already shown above for εβω = 0.4 are
compared with the values corresponding to εβω = 0.8.
It should be noted that, in the arithmetic scale that is
used in figs. 7 to 9, the values for the average velocity
corresponding to the bulk of the porous media 〈ux〉βω,
although, they are about 10−7, seem like zero. This is
shown in detail in Table 4, where 〈ux〉βω is compared
with the intrinsic average velocities at y = 0 for the
different porous media microestructures and sample
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sizes. Note that each one of the 〈ux〉βω is negligible with
respect to all values 〈ux〉β|y=0. The same type of results
are obtained for other bulk fluid volume fractions,
0.1 ≤ εβω ≤ 0.9. It is precisely, the difference between
the 〈ux〉βω for a given εβω which leads to the differences
between the average velocity profiles for εβω = 0.4
and εβω = 0.8 shown in Fig. 9. This is because the
average velocity at y = 0 is directly related to the
arithmetic average of the flow rates for the free fluid
and porous medium contained by the corresponding
sample. However, given that Lη = 103`, the inter-
region effect is not enough to yield different values for
the maximum velocity and its location in the free
flow region. Then, for the dimensionless pressure
drop C = 10−5 and each one of the bulk porosity
values, it was found that umax ≈ 1.25 at Y ≈ 0.5Lη/`.
Later, in the Discussion Section, this situation will be
further elaborated in terms of the analytic expressions
presented for the stratified parallel plates porous media
model and other findings of the following sections.
Finally, in Fig. 10 part of the DNS volume average
results shown in Fig. 9 (r0 = `, 15`) are compared with
the x-average velocity profiles for two values of εβω.
The x-average, for a given value of y0, was evaluated
following the definition

ûβx|y0 =
1

ε̂β|y0`

x=x0+ 1
2 `∫

x=x0− 1
2 `

mβ(r)ux (x, y0) dx (24)

where ε̂β, the fraction of ` that is occupied by the fluid,
is given by

ε̂β|y0 =
1
`

x=x0+ 1
2 `∫

x=x0− 1
2 `

mβ(r)dx (25)

At the level of amplification used in these figures there
is not noticeable difference between the x-average and
the volume average profile corresponding to r0 =

`. However, the difference becomes evident as r0
increases.

All the observations in this section, on the effect of
the free fluid flow on the porous media velocity profile,
are in terms of average velocity. This raises some
questions on the analogous effect in terms of the local
velocity distribution. In the following sections, using
the local velocity results from the DNS, we determine
the extension of the influence of the free fluid motion
on the flow inside of the porous medium and of the
disturbance zone in the free fluid due to the flow in the
porous medium.
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Fig. 8. Average velocity profiles in the free fluid/porous medium inter-region as function of the sample size, r0. The calculations
are for the porous media formed by cylinders in line, parallel plates, and capillaries in line. In all the simulations C = 10−5,
Lη = 103`, Lω = 102`, and εβω = 0.4.
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Fig. 9. Intrinsic average velocity profiles in the free fluid/porous medium inter-region as function of εβω and the sample size, r0.
All DNS results are for porous media made of cylinders in line with C = 10−5, Lη = 103`, and Lω = 102`.
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Fig. 10. Comparison of the intrinsic volume average and intrinsic line average velocities in the free fluid-porous
medium inter/region for two values of εβω. All DNS results are C = 10−5, Lη = 103`, and Lω = 102`.

3 Effect of the flow in one
homogeneous region on the
local velocity profile of the
adjacent region

As shown above, a smooth transition zone in the
average velocity profiles exists at the free fluid/porous
medium inter-region. The size of the part located
inside the porous medium is approximately r0.
This transition zone is found even for consolidated

porous media models like the capillary and parallel
plates cases. It is clear that the average velocity
profiles previously presented depend on the DNS
results. However, the solution of the local model is
independent of the shape and size of the sample,
therefore the following analysis is not related to the
averaging process. Then, it is worth to note, as it is
shown in Fig. 6, that inside the free fluid, the stream
lines are horizontal far enough from the solid particles.
In addition, as it is also shown in Fig. 6, one should
realize that the shape of the stream lines around each
solid particle look alike as one moves inside the porous
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medium. Thus, in terms of the local velocity, the effect
of the solid particles in the porous medium on the
free fluid flow is lost at certain distance (dη) inside
the homogeneous free fluid. Analogously, the effect of
the free fluid motion must vanish at certain distance
(dω) inside the porous medium bed. In the following
lines we describe the procedures that were followed
to determine the values for both dω and dη, which are
shown in Fig. 11.

3.1 Determination of dη and dω
In one hand, to determine dη, it is crucial to recognize
that far enough from the solid particles of the porous
medium, the motion of the fluid is essentially parallel
to the upper wall: u · i = ux (y) , 0 and u · j = uy = 0.
For such reason, for y ≥ dη, ux only depends on the
vertical coordinate, y. Therefore, dη is the value of
the vertical coordinate where all the local horizontal
velocity profiles begin to superimpose one over the

Table 4. Dimensionless intrinsic average velocity at y = 0 for different porous medium models and two values of εβω. The
dimensionless pressure drop C, Lη and Lω are 10−5, 103`, and 102`, respectively.

r0/` cylinders in line staggered cylinders square prisms in line parallel plates capillaries in line
εβω = 0.4
1 2.19x10−3 1.82x10−3 2.22x10−3 1.78x10−3 1.78x10−3

2 3.96x10−3 3.60x10−3 3.99x10−3 3.57x10−3 3.57x10−3

5 9.28x10−3 8.93x10−3 9.32x10−3 8.90x10−3 8.90x10−3

10 1.81x10−2 1.78x10−2 1.82x10−2 1.77x10−2 1.77x10−3

15 2.69x10−2 2.66x10−2 2.69x10−2 2.65x10−2 2.65x10−2

〈ux〉βω 1.42x10−8 7.09x10−9 2.62x10−8 1.07x10−7 1.59x10−7

εβω = 0.8
1 2.36x10−3 1.49x10−3 2.34x10−3 1.39x10−3 1.39 x10−3

2 3.68x10−3 2.87x10−3 3.66 x10−3 2.77x10−3 2.77 x10−3

5 7.78x10−3 7.02x10−3 7.77x10−3 6.92x10−3 6.92 x10−3

10 1.46x10−2 1.39x10−2 1.46x10−2 1.38x10−2 1.38 x10−2

15 2.15x10−2 2.07x10−2 2.15x10−2 2.06x10−2 2.06 x10−2

〈ux〉βω 2.43x10−7 1.21x10−8 2.26x10−7 4.27x10−7 3.18x10−7
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Fig. 11. Effect of εβω on: (a) the distance where the flow in the free fluid region becomes one-dimensional (i.e., dη), and (b)
distance inside of the porous medium in which the free fluid flow effect is lost (i.e., dω). Both distances are measured from the
end of the unit cell in contact with the free fluid. All the DNS results are for C = 10−5, Lη = 103`, and Lω = 102`.
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other. From that position, until reaching the upper
wall, only one curve is needed to represent ux. The
outlined procedure was used to compare the DNS local
velocity profiles for X = 0, 0.25 and 0.5. Then, dη
is the smallest value of Y for which the percentage
difference between the three values of the local
velocity component, ux is less than 10−3.

On the other hand, to estimate dω, one must accept
that, at certain distance inside the porous medium, the
presence of the free flow is lost. As a consequence,
the local velocity distribution far enough from the
free fluid is obtained by solving the flow problem
given by eqs. (7) in one unit cell where periodic
boundary conditions are enforced. In this way, dω can
be determined by comparing the local velocity profiles
obtained from the DNS for each unit cell of the whole
system with the corresponding to a unit cell of the
bulk. Therefore, dω was determined by the smallest
value of −y for which the difference percentage
between the two mentioned velocity profiles is less
than 10−3. The comparison was carried out only for
Y = multiples of − 1

2 . The results for dη and dω, as
a function of the bulk fluid volume fraction εβω are
shown in Fig. 11. It can be said that, for the channel
system and the three porous medium configurations
here considered, the effect of the porous media on the
free flow is lost for y ≥ 3` and the effect of the free
flow on the porous media is lost for y ≤ −5`.

3.2 The local velocity profile in the
undisturbed free fluid region

In the previous section, we determined the extension
of the effect that one region may have on the other
in the free fluid/porous medium system shown in
Fig. 2. There we have found that the distance of the
disturbance of the flow in the free fluid region due to
the presence of the porous medium is about three times
the size of a unit cell over the surface of the porous
medium.

As a consequence, since the flow is totally
developed, for Y ∈

[
dη/`, Lη/`

]
, the problem given by

eqs. (11) may be reduced to

0 = C +
d2〈ux〉β

dY2 (26)

which is subject to the boundary conditions given by

〈ux〉β = 0 at Y = Lη/` (27)

〈ux〉β = uη at Y = dη/` (28)

where uη is the velocity at the position Y = dη/` that
may be determined following the procedure described
above for the DNS. Furthermore, in Eq. (26), we
have replaced the dimensionless pressure drop by C
according to Eq. (15). In this way, the velocity profile
in the unperturbed free flow region is given by

〈ux〉β = −1
2

C
(
Y − Lη

`

) (
Y − dη

`

)
+ uη

(
Y − Lη/`

dη/` − Lη/`

)

(29)
where, it is possible to identify the Poiseuille and
Couette flow type contributions. In Fig. 12a, we show
the comparison of the local velocity profiles obtained
in a cut line at X = 0 (position located at half of
the distance between adjacent particles in the unit cell
centers) from the DNS with those predicted using Eq.
(29). The results were obtained for εβω = 0.8 and
porous medium made of cylindrical particles (see Fig.
3a). The observation of figs. 12a and b shows that no
visual differences can be appreciated at the level of
the whole channel or in the close up of the maximum
velocity neighborhood. Moreover, the comparison is
also very good in a vicinity of y = dη (Fig. 12c)
where the domain for which uy = 0 starts . This
is confirmed by the evaluation of the relative error
percentage defined by

Error % =

∣∣∣∣ 〈ux〉β
∣∣∣
DNS − 〈ux〉β

∣∣∣
Eq.(29)

∣∣∣∣
〈ux〉β

∣∣∣
Eq.(29)

x100% (30)

that was found to be of the order of 10−8. The same
kind of results were obtained using the other porous
media geometries shown in Fig. 3. Therefore, the
use of Eq. (29) could help in a more DNS efficient
numerical scheme to avoid the numerical solution in
large part of the channel system. Finally, it should be
mentioned that, since r0/Lη ≤ 0.015 in all calculations,
Eq. (29) can be used to represent also the horizontal
component of the average velocity, 〈ux〉β (see Eq. (5)).

3.3 The Brinkman boundary layer and its
relationship to the permeability of the
bulk of the porous medium

As mentioned above, the Brinkman boundary layer
is defined as the zone in the average velocity profile
where velocity decreases drastically from the velocity
at the surface of the porous medium (y = 0) until
reaching the value of Darcy’s velocity (Neale and
Nader, 1974). The determination of the extension of
this transition zone (δB) has received large attention
in literature (Goharzadeh et al., 2005; Goyeau et al.,
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2003; Morad and Khalili, 2009; Ochoa-Tapia and
Whitaker, 1995a,b; Sahraoui and Kaviany, 1992).
In several works, it has been mentioned that if
Brinkman’s transition zone exist, it is of the order
of the square root of the permeability of the porous
medium bulk (

√
Kβω). Lines above, we found that

the Brinkman boundary layer exists, and its size is
of the order of one half of the characteristic length
of the sample (i.e., δB = r0). In this section, we use
our findings to evaluate δB/

√
Kβω = r0/

√
Kβω as a

function of the porosity, εβω.

Then, it is first necessary to determine the
permeability of the bulk of the porous medium. In this
work, it is obtained using the one-dimensional version
of Eq. (1), with 〈vβx〉ω from the DNS in a unit cell for
a given pressure drop. Thus, the flow boundary value
problem that must be solved is analogous to that given
by eqs. (16) where eqs. (16d) and (16e) are replaced by
periodic boundary conditions. Some examples of the
local velocity profiles are shown in Fig. 13 for different
values of εβω.
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Fig. 12. Comparison of the local velocity profile in the free fluid obtained from the DNS at the cut line x = 0 with the predicted
by Eq. (29) for dη = 3` and uη = 0.0165. Local velocity profiles in (a) the whole undisturbed free flow domain, (b) around the
maximum velocity neighborhood, and (c) the vicinity of y = dη. The DNS is for the porous medium formed by cylinders in line
with C = 10−5, Lη = 103`, Lω = 102`, and εβω = 0.8.
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Fig. 13. Magnitude of the dimensionless local velocity in a unit cell of the bulk porous medium with a cylindrical particle for
C = 10−5 and three values of εβω: (a) 0.4, (b) 0.6, and (c) 0.8.
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Fig. 14. Effect of εβω on (a) the permeability of the bulk of the porous medium and (b) the ratio of the thickness of the Brinkman
boundary layer to the square root of the porous medium bulk permeability.

In Fig. 14a we plot the dimensionless permeability
as a function of εβω. As expected, the permeability
is an increasing function of εβω. On the other hand,
the ratio δB/r0√

Kβω/`
is shown in Fig. 14b. In addition, in

figs. 14a and b, we also plot those results obtained for
the two stratified porous medium configurations that
were considered for the results shown in Fig. 8. Then,
given the good agreement between the results for the
inter-region of the two kinds of porous medium, it is
possible to say that the porous medium permeability
or configuration does not play a crucial role in the
prediction of the average velocity profile. However, we
can conclude that the size of the Brinkman boundary
layer is much larger than the square root of the
permeability of the bulk of the porous medium.

4 Discussion

In Sec. 2.3, the limits of the applicability of Stokes
model, for the flow in an analogous system to the
channel that was used by Beavers and Joseph (1967),
have been addressed . The results in this paper confirm
for the first time that, even if a non-inertial formulation
can be used to model the flow in the bulk of the
homogeneous regions, in some cases it is necessary
to include the inertial terms in the inter-region as it
was done in the derivation of jump conditions by
Ochoa-Tapia and Whitaker (1998). Our intention, in
a further study, is to use the average velocity profiles
obtained in the present paper to test the average
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velocity equation resulting from upscaling the Stokes
local flow problem. For that reason, we limited the
DNS to the dimensionless pressure drop C = 10−5.
In Fig. 7, it is clearly shown that there is a transition
zone between the average velocity for samples located
in the bulk of the fluid and the ones in the bulk of
the porous medium where Darcy’s velocity is reached.
A rapid look at the velocity profiles that are shown
in Fig. 7c suggests that the size of the transition
zone (δB) is the same than one half of the height of
the averaging volume, r0. This confirms the results
previously reported by Ochoa-Tapia et al. (2017);
those authors obtained the same type of behavior for
the average velocity profile using as porous medium
model one formed by capillary tubes parallel to the
flow in the upper larger channel.

It should be noted that, even for a simplified
representation of the particulate porous medium,
the direct numerical simulations may be a very
complicated approach if hundreds or thousands of unit
cells are used to build some porous medium system of
interest (i.e., that satisfies certain characteristic length
constrains). Then, other more practical alternatives
that allow obtaining the average velocity profiles
are appealling. For example, the expressions derived
assuming capillary porous media by Ochoa-Tapia et al.
(2017), or the ones presented in Appendix A of this
paper for stratified porous media with pores formed
by parallel plates. In this case, the local velocity
profile between each two parallel plates is given by the
well know Poiseuille model. Then, using an averaging
operator, we could obtain analytical expressions
for the average velocity profiles. Remarkably, the
difference between the average velocity profile for the
channel system with the stratified porous medium (i.e.,
made of parallel plates or capilars) with that where
the porous medium is made of cylindrical particles
is not noticeable. This observation is maintained for
different sizes of the averaging domain as long as εβω
is the same. The agreement is almost perfect also in
the inter-region, as it is shown in Fig. 8. As mentioned
earlier, the stratified plates or capillary geometry do
not allow the mass and momentum transfer between
both regions, such as in the geometry considered in the
work of Ochoa-Tapia et al. (2017). However, this fact,
either the porous medium configuration is granular or
stratified, even that 〈ux〉βω is different (see Table 4),
does not cause any significant difference between the
average predicted velocity profiles in the inter-region.
Again, the same comment can be said for any size of
the averaging volume and εβω value.

In the free flow part the average velocity

profiles for different εβω are essentially the same.
The significant differences are located in the free
flow/porous medium inter-region, as it is shown in
Fig. 9. However, the velocity profiles for all porous
medium configurations perfectly overlap for the same
εβω.

Even accepting the possibility of application
of the average velocity expressions obtained for
stratified porous media, in Sec. 3.1, the impact of the
communication between the fluid of free flow and
the one in the granular porous medium regions was
determined. This effect was evaluated in terms of how
the flow in one region modifies the velocity patterns
corresponding to the bulk of the adjacent region. This
analysis refers to the local velocity, the results are
thus independent of any averaging process. In general,
the results in Fig. 11 show that the size of the reach
distance of the free flow on the porous medium region
is dω < 5`, while for the porous medium on the free
flow is dη < 3`. In addition, it should be noted that,
without any doubt in the case of the systems with
stratified porous medium dω = dη = 0. For such
reason, to consider the influence of the communication
between the two regions, the type, of data shown in
figs. 7b and e are now presented in semi log format in
Fig. 15. In those figures, it can be observed that the
size of the Brinkman boundary layer, δB, for granular
systems is approximately

δB ≈ r0 + ` (31)

It is clear that the penetration effect on δB becomes
negligible as r0 gets larger. In addition, for stratified
systems δB = r0. Both penetration distances, dη
and dω can be used to explain some of the results
already shown above. For example, the effect of
the bulk volume fraction on the velocity profile is
limited to the inter-region as is shown in Fig. 9, in
the rest of the domain the corresponding velocity
profile is independent of εβω and the porous media
microstructure. This can be better explained in terms
of Eq. (29), from which the position where the
maximum velocity in the system is located can be
obtained as

Ymax =
1
2

(
Lη
`

+
dη
`

)
− 2

uη
C

(
Lη
`
− dη
`

)−1

(32)

This equation, given that the characteristic length ratio
Lη/` = 103 that was used to obtain the solution of
the local velocity problem and the results dη ≈ 3` and
uη ≈ 0.02, can be simplified to

Ymax ≈ 1
2

Lη
`

(33)
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Using this result in Eq. (29) and the disparity of
characteristic lengths of the system, previously used,
the maximum velocity with C = 10−5 is

umax ≈ 1
8

C
(

Lη
`

)2

= 1.25 (34)

that is the result obtained from the DNS for all εβω
values. The use of the parabolic velocity profile in
part of the channel system can be quite relevant for
the solution of the flow problem given by the local
equations, (11). The numerical solution for the sub-
domain, dη ≤ y ≤ Lη could be avoided.
In addition, the distances dη and dω can help to justify
the order of magnitude estimation for 〈ux〉β |y=0, given
by

〈ux〉β |y=0

umax
≈ r0

Lη

(
2

1 + εβω

)
(35)

This because Eq. (7), that was obtained for stratified
porous media formed by parallel plates, for samples
corresponding to the position y = 0 (i.e., right in
middle of the fluid/porous medium inter-region),
together with the corresponding expressions in Table
A.1, reduces to

〈ux〉 |y=0

umax
=

1
2

[
2

r0

Lη

(
1 − 2

3
r0

Lη

)
+ εβω 〈ux〉βω

]
(36)

This result is valid for any r0 and it is the arithmetic
average of the flow rate in the free flow and the porous
medium contained in the sample. For other stratified
porous media, for which dη = dω = 0, the same result
is obtained (Ochoa-Tapia et al., 2017). The physical
meaning of 〈ux〉β |y=0 is the same for any type of
free flow/porous medium inter-region. However, for
granular porous media Eq. (36) is not correct due to
the penetration effect of the fluid of one region on the
other. The use of Eq. (6) to replace 〈ux〉βω in Eq. (36)
yields

〈ux〉 |y=0

umax
=

r0

Lη

(
1 − 2

3
r0

Lη

)
+

1
3

(
`

Lη

)2

ε3
βω (37)

that on the basis of `
Lη
� 1 reduces to

〈ux〉 |y=0

umax
≈ O

(
r0

Lη

)
(38)

Finally, the volume fraction at y = 0, given by

εβ (y = 0) =

(
1 + εβω

2

)
(39)

leads to the previous estimation for 〈ux〉β |y=0, Eq. (35).
The values that yield this equation are almost the same
that the reported in Table 4 for the two stratified porous
media. Furthermore, they are of the same order than
the corresponding to the granular microstructures. It
should be noted that all values are very close to each
other for r0 ≥ 10`. In other words, for these sample
sizes the penetration effects become negligible.

The relashionship of the Brinkman layer
magnitude and the permeability is shown in Fig. 14b.
From these results, we observe that this ratio increases
as the size of the averaging volume is increased and
it decreases as the value of εβω is increased. Notice
that the Brinkman boundary layer magnitude is of
the order of the square root of the permeability of
the bulk of the porous medium only when r0 = 2 `.
Therefore, we may conclude that, in general, the
Brinkman boundary layer is several orders bigger than
the square root of the permeability of the bulk of the
porous medium. Similar results were found using a
porous medium made of square prism and staggered
cylindrical particles. In addition, the stratified porous
medium formulas, derived by Ochoa-Tapia et al.
(2017) and the ones in Appendix A, allows to obtain
the following relationships that can be used for δB

estimation

δB/r0√
Kβω/`

=
2
√

2π
εβω

for capillary pores (40a)

δB/r0√
Kβω/`

=
2
√

3
ε1.5
βω

for parallel plates pores (40b)

Also, it should be noted that, the previous estimations
reported by Ochoa-Tapia and Whitaker (1995a),
δB = O (50)

√
Kβω and Goyeau et al. (2003), δB =

O (30)
√

Kβω are in good agreement with the results
presented in this paper only for the case in which
r0 ≈ `.

5 Conclusions

In this work, we studied the momentum transport
between a free fluid and a porous medium in a similar
system to the one used by (Beavers and Joseph, 1967).
Here we addressed the question about the existence or
not of a smooth transition zone in the average velocity
profiles near the porous medium boundaries.

www.rmiq.org 513



Hernandez-Rodriguez et al./ Revista Mexicana de Ingenierı́a Quı́mica Vol. 19, Sup. 1 (2020) 495-520

10
-2

10
0

10
2

10
4

10
6

10
8

-15

-10

-5

0

5

10

15

10
-2

10
0

10
2

10
4

10
6

-15

-10

-5

0

5

10

15

10
-2

10
0

10
2

10
4

10
6

10
8

-15

-10

-5

0

5

10

15

10
-2

10
0

10
2

10
4

10
6

-15

-10

-5

0

5

10

15

10
-2

10
0

10
2

10
4

10
6

10
8

-15

-10

-5

0

5

10

15

10
-2

10
0

10
2

10
4

10
6

-15

-10

-5

0

5

10

15

Fig. 15. Intrinsic average velocity profiles in the free fluid/porous medium inter-region as function of εβω and the sample size,
r0. Porous medium microstructure: (a) and (d) cylinders in line, (b) and (e) staggered cylinders, and (c) and (f) square prisms in
line. All DNS results are for C = 10−5, Lη = 103`, and Lω = 102`.
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From this analysis, we confirmed the existence
of such smooth transition zone, although very small,
in the average velocity profiles where the average
velocity changes from the corresponding to samples
fully located in the free fluid to the Darcy’s velocity.
Inside a porous medium, the size of this zone is
almost one half of the height of the sample used
for the averaging. This finding it is not a result
of average transport equations obtained with some
upscaling procedure as the averaging volume method
or the homogeneization method. Therefore, in order
to predict this transition zone, it may be neccesary
to include additional terms in Darcy’s law. This
conclusion represents the major contribution of the
present work and it completes the previous work
of Ochoa-Tapia et al. (2017). In this sense, it was
shown that for the flow in a channel system the
communication between the flow in the free region and
the one in the porous medium is not very important.

