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Abstract
The clean energies have been the only renewable energies that are capable to replace the use of fossil fuels. The use of clean
energies in Wastewater Treatments Plants would decrease the operating costs. In the present work, a solar heater of 8 tubes was
used for controlling the temperature of an UASB reactor in order to treat a mixture of industrial wastewater under anaerobic
digestion. The reactor was operated at three temperatures (16, 20, and 30 ºC), at organic loading rate of 11 g COD/L-d, HRT
of 6 h, and during a period of 100 days. In addition, the effect of a co-substrate on COD consumption was evaluated, in batch
cultures. In the steady-state, COD removal efficiencies were 8.6, 20, and 40 %, for 16, 20, and 30 ºC, respectively. Increasing
the temperature enhanced the methane production, achieving in average 257 ± 8.6 ml CH4/ g COD removed. In batch cultures,
200 and 400 mg glucose/L used as co-substrate significantly improved the removal and COD consumption rates. Finally, a solar
heater might be feasible and economical technology for temperature-control of an UASB reactor in order to improve the organic
matter removal.
Keywords: solar-heater, anaerobic-digestion, temperature-control, wastewater.

Resumen
Las energías limpias son las únicas energías renovables capaces de reemplazar el uso de los combustibles fósiles. El uso de las
energías limpias en las Plantas de Tratamiento de Aguas Residuales disminuye los costos de operación. En el presente trabajo,
un calentador solar se empleó para controlar la temperatura de un reactor UASB con el propósito de depurar un agua residual
industrial compleja por digestión anaerobia. El reactor se operó con tres temperaturas (16, 20 y 30 ºC), 11 g DQO/L-d y un TRH
de 6 h. Además, se evaluó el efecto de un co-sustrato en la degradación de la DQO, en cultivos lote. En el estado estacionario,
las eficiencias de remoción de la DQO fueron de 8.6, 20 y 40%, para las temperaturas de 16, 20 y 30 ºC, respectivamente. El
incremento de la temperatura mejoró la producción de metano, alcanzando 257 ± 8.6 ml CH4/g DQO removida. La adición de
200 y 400 mg glucosa/L en cultivos lote mejoraron las eficiencias de remoción y la tasa de consumo de la DQO. Finalmente, un
calentador solar podría ser una tecnología factible para controlar la temperatura de un reactor UASB y mejorar la eficiencia de
degradación de la materia orgánica.
Palabras clave: calentador solar, digestión anaerobia, control, agua residual.

1 Introduction

The clean energies are the only renewable energies
that are capable to replace the use of fossil fuels.

The population growth and technological development
have generated a persistent increase in energy demand.
Therefore, the finite nature of the resources has forced
to develop the potential of the use of non-fossil energy
sources. In order to operate Wastewater Treatment
Plants (WWTPs) is required electrical energy, for
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example, in Mexico the 90% of electrical energy is
produced from fossil fuels that increases the releasing
of greenhouse gasses. Thus, the use of clean energies
such as wind, solar, bioenergy, hydropower among
others, would decrease the operating costs of WWTPs
and would mitigate greenhouse gas emissions and the
serious consequences of climate change from the use
of fossil fuels.

Aerobic and anaerobic biological processes
have been used for treating industrial wastewaters.
However, aerobic processes such as the activated
sludge produces more sludge rather than anaerobic
process. The sludge treatment increases significantly
the costs for building the WWTPs as well as the
operating costs. Moreover, aerobic systems require
electricity to supply air to the secondary treatment
thus contributing to the greenhouse gas emissions.
On the other hand, anaerobic digestion is recognized
as a clean technology that associates wastewater
treatment with clean energy generation (biogas), being
a sustainable alternative. Biogas as a generator of
electrical energy is considered a renewable energy
that would contribute to increasing energy security.
Biogas is a clean renewable energy that promises
to be a good substitution for traditional fossil fuels
(Krause et al., 2008; Gómez-Guerrero et al., 2019;
Romero-Flores et al., 2019). The anaerobic digestion
is considered as consolidated technology to treat
wastewater polluted with high content of organic
matter, and it has been applied to several sectors such
as agro-food industry, beverage, alcohol distillery,
pulp industry, textile, paper industries, among others
(van Lier 2008; Donoso-Bravo et al., 2009; Terreros-
Mecalco et al., 2009; Alzate-Ibanez, 2018). The
anaerobic digestion is an excellent option due to
the following benefits: minimal production of sludge,
low operating costs, biogas production (for heat and
electrical energy production), sludge production can
be used as bio-fertilizer after a post-treatment, and the
wastewater treated after chlorination can be reused for
green area irrigation or fish farming. In this context,
the anaerobic digestion should be promoted to be
collocated as the main technology to treat wastewaters
for being a closed circuit and sustainable technology,
thus diminishing of using fossil fuels.

The anaerobic digestion is a complex process
combining extracellular enzymatic activity and
biochemical reactions, which can be categorized in
four steps: Hydrolysis, Acidogenesis, Acetogenesis
and Methanogenesis. The Hydrolysis is the first step
for the degradation of long chain polymeric organic
matter such as lipids, polysaccharides, protein, nucleic

acids and fats into soluble organic molecules that
can be fermented (Botheju and Bakke, 2011; Rivas-
García et al., 2020). In the Acidogenic pathway,
the hydrolysis products are biotransformed into
volatile fatty acids (acetic, propionic, butyric, valeric,
caproic and heptanoic), and CO2, H2 and ethanol
(Appels et al., 2008). In the Acetogenic pathway,
the volatile fatty acids as well as the ethanol are
degraded to acetate (Botheju and Bakke, 2011). In
the last step, methane production occurs via two
methanogenic pathways, Aceticlastic Methanogenesis
(using acetate) and Hydrogenotrophic Methanogenesis
(using H2) (Krause et al., 2008). About 65-70%
of methane is generated through the Aceticlastic
Methanogenesis pathway (Fukuzaki et al., 1990).
The anaerobic digestion is governed by the kinetics
of the slowest step, being the methanogenesis,
however, when treating complex organic matter at
low temperature, the Hydrolytic step is commonly
the limiting step (Donoso-Bravo et al., 2009). The
temperature increases the rate of organic matter
removal, going from psychrophiles to thermophiles
conditions (Sanchez et al., 2001).

The main goal was to treat a mixture of industrial
wastewaters from an industrial zone by anaerobic
digestion using an instrumented UASB reactor with
solar heater as renewