
Vol. 19, Sup. 1 (2020) 29-44
Revista Mexicana de Ingeniería Química 

 
CONTENIDO 

 
Volumen 8, número 3, 2009 / Volume 8, number 3, 2009 
 

 

213 Derivation and application of the Stefan-Maxwell equations 

 (Desarrollo y aplicación de las ecuaciones de Stefan-Maxwell) 

 Stephen Whitaker 

 

Biotecnología / Biotechnology 

245 Modelado de la biodegradación en biorreactores de lodos de hidrocarburos totales del petróleo 

intemperizados en suelos y sedimentos 

 (Biodegradation modeling of sludge bioreactors of total petroleum hydrocarbons weathering in soil 

and sediments) 

S.A. Medina-Moreno, S. Huerta-Ochoa, C.A. Lucho-Constantino, L. Aguilera-Vázquez, A. Jiménez-

González y M. Gutiérrez-Rojas 

259 Crecimiento, sobrevivencia y adaptación de Bifidobacterium infantis a condiciones ácidas 

 (Growth, survival and adaptation of Bifidobacterium infantis to acidic conditions) 

L. Mayorga-Reyes, P. Bustamante-Camilo, A. Gutiérrez-Nava, E. Barranco-Florido y A. Azaola-

Espinosa 

265 Statistical approach to optimization of ethanol fermentation by Saccharomyces cerevisiae in the 

presence of Valfor® zeolite NaA 

 (Optimización estadística de la fermentación etanólica de Saccharomyces cerevisiae en presencia de 

zeolita Valfor® zeolite NaA) 

G. Inei-Shizukawa, H. A. Velasco-Bedrán, G. F. Gutiérrez-López and H. Hernández-Sánchez 

 

Ingeniería de procesos / Process engineering 

271 Localización de una planta industrial: Revisión crítica y adecuación de los criterios empleados en 

esta decisión 

 (Plant site selection: Critical review and adequation criteria used in this decision) 

J.R. Medina, R.L. Romero y G.A. Pérez 

 

 

 

 

Anaerobic digestion inhibition indicators and control strategies in processes treating
industrial wastewater and wastes

Indicadores de inhibición de la digestión anaerobia y estrategias de control en procesos de
tratamiento de aguas residuales industriales y desechos

A. Serrano-Meza1, M.A. Garzón-Zúñiga1*, B.E. Barragán-Huerta2, E.B. Estrada-Arriaga3, N. Almaraz-Abarca1,
J.G. García-Olivares4

1Instituto Politécnico Nacional CIIDIR-Durango, Calle Sigma N°119, Durango, C.P. 34220, México.
2Instituto Politécnico Nacional ENCB, Av. Wilfrido Massieu S/N, U. Prof. A. López Mateos, CDMX, C.P. 07738, México.

3Instituto Mexicano de Tecnología del Agua, Paseo Cuauhnáhuac 8532, Progreso, Jiutepec, Morelos, C.P. 62550, México.
4Instituto Politécnico Nacional CBG, Blvd. Del Maestro s/n esq. Elías Piña, Cd. Reynosa, Tamaulipas, C.P. 88710, México.

Received: January 20, 2020; Accepted: April 15, 2020

Abstract
Based on a literature review, a set of inhibition indicators is presented for each stage of anaerobic digestion according to the
behavior of certain parameters: the reduction of the soluble COD/total COD ratio; the low volatile fatty acids (VFA) production;
the accumulation of VFA and low acetate production; and the low methane production. Moreover, we present several preventive
and recovery strategies for each stage considering the detected inhibition indicator. Some of the preventive strategies are the
acclimation of microorganisms to degrade organic-matter in the presence of certain inhibitors, the enrichment of the inoculum
with various additives (e.g., sulfate-reducing bacteria, electron donors, mineral adsorbents or nutrients), the dilution of the
influent, and the prior removal of the inhibitors. Some of the proposed recovery strategies are the reduction of the inhibitor
concentration by removal strategies (e.g., precipitation, adsorption, and sulfate-reduction), intermittent feeding, and decrease of
the total influent volume. Lastly, we present the challenges and future perspectives of applying the inhibition indicators and
control strategies.
Keywords: Anaerobic digestion inhibition, wastewater treatment, wastes treatment, inhibition recovery, inhibition mitigation.

Resumen
Con base a una revisión bibliográfica, se presenta un conjunto de indicadores de inhibición para cada etapa de la digestión
anaerobia de acuerdo al comportamiento de ciertos parámetros: la disminución de la relación de DQO soluble/DQO total; la
baja producción de ácidos grasos volátiles (AGV); la acumulación de AGV y la baja producción de acetato; y la baja producción
de metano. Además, se presentan estrategias de prevención y recuperación de la inhibición para cada etapa. Algunas de las
estrategias preventivas son la aclimatación de microorganismos a degradar materia orgánica en presencia de inhibidores, el
enriquecimiento del inóculo con aditivos (ej. bacterias sulfato-reductoras, donadores de electrones, minerales adsorbentes y
nutrientes), la dilución del influente y la remoción previa del inhibidor. Las estrategias de recuperación propuestas son la
reducción de la concentración de inhibidor mediante precipitación, adsorción y sulfato-reducción, la alimentación intermitente y
la disminución del volumen del influente. También se presentan los desafíos y perspectivas futuras del uso de los indicadores de
inhibición y las estrategias de control.
Palabras clave: inhibición de la digestión anaerobia, tratamiento del agua residual, tratamiento de residuos, recuperación de la
inhibición, disminución de la inhibición.

1 Introduction

Anaerobic digestion (AD) is the biological treatment
that exhibits the highest removal efficiency of organic-

matter from wastewater and solid wastes (Ho et al.,
2017). Many industrial effluents are treated by AD
on a large scale. However, AD tends to be easily
inhibited by toxic and inhibitory compounds present
in the treated substrate.
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Hydrolysis is inhibited by heavy metals and
humic acid (Yue et al., 2007; Yap et al., 2018).
The inhibition of acidogenesis has been reported in
the presence of phenols and certain heavy metals.
For example, fermenting microorganisms (acetogens)
were observed to be completely inhibited by phenols
(Chapleur et al., 2016). Moreover, both Cd and
Cr3+ were reported to inhibit acidogenesis (Altaş
2009). Ammonia nitrogen and heavy metals -besides
inhibiting acidogenesis- also inhibit acetogenesis. In
this respect, changes were reported in the acetogenic
bacteria population induced by ammonia nitrogen of
a concentration of 3.3 g/L (Westerholm et al., 2011).
Moreover, heavy metals were reported to decrease
the ability of acetogens to degrade volatile fatty
acids (VFA) (Mudhoo and Kumar 2013). Lastly,
methanogenesis was found to be the most affected
stage of the AD: Besides methanogenesis being
affected by the inhibitory compounds, it is also
inhibited by sulfides, fatty acids, halogenated aliphatic
compounds, and nanomaterials (Chen et al., 2008;
Puyol et al., 2009; Luna-del Risco et al., 2013,
Kwietniewska and Tys 2014). Moreover, the low
concentration of nanoparticles necessary to inhibit
methanogenesis was further emphasized (Otero-
González et al., 2014). Therefore, the main challenge
of industrial wastewater and wastes treatments
by AD remains the detection of the stage at
which the inhibition occurs (hydrolysis, acidogenesis,
acetogenesis, or methanogenesis), and the subsequent
identification of the compound causing the inhibition.
Ideally, these two steps should be achieved prior to
the treatment to mitigate the problem. However, there
is no available research targeting this issue. Biogas
measurement is the most commonly used approach to
determining the inhibition of AD owing to the ease
of measuring the final gaseous products. However,
by measuring only the biogas, it is challenging to
determine which of the 4 stages of AD is inhibited.
The low production or the lack of biogas allows
the identification of inhibition. However, additional
information is necessary to identify the source of
the inhibition. Therefore, the objective of this work
is to propose -based on the existing literature on
the inhibition of anaerobic treatments- a set of
parameters that could be used as indicators to identify
the inhibited stage of the AD. In addition, the
present work provides a guide to identifying the
inhibited stage based on the behavior (change) of

the selected indicators (indicators of inhibition), helps
to determine the possible causes of inhibition, and
presents preventive and recovery strategies for each
process.

2 Inhibition indicators of AD and
control strategies

The determination of the presence of certain inhibitors
is challenging, owing to the complexity and cost of
the respective measurement methods. Nevertheless,
the continuous monitoring of several parameters
allows the timely detection of the inhibition of the
anaerobic processes. Observing the variations of these
parameters can serve as inhibition indicators that
provide the necessary information to avoid or recover
from the affectation. For example, the measurement
of the redox potential allows determining the
presence of oxidizing chemical species that inhibit the
methanogenic process of AD. Based on the available
literature, inhibition of hydrolysis can be determined
through monitoring the soluble chemical oxygen
demand (COD)/total COD ratio in the influent and
effluent of the anaerobic process. When the value of
this ratio is equal in both the influent and effluent, then
hydrolysis is inhibited. For determining the inhibition
of acidogenesis, the measurement of volatile fatty
acids (VFA) formation is a straightforward approach:
Acidogenesis produces VFA; therefore, we propose
that when the VFA production is low, acidogenesis
is likely inhibited. During acetogenesis, the VFA
produced during acidogenesis are consumed; thus,
the accumulation of VFA indicates the inhibition
of acetogenesis. Hence, the measurement of VFA
abundance is crucial for the determination of the
affectation of both acidogenesis and acetogenesis.
Finally, the low or nonexistent production of
methane is the main indicator of the inhibition
of methanogenesis, since methane is the primary
product of methanogenesis. An alternative approach
to determining the inhibition of methanogenesis is
the monitoring of the accumulation of acetates. The
guide proposed to identifying the inhibited stage is
summarized in Table 1. Furthermore, the guide is
supported by the visualization of the inhibiting factors
of each AD stage (Fig. 1).
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Fig. 1. Inhibitors of the individual stages of the anaerobic digestion.

2.1 Hydrolysis

The inhibition of hydrolysis has been observed in
the presence of both heavy metals and humic acid
(Yue et al., 2007; Yap et al., 2018). Moreover, if
the concentration of these compounds cannot be
measured, an alternative strategy can be applied to
determine the inhibition of hydrolysis: The inhibited
conversion of the total or particulate COD to soluble
COD suggests an inhibited biotransformation rate of
organic-matter (Collivignarelli et al., 2017). Hence,
an unchanging soluble COD/total COD ratio can
be used as the inhibition indicator. Consequently,
since heavy metals cannot be assimilated by
anaerobic metabolisms, the acclimatization of the
microorganisms to hydrolyze organic-matter in the
presence of heavy metals is one of the applicable
strategies for the prevention of the inhibition of
hydrolysis by heavy metals and humic acid. This type
of acclimatization has been successfully carried out
by gradually increasing the heavy metal concentration
and by strengthening the metabolisms through
exposure to easily digestible compounds such as
ethanol and sodium acetate (Gupta et al., 2015).
Ethanol and sodium acetate increase the metabolism
rate of microorganisms, which exhibit the capacity
of metal biosorption (Colussi et al., 2009). However,
the population of bacteria that develop the enzymatic
systems necessary to survive under toxic compounds
increases under a gradually increasing exposure
to heavy metals (Yang 2011). Hence, gradually
increasing the metal concentration is a superior
strategy as it allows to increase the abundance of

microorganisms capable of transforming organic-
matter under the presence of heavy metals and humic
acid.

Alternatively, if the presence of heavy metals
is confirmed prior to the AD processing, various
strategies can be applied for their removal, such
as anaerobic processes enriched with specific
components. For example, Cu, Zn, Ni, and Cr
were reported to be removed from anaerobic semi-
continuous stirred tank reactors enriched with sulfate-
reducing bacteria (Kieu et al., 2011). In addition,
the removal of Cd, Cu, Ni, and Zn was reported
using a UASB reactor with a polyacrylamide cryogel
(Nkemka and Murto 2010). Various AD products
have also been used to precipitate metals: Both
anaerobically produced hydrogen sulfide (H2S) and
H2S mixed with anaerobic effluents that contained
sulfate-reducing microorganisms were used to
precipitate metals (Álvarez et al., 2007; Jiménez-
Rodríguez et al., 2009). The addition of layered
double hydroxides is another removal strategy that
allows degrading metals such as Cr. For example,
the hydrotalcite-like compound (anionic clays
constituted by sheets of mixed metal hydroxides)
ZnGa (Zinc and Gallium) calcined and synthetized
by ultrasonic irradiation, degraded 98% of Cr(IV)
in a combined adsorption-photodegradation process
(Zarazúa-Aguilar et al., 2018). Comparing these
approaches, the anaerobic digestion in a semi-
continuous stirred tank with sulfate-reducing bacteria
seems to be a good strategy, since it presented a metal-
removal efficiency of 94-100%.
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Table 1. Inhibition indicators of anaerobic digestion, their possible causes and consequences, and preventive and
recovery strategies for each stage of the digestion.
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Besides, this strategy is straightforward to apply
since sulfate-reducing bacteria strains can be simply
conserved as these microorganisms have specific
metabolic capacities that allow them to survive under
various environments (Plugge et al., 2011).

Lastly, no strategy has been yet reported for the
recovery from inhibition caused by heavy metals.
However, it was suggested that the reduction of the
metal concentration to non-inhibitory levels, followed
by the adaptation of the microorganisms is a feasible
recovery strategy for selected metals (Gupta et al.,
2015). An option that can be explored for the reduction
of metal concentration is the use of phytoremediation
in situ that allowed the removal of multiple heavy
metals (Cr, Ni, Cd, and Pb) (Buendía-González et al.,
2019; Alcázar-Medina et al., 2020). The reduction of
the metal concentration can be reinforced by adjusting
the pH and the carbon-nitrogen (C:N) ratio, which
is generally reported strategies for the recovery and
multiplication of microorganisms (Shanmugam and
Horan 2009; Wu et al., 2009).

2.2 Acidogenesis

Continuous measurement of VFA concentration
in anaerobic systems is important because the
production and accumulation of these compounds
allow monitoring acidogenesis and acetogenesis
rates during AD. Therefore, the inhibition indicator
proposed for the acidogenesis stage is the inhibited
VFA production that is induced by the presence of
acidogenesis inhibitors (Table 1 and Fig. 1). The
inhibition of acidogenesis by heavy metals can be
controlled using the strategies presented above. The
inhibition caused by phenolic compounds could also
be avoided by the acclimation of the microorganisms
since these compounds can be metabolized by the
microorganisms present in the AD processing (Yan
et al., 2018). There are two strategies reported
for the acclimation to phenol. Namely, the gradual
increase of the phenol concentration (Rosenkranz et
al., 2013; Buitrón and Moreno-Andrade 2014), and the
addition of Co-substrate that enhances the digestion
of phenolic compounds (Barakat et al., 2012). The
gradual increase of the phenol concentration during
AD provided high conversion of phenol (97-100%)
(Rosenkranz et al., 2013; Buitrón and Moreno-
Andrade 2014). These phenol-conversion rates were
likely achieved by allowing the microorganisms to
adapt to the compound and increase their resistance
and assimilation as the phenol concentration gradually
increased.

An alternative strategy to avoid the inhibition
of acidogenesis by phenol could be the removal
of these compounds. Phenol might be anaerobically
degraded through the acclimation of the proper
microorganism. For example, the biodegradation
of phenolic compounds in small anaerobic diluted
batch cultures was performed with an initial phenol
concentration of 67 mg/g (in the total solid digestate)
through its AD at thermophilic and mesophilic
temperatures (Levén et al., 2006). The authors
reported a lower removal efficiency of phenol (20%)
through the thermophilic process compared to the
mesophilic process, which provided a complete
degradation of the phenols. Similarly, decreasing
the initial concentration of the target compound
can increase its removal efficiency. For example,
the anaerobic degradation of tyrosol with an initial
concentration of 2000 mg/L was 71%, while reducing
its initial concentration to 1500 mg/L lead to a 100%
removal (Akassou et al., 2010).

Other strategies to reduce the inhibitory effects of
phenol are the extension of the hydraulic retention
time (HRT), dilution, and addition of powdered
activated carbon. The addition of powdered activated
carbon allowed the recovery of 40% of the initial
(prior to the inhibition) removal efficiency of the
system, consequently decreasing its recovery time
from 25 to 9 days (Wang and Han 2012). Another
possible recovery strategy is intermittent feeding; it
was reported to promote the removal of resilient
phenolic compounds and reached removal efficiencies
of up to 81% (in around 20 days) (Gonçalves et
al., 2012). From the recovery strategies studied,
the addition of powdered activated carbon allowed
recovering the system within shortest time period
(9 days). However, powdered activated carbon did
not improve the phenol removal. On the contrary,
intermittent feeding (although requiring significantly
more time-20 days) also increased the removal
efficiency after recovery from 40 to 81%. A possible
cause is that the exposition of the microorganisms
to an interrupted substrate enforces the use of the
inhibitor compound as a carbon source and increases
the resistance of the microorganisms. Indeed, bacterial
communities that were subjected to starvation periods
were reported to exhibit excellent stability and
resistance (Jáuregui-Jáuregui et al., 2014). Therefore,
intermittent feeding is recommended for the recovery
of inhibition by phenols as it does not require adding
additional compounds, and hence, does not increase
the processing costs.
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However, these strategies must be validated in pilot
studies and at an industrial scale as all the mentioned
studies have been carried out at a laboratory scale.

If inhibition of acidogenesis is caused by a mixture
of ammonia nitrogen and phenol, a pretreatment
with nitrifying sludge might be applied since
it nitrifies and mineralizes, respectively, the two
compounds. For example, a sequencing batch reactor
(SBR) with nitrifying sludge was used to remove
ammonium by nitrification and phenolic compounds
by mineralization, simultaneously in the same system
(Suárez-García et al., 2019).

2.3 Acetogenesis

The VFA produced during acidogenesis are used
for acetate production during the acetogenesis
(Zhang et al., 2014). Hence, the proposed indicators
of acetogenesis inhibition are VFA accumulation
and low acetate production. A possible cause of
VFA accumulation is an increased organic-matter
concentration in the influent and/or the lack of pH
control by adding buffer solutions during the operation
of anaerobic systems (Table 1). Therefore, a possible
strategy to reduce organic-matter concentration is
the dilution of the influent. Moreover, to avoid the
accumulation of VFA, it is recommended to control
the pH by adding buffer solutions, with or without an
automatized system, which improves the performance
of the system and avoids inhibition (Cysneiros et al.,
2012). Alternatively, the inhibition of acetogenesis can
be prevented by continuously removing VFA during
the anaerobic treatment. The most common systems
used for VFA removal are based on upward flow,
such as the up-flow fixed-bed reactor and up-flow
anaerobic sludge blanket (UASB) (Saatci et al., 2003;
Méndez-Acosta et al., 2011). From these two, the
up-flow fixed-bed reactor provided higher removal
efficiency (82%). The superior performance was likely
achieved owing to better conversion rates of fixed-
bed reactors through the formation of a biofilm on
the supporting materials. The formed biofilm reduces
the microorganisms’ sensitivity to the variations in
concentration and inhibitory compounds (Singh and
Prerna 2009).

Nevertheless, if inhibition cannot be avoided,
several strategies can be applied for system recovery,
such as dilution with biomass, the addition of
adsorbents, prolonged exposure to the compound
until acclimation is reached (Palatsi et al., 2009),
the addition of co-substrates (Kuang et al., 2006),
and intermittent feeding of the system (Cavaleiro

et al., 2008). Among these strategies, the addition
of adsorbents is the most reliable option since it
was reported to provide a higher production of
biogas. The biogas production was improved because
the adsorbents allow increasing the degradation
of organic-matter such as xylan citrate, whose
degradation produces biogas (Soltani et al., 2013). On
the contrary, dilution with biomass (which inherently
increases the inoculum concentration), prolonged
exposure to the VFA, and intermittent feeding require
greater control. Nevertheless, the latter strategies
could also provide a sufficient recovery of the system.
Moreover, with optimal control, they could also
increase the biogas production. Namely, the addition
of biomass was reported to increase biogas production
by up to four times (Ho and Ho 2012).

2.4 Methanogenesis

The last stage of AD is methanogenesis, for which
several inhibition indicators are proposed, such as
the low methane production, high ammonia nitrogen
concentration in the effluent, sulfide formation,
and reduction of the specific methanogenic activity
(SMA) (Table 1). Low methane production indicates
the presence of inhibitory compounds of the
methanogenesis. The specific methanogenic activity
(SMA) indicates the capacity of the microorganisms to
degrade complex substrates in methane (Sumino et al.,
2007). This capacity is determined by measuring the
potential of the microorganisms to produce methane,
known as the SMA test (Souto et al., 2010). Since
methane is the principal product of methanogenesis,
measuring the SMA allows determining the inhibition
of methanogenesis. Moreover, nitrogen is crucial
for the formation of cells, i.e., to promote the
multiplication of microorganisms. Thus, it is important
to strengthen the biocenosis by adjusting the C:N
ratio to avoid inhibition (Orozco et al., 2010). In
addition, it is important to determine the inhibitor
compound present. Subsequently, depending on the
type of the inhibitor, an acclimation strategy of the
microorganisms to the compound can be performed.
Alternatively, the compound could be removed prior
to the processing (Table 1).

Ammonia nitrogen is a common inhibitor of
methanogenesis. Thus, the acclimation of inoculum
is one of the possible strategies to avoid inhibition.
The acclimation might be done by the gradual
increase of the ammonia nitrogen concentration in a
similar way that was proposed for the acclimation to
phenol. Methanogenic archaea was adapted to high
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ammonia concentrations by the application of NH4Cl
pulses to slowly increase the concentration of N-NH+

4
(Nakakubo et al., 2008). The microorganisms were
acclimated to a N-NH+

4 concentration of 11 g/L.
The removal of ammonia nitrogen is another

strategy to avoid or to recover from inhibition of
methanogenesis. The possible ammonia removal
processes are presented in Table 2. Zeolite
addition and ammonia stripping were performed
simultaneously with methanogenic processes,
allowing 88% and 98% ammonia removal,
respectively (Tada et al., 2005; Walker et al., 2011).
Several strategies that are applicable prior to AD
are also presented: Simultaneous nitrification and
denitrification can be applied if the wastewater
contains a high concentration of organic matter. In
this respect, Seifi and Fazaelipoor (2012) obtained
85% removal of the ammonia nitrogen concentration
using a three-phase fluidized bed biofilm reactor for
the treatment of sanitary wastewater. The addition
of minerals, such as zeolites that are easily obtained
(López et al., 2018), is another strategy for the removal
of ammonia. Zeolites support biofilm formation and
promote ion exchange in the presence of Na+, Ca2+,
and Mg2+. The use of zeolites allowed an efficient
ammonia nitrogen removal in both a sequencing batch
reactor (SBR) and directly in an ammonium-rich
sludge obtained from an anaerobic digestion system,
both achieving an ammonia nitrogen removal rate of
88% (Table 2).

Using green algae (e.g., Scenedesmus sp) and
the stripping of ammonia are two additional options
for ammonia removal (Table 2). Ammonia stripping

provided higher removal efficiencies (98 and 95%)
compared to that achieved by the addition of
zeolites (88%). Nevertheless, both strategies allow the
removal of ammonia nitrogen with high efficiency.
However, ammonia stripping may provide higher
removal efficiencies at high pH, temperature, and gas
flow rate since increasing these parameters increases
the saturated vapor pressure and the interaction
surface area between the liquid and gaseous phases.
Consequently, the reaction speed is also increased,
which allows the volatilization of ammonia nitrogen
(Walker et al., 2011). In addition, both ammonia
stripping and nitrification-denitrification present an
advantage over the addition of minerals or the use of
algae: The former two are natural processes that allow
the biogeochemical cycle of nitrogen to continue and
do not affect the formation of metabolites that could
influence the anaerobic digestion process.

The monitoring of sulfates and sulfides in the
system also allows identifying the inhibition of
methanogenesis by sulfate-reduction, since sulfate-
reducing bacteria compete with the methanogenic
archaea for the substrate (Kwietniewska and Tys
2014). Monitoring the sulfide formation allows
determining if sulfate reduction is taking place
during the anaerobic treatment which inhibits
methanogenesis (Table 1). A possible intervention
strategy is the dilution of the influent, which reduces
the sulfate concentration, and consequently, mitigates
sulfate reduction (Chen et al., 2014). Alternatively, the
addition of electron donors reduces the inhibition of
methanogenesis.

Table 2. Processes used to remove ammonia before or during anaerobic digestion.
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The added electron donors are used as substrates
by the sulfate-reducing bacteria which mitigates their
competition with the methanogens. Some examples of
electron-donor compounds are citric acid (fermented
to acetate and formate during AD) (Stams et
al., 2009), hydrogen, methanol, ethanol, acetate,
lactate, propionate, butyrate, sugar, and molasses
(Liamleam and Annachhatre 2007). The dilution of
the influent to decrease the sulfate concentration
increases the total volume of the wastewater to
be treated which is a major disadvantage of this
approach. On the contrary, the addition of electron
donors increased the methanogenic archaea population
(from 0 to 10% of the total population) and
decreased the population of the sulfate-reducing
microorganisms (from 85 to 45% of the total
population) (Dar et al., 2008). However, the proportion
of sulfate-reducing microorganisms remained high.
Therefore, additional actions are required to mitigate
the competition between methanogens and sulfate-
reducers. A suggested strategy is to perform the
inoculum acclimation in systems where the biomass
cannot be easily washed out (e.g., membrane and
biofilm systems) (Chen et al., 2014). This strategy
allows the microorganisms to be in contact with
the undissociated H2S, and hence, promotes their
adaptation to the toxicity of H2S.

The absence of sulfates eliminates sulfate-
reduction. Therefore, the removal of sulfates is
a promising strategy to prevent the inhibition of
anaerobic digestion caused by sulfates. For the
removal of sulfates prior to the anaerobic digestion,

various physicochemical pretreatments have been
applied, such as the use of ion-exchange resins
(Haghsheno et al., 2009), Fenton oxidation (Wang
et al., 2008), and reverse electrodialysis (Chao and
Liang 2008). Comparing these approaches, only the
use of ion-exchange resins was reported to provide
a 100% removal efficiency of sulfate anions. The
maximal removal of sulfate ions was obtained with
the resin dosage of 1000 mg/100 mL from wastewater
containing copper complexes. Another extensively
studied group of methanogenesis inhibitors are
halogenated aliphatic compounds. Consequently,
various studies reported the removal of halogenated
aliphatic compounds simultaneously with the running
anaerobic treatment (examples are listed in Table
3). Various biological systems or the combination
of biological and physicochemical systems have
provided good removal efficiency (exceeding 90%)
of halogenated aliphatic compounds. Recovery from
the inhibition by halogenated aliphatic compounds
has been successful through the reduction of the
total volume of the influent in discontinuous systems
(Chiavola et al., 2003). This strategy decreases the
concentration of the inhibitor in the system and,
consequently, the recovery of the microorganisms.
To decrease the total volume and the concentration
of the inhibitor in continuous systems, either the
inflow must be decreased, or feeding must be
repeatedly interrupted. Both approaches allow the
microorganisms to remove the residual contaminant
and subsequently promote microorganism recovery
(Aboudi et al., 2015).

Table 3. Anaerobic and physicochemical processes used to remove halogenated aliphatic compounds.
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Another group of methanogenesis inhibitors
is nanomaterials. However, owing to their high
variability, nanomaterials have not been extensively
studied. The only proposed strategy for addressing the
impact of nanoparticles is their removal prior to AD.
Consequently, several aerobic processes have been
used for the removal of nanoparticles such as rotating
biological contactors (Miao et al., 2016), trickling
filters (Westerhoff et al., 2013), and sequential batch
reactors (SBR) (Wang et al., 2012). Among these
approaches, the use of trickling filters presented
the highest removal efficiency (removal of 97% of
nano Ti), likely due to the filtration, adsorption, and
degradation mechanisms present in these systems.
Moreover, trickling filters have achieved high removal
efficiency of compounds that were otherwise difficult
to degrade (Montes et al., 2010). However, more
extensive research of this technology is necessary
since novel trickling filters have been recently
developed using various packing materials that could
further increase the removal of these compounds
(Garzón-Zúñiga and Buelna 2011; Vigueras-Cortés et
al., 2013).

Lastly, a strategy available for the recovery from
inhibition caused by nanomaterials is the addition of
sulfates (Gonzalez-Estrella et al., 2015). The added
sulfates lead to sulfate-reduction, and subsequently,
the obtained sulfides induce the precipitation of
metallic nanomaterials (e.g., zinc oxide and copper).
Hence, biogenic sulfides attenuate the degree of
toxicity of nanomaterials to methanogens. Adding
sulfates allowed to recover the methanogenic activity
to comparable levels to those observed prior to
the inhibition. In addition, decreasing the inflow
or repeatedly interrupting the feeding can mitigate
inhibition (Aboudi et al., 2015). These two approaches
allow reducing the concentration of the inhibitor and
the recovery of the microorganisms.

3 Challenges and future
perspectives (opportunities and
research needs)

This work highlights the importance of monitoring
various parameters (such as the VFA concentration,
presence of metals-and other molecules associated
with oxidizing agents-in the influent, and the specific
methanogenic activity) in anaerobic digestion systems.
The monitoring of these parameters allows identifying

the inhibition of AD, and consequently, helps to
implement control strategies and to avoid critical
failures of the systems. However, the monitoring
of every proposed parameter is challenging, as it
requires sophisticated instrumentation and control
tools. Therefore, future research is necessary that
will target the development of simple methodologies
that allow the use of low-cost tools and can
be implemented by operators without extensive
qualifications.

Methane produced in anaerobic systems during
the treatment of organic-waste can be used as
a renewable energy source, e.g., for electricity
production. Similarly, the inhibitory compounds and
the metabolites produced during AD can be reused,
e.g., ammonia nitrogen and phosphate can be
recovered and used as fertilizers (Vanotti et al., 2017).
However, it is necessary to extend this technology for
other inhibitors.

The development of statistical programs allows
determining the optimal operating conditions of AD
systems prior to the AD processing by modeling the
response of the processing to the varying system
and process parameters. For example, the effects
of the varying concentrations of olive oil, ethanol,
and phenol were modeled with controlled pH on
the anaerobic treatment of wastewater originating
from the food industry (Camarillo and Rincón 2012).
However, more studies are necessary that apply
process modeling with respect to the operating
parameters related to the inhibition indicators
identified in the present work. This would allow
controlling the operating parameters and would help
to determine the optimal operating parameters of
anaerobic systems to avoid inhibition.

The adjustment of the C:N ratio is another
important parameter that has been addressed in
the present work. Several works proposed various
compounds for the adjustment of the C:N ratio.
Namely, the C:N ratio was increased to 25 by adding
urea, since the low presence of nitrogen implies the
inhibited multiplication of microorganisms (Zhang
et al., 2016). The adjustment of the C:N ratio to
30 using ammonium, increased the CH4 production
and reduced the lag phase of anaerobic digestion of
swine manure (Wijesinghe et al., 2019). Fernández-
Rodríguez et al. (2019) observed the highest methane
yield in the anaerobic co-digestion of olive mill solid
waste and microalga Scenedesmus quadricauda when
C:N ratio was adjusted to 31.9 using the microalga
as a nitrogen source. However, none of the existing
studies discusses the possible inhibiting effects of the
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added compounds. Therefore, it is necessary to study
various compounds that are applicable to the C:N-
ratio adjustment and to discuss their possible negative
effects on anaerobic digestion.

The present work presents a complete list of
inhibition indicators and provides a guide with
various strategies for controlling the inhibition in
systems that simultaneously carry out the four stages
of AD (hydrolysis, acidogenesis, acetogenesis, and
methanogenesis). However, various stages of AD (e.g.,
acidogenesis and acetogenesis) can also be carried
out at different phases (Fuess et al., 2017; Zeppilli
et al., 2017). Therefore, owing to the significant
variability of the optimal operating conditions among
each AD stage, constructing a guide-such as the
one presented in the present work-for each AD
stage is of high interest. Most available studies are
limited to influents that contain a single type of
inhibitor (e.g., phenols, ammonia nitrogen, sulfates,
halogenated aliphatic compounds, heavy metals, or
nanomaterials). Méndez-Hernández and Loera (2019)
proposed the idea of applying enzymatic treatments
to complex wastewater that contain more than one
pollutant, but the strategy has not been performed.
Consequently, the effect of influents that contain
a mixture of inhibitors remains mainly unexplored.
Nevertheless, a pharmaceutical wastewater-treatment
plant containing a variety of inhibitory compounds
was analyzed in terms of bacterial diversity: A
significantly low bacterial diversity was observed,
which was likely caused by the high levels of
inhibition induced by the presence of the wide range
of inhibitors (Zhao et al., 2019). Therefore, it is
necessary to investigate various strategies and types
of systems whose combination could be used for the
removal of a wide range of compounds. The design
of the next-generation of the anaerobic system that
treats wastewater that contains inhibitory compounds
will require certain modifications. Namely, these
upgraded systems will have to include a monitoring
system for each parameter that could indicate the
presence of inhibition. The most significant change
in the design process of anaerobic systems will
be the consideration of the types of inhibitors that
could be present in the wastewater to be treated.
Consequently, based on the possible presence of
inhibitors, it will be established whether the biomass
should be suspended or attached, and the most suitable
inhibition-prevention strategies will be identified. In
addition, it is necessary to develop strategies to
avoid the affectation of methane production in the
presence of inhibitor compounds. For example, it

is necessary to boost the microbiology research of
methanogenic species and to identify the methane-
producing microorganisms that exhibit high resistance
and removal efficiency in the presence of inhibitors:
A recent study identified the genus Methanococcus as
one of the most resistant genera to high concentrations
of Ni (Wang et al., 2019). The identification of similar
microorganisms could allow improving the efficiency
of biogas production in the presence of inhibitors.
Consequently, AD systems could be inoculated
with the proper microorganisms. Alternatively, a
suitable strategy could be applied to promote the
bioaugmentation of the microorganisms, e.g., the
enrichment of hydrogen used as a bioaugmentation
tool to control the inhibition of anaerobic digestion by
ammonia nitrogen during the treatment of wastewater
that contained phenols (Wu et al., 2019). Lastly, the
implementation of cloning techniques to increase the
presence of methanogens resistant to certain inhibitory
compounds is another promising approach. This
has been already demonstrated through the genetic
manipulation of methanogens through rapid cloning
techniques (Jennings 2018).

Conclusions

In order to apply the correct recovery strategy for
an AD process showing inhibition, it is necessary
to determine which phase of the AD is being
inhibited. Therefore, it is important to monitor various
parameters that we proposed as inhibition indicators
for each stage of the AD process. These inhibition
indicators were used to construct a guide with
the aim of allowing the operators determining the
possible cause of inhibition and choosing the most
suitable strategy for the recovery and prevention.
The guide might also be a useful instrument to
the study of complex processes taking place in the
anaerobic digestion process and relate them with a
specific stage. However, the preventive and recovery
strategies proposed must be studied at pilot and
industrial scale as many of them had being studied
only on laboratory scale. In addition, several future
challenges were identified whose solution would
facilitate the monitoring. Namely, the development of
simple and low-cost technologies for the monitoring
of the inhibition indicators, or the design of statistical
programs that can model the response of systems
to the variation of different parameters prior to
experimentation. In addition, it is necessary to
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incorporate automatized monitoring systems for each
inhibition indicator during the design process of the
reactors (treatment systems).
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