The results presented in this paper can be the
benchmark for further study of the validity of average
transport models in the inter-region and the careful
deduction of jump boundary conditions. This type of
information has not been published before.
Therefore, the analytical expressions of the average
velocity profile provided in this work, and those
presented in Ochoa-Tapia et al. (2017), acquire great
importance, since they can reduce the computation
time and they could be quite advantageous for further
studies of heat and mass transfer between a free fluid
and a porous medium.
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Nomenclature

Aβσ interfacial area inside of the porous
medium

C dimensionless magnitude of the
macroscopic pressure drop

d particle diameter, m
d j distance of effect of j−region on the

other ( j = η, ω), m

f (y) fraction of a pore contained in the
averaging domain

fβ(y) fraction of the β−phase contained in f
g gravity vector, m2 s−1

Kβω permeability tensor of the bulk of the
ω−region, m2

Kβω tangential component of the
permeability of the ω−region,
m2

L j characteristic length of the j−region
( j = η, ω), m

` characteristic size of a unit cell that
compose the ω−region, m

` j characteristic size of each phase in a
unit cell that composes the ω-region
( j = β, σ), m

mβ(r) phase indicator function
np(y) number of pores contained in the

averaging domain
nβσ unit normal vector from the β−phase

towards the σ-phase
nβ outwardly unit vector of the β−phase.
p dimensionless local pressure of the

β−phase
pβ local pressure of the β−phase, N m−2

pre f reference pressure, N m−2

p̃β spatial deviation of the pressure of the
β−phase, N m−2

r position vector, m
r0 characteristic length of the averaging

domain, m
Reη Reynolds number of the η−region.
Repω Particle Reynolds number of the

ω−region.
u dimensionless local velocity vector of

the β−phase
ux dimensionless horizontal component

of the local velocity vector of the
β−phase

umax maximum velocity of the horizontal
component of the intrinsic average
velocity

vβ local velocity vector of the β−phase,
m s−1

vβ,x horizontal component of the local
velocity vector of the β−phase, m s−1

vre f reference velocity, m s−1

v j
βx horizontal component of the local

velocity of the β−phase in the
j−region ( j = f , p), m s−1

v j
max maximum local velocity in the

j−region ( j = η, ω), m s−1
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v̂βx line average of the horizontal
component of the local velocity, m
s−1

〈ϕβ〉 superficial average of an arbitrary
function associated to the β−phase

〈ϕβ〉β intrinsic average of an arbitrary
function associated to the β−phase

〈ϕβ〉 j superficial average of an arbitrary
function associated to the β−phase in
the j−region ( j = η, ω)

V volume of the averaging domain, m3

Vβ volume of the β−phase contained in
the averaging volume, m3

V averaging volume
x position vector locating the centroid

of the averaging volume, m
x horizontal coordinate, m
X dimensionless horizontal coordinate
yβ position vector relative to the centroid

locating the β−phase contained in the
averaging volume, m

y vertical coordinate, m
Y dimensionless vertical coordinate

Greek symbols
αBJ slip coefficient of the Beavers and

Joseph’s boundary condition
βOTW stress jump coefficient of the Ochoa-

Tapia and Whitaker boundary
condition

δB Thickness of the Brinkman boundary
layer, m

µβ dynamic viscosity of the β−phase, N s
m−2

µe f f effective viscosity, N s m−2

ρβ density of the β−phase, kg m−3

εβ volume fraction of the β−phase in any
place of the system

εβω volume fraction of the β−phase in the
ω−region

ϕβ arbitrary function associated to the
β−phase
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Appendix A: Flow in a channel
partially filled with a porous
medium consisting of parallel
plates

The objective of this appendix is to provide algebraic
expressions for the average velocity profile in a
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system like the one originally used by Beavers and
Joseph (1967) and shown in Fig. 1. The simplicity
of the formulas is possible due to the porous medium
microstructure that is considered for the derivation. In
this case, it is assumed that all the saturated pores are
identical and formed by the space between two parallel
rigid plates (σ-phase) separated a distance 2b = `β;
the thickness of the solid plates is `σ. In this way,
the fluid volume fraction of the homogeneous porous
medium is εβω = 2b/`, where ` = `β + `σ, is the
height of the unit cell. The free flow motion is through
the gap, with separation Lη = 2B, formed by the
surface of the last σ-phase plate and the upper wall
of the channel. The details of the porous medium and
samples in different zones of the system are shown
in Fig. A.1. The procedure, to obtain the reported
results, is essentially the one followed by Ochoa-
Tapia et al. (2017) to obtain analogous expressions
for a channel system with a porous media formed by
identical cylindrical pores. It is worth remarking that
the lack of communication among the fluid in the pores
or fluid in the porous media and the free fluid may rise
some doubt on the velocity profile predicted.

It is important to stress that, using this
configuration, the flow in the η−region and in each

pore are only connected at the entrances and exits
of the channel. As a consequence, under the fully
developed and unidirectional flow assumptions, the
local velocity profile in the η−region is parabolic, with
maximum velocity, v f

max, given by

v f
max = −dpβ

dx
B2

2µβ
(A.1)

Analogously, the local velocity profile in each pore
is also parabolic where the maximun velocity of each
pore is related to v f

max by

vp
max = v f

max

(
b
B

)2

(A.2)

A.1 Average velocity profiles

Due to the fully developed flow assumption, the
equation to obtain the superficial volume average
velocity, Eq. (2a), is simplified to

〈vβ〉 =
1

2r0

ζ=y+r0∫

ζ=y−r0

mβ(ζ)vβ(ζ)dζ (A.3)
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Fig. A.1. Channel partially filled with a porous medium made of an array of parallel plates and samples in both
homogeneous regions and the inter-regions.

A.2 Zones that do not depend on the
microstructure of the porous medium

A.2.1 Free fluid/upper wall inter-region (ηW− inter-
region)

In this zone the averaging volume contains
portions of free fluid and upper wall. Application of
Eq. (2a) yields

〈
vβ

〉
ηW

v f
max

=
B

2r0

[
2
3
− y − B − r0

B
+

1
3

(y − B − r0

B

)3]
,

for Lη − r0 ≤ y ≤ Lη + r0

(4)

Here it should be noted that,
〈
vβ

〉
ηW

= 0 at y =

Lη + r0. In this position, the averaging volume is
located completely inside the impermeable wall. Thus
the average velocity is equal to zero in y = Lη only if
r0 � B.

A.2.2 Homogeneous free fluid (homogeneous
η−region)

In this zone, that it is also independent of the
porous medium, all averaging volumes are fully

located in the free fluid, the average velocity is given
by

〈
vβ

〉
η

v f
max

=

[
1 − 1

3

( r0

B

)2
−

( y
B
− 1

)2
]
,

for r0 ≤ y ≤ 2B − r0

(5)

It should be noted that this expression is reduced to
the local velocity equation, provided that the size of
the averaging region is much less than the separation
gap of the upper channel, i.e., r0 � B.

A.3 Zones that depend on the microestructure
of the porous medium

A.3.1 Homogeneous porous medium region
(homogeneous ω−region)

In this zone, where the samples are fully located
in the porous medium, the superficial average velocity
Darcy’s velocity is given by

〈vβ〉ω = vp
max

2
3
εβω = vp

max
4
3

b
`

= v f
max

4
3

b
`

(
b
B

)2

,

for − Lω + r0 ≤ y ≤ −r0

(6)

Here, it has been used that, the fluid volume fraction
in the homogeneous porous region is εβω = 2b

`
.

A.3.2 Inter-regions that contain porous medium
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where y, indicates the position of the centroid of the
sample and the hight of the sample volume is 2r0.
The origin of the vertical coordinate y is located at
the upper boundary of the porous medium. In the
following paragraphs, the average velocity formulas
for each one of the five characteristic zones of the
system are presented.

A.2 Zones that do not depend on the
microstructure of the porous medium

A.2.1 Free fluid/upper wall inter-region (ηW− inter-
region)

In this zone the averaging volume contains
portions of free fluid and upper wall. Application of
Eq. (2a) yields

〈
vβ

〉
ηW

v f
max

=
B

2r0

[
2
3
− y − B − r0

B
+

1
3

(y − B − r0

B

)3]
,

for Lη − r0 ≤ y ≤ Lη + r0

(4)

Here it should be noted that,
〈
vβ

〉
ηW

= 0 at y =

Lη + r0. In this position, the averaging volume is
located completely inside the impermeable wall. Thus
the average velocity is equal to zero in y = Lη only if
r0 � B.

A.2.2 Homogeneous free fluid (homogeneous
η−region)

In this zone, that it is also independent of the
porous medium, all averaging volumes are fully
located in the free fluid, the average velocity is given
by

〈
vβ

〉
η

v f
max

=

[
1 − 1

3

( r0

B

)2
−

( y
B
− 1

)2
]
,

for r0 ≤ y ≤ 2B − r0

(5)

It should be noted that this expression is reduced to
the local velocity equation, provided that the size of
the averaging region is much less than the separation
gap of the upper channel, i.e., r0 � B.

A.3 Zones that depend on the microestructure
of the porous medium

A.3.1 Homogeneous porous medium region
(homogeneous ω−region)

In this zone, where the samples are fully located
in the porous medium, the superficial average velocity
Darcy’s velocity is given by

〈vβ〉ω = vp
max

2
3
εβω = vp

max
4
3

b
`

= v f
max

4
3

b
`

(
b
B

)2

,

for − Lω + r0 ≤ y ≤ −r0

(6)

Here, it has been used that, the fluid volume fraction
in the homogeneous porous region is εβω = 2b

`
.

A.3.2 Inter-regions that contain porous medium

The inter-regions that contain porous medium are
two: one between the porous medium and the free
fluid and the other between the porous medium and
the lower wall of the channel. The average velocity in
both cases can be represented by

〈
vβ

〉
ωλ

=
1

2r0

[
(y + r0) ῡ f ,ωλ

β + np`β
〈
υβ

〉β
ω

+ fβ`ῡ
p,ωλ
β

]
,

λ = η,W
(7)

where, from eqs. (6) and (A.2), 〈vβ〉βω = εβω〈vβ〉ω. The
contributions (y + r0) ῡ f ,ωλ

β and fβ`ῡ
p,ωλ
β , for λ = η or

W, are reported in Table A.1.
It should be noted that, unlike the ηω− inter-

region, in Eq. (7) there is not a contribution of the
free fluid. Furthermore, the average velocity is null at
y = −Lω − r0. Namely, when the averaging volume
is located totally within the lower impermeable wall.
Details of the derivations presented in this section are
reported by Hernandez-Rodriguez (2018).

Note that, to obtain the dimensionless average
velocity profile,

〈
vβ

〉
/v f

max as funtion of y/`, it is
necessary to fix εβω, Lη, Lω and r0/`. In Fig. 9,
the dimensionless average velocity profiles obtained
with DNS are compared with the resulting from the
formulas presented in this section.
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Table A.1. Summary of the analytic expressions, of the contributions (y + r0) ῡ f ,ωλ
β and fβ`ῡ

p,ωλ
η , to evaluate the intrinsic average

velocity profile in the inter-region, ηω or ηW, with Eq. (7).

Inter-region ωη ωW
λ η W

centroid position domain −r0 ≤ y ≤ r0 −Lω − r0 ≤ y ≤ −Lω + r0

(y + r0) ῡ f ,ωλ
β

υ
f
max

(y+r0)2

B

[
1 − 1

3

(
y
B +

r0
B

)]
0

fβ`ῡ
p,ωλ
β

v f
max

(
b
B

)2

εβω`

2

[
2
3 −

b− fβ`
b

(
1 − 1

3

( b− fβ`
b

)2)] ( fβ`
3b

)2 (
3 − fβ`

b

)

np (y)
⌊
−

(
y−r0
`

)⌋ ⌊
y+Lw+r0

`

⌋

f (y) −
(

y−r0
`

)
− np

y+Lw+r0
`
− np

fβ (y) 0, if f ≤ (1 − εβω) f , if f < εβω
fβ (y) f − (1 − εβω), if f > (1 − εβω) εβω, if f < εβω

system like the one originally used by Beavers and
Joseph (1967) and shown in Fig. 1. The simplicity
of the formulas is possible due to the porous medium
microstructure that is considered for the derivation. In
this case, it is assumed that all the saturated pores are
identical and formed by the space between two parallel
rigid plates (σ-phase) separated a distance 2b = `β;
the thickness of the solid plates is `σ. In this way,
the fluid volume fraction of the homogeneous porous
medium is εβω = 2b/`, where ` = `β + `σ, is the
height of the unit cell. The free flow motion is through
the gap, with separation Lη = 2B, formed by the
surface of the last σ-phase plate and the upper wall
of the channel. The details of the porous medium and
samples in different zones of the system are shown
in Fig. A.1. The procedure, to obtain the reported
results, is essentially the one followed by Ochoa-
Tapia et al. (2017) to obtain analogous expressions
for a channel system with a porous media formed by
identical cylindrical pores. It is worth remarking that
the lack of communication among the fluid in the pores
or fluid in the porous media and the free fluid may rise
some doubt on the velocity profile predicted.

It is important to stress that, using this
configuration, the flow in the η−region and in each
pore are only connected at the entrances and exits
of the channel. As a consequence, under the fully
developed and unidirectional flow assumptions, the

local velocity profile in the η−region is parabolic, with
maximum velocity, v f

max, given by

v f
max = −dpβ

dx
B2

2µβ
(A.1)

Analogously, the local velocity profile in each pore
is also parabolic where the maximun velocity of each
pore is related to v f

max by

vp
max = v f

max

(
b
B

)2

(A.2)

A.1 Average velocity profiles

Due to the fully developed flow assumption, the
equation to obtain the superficial volume average
velocity, Eq. (2a), is simplified to

〈vβ〉 =
1

2r0

ζ=y+r0∫

ζ=y−r0

mβ(ζ)vβ(ζ)dζ (A.3)

where y, indicates the position of the centroid of the
sample and the hight of the sample volume is 2r0.
The origin of the vertical coordinate y is located at
the upper boundary of the porous medium. In the
following paragraphs, the average velocity formulas
for each one of the five characteristic zones of the
system are presented.
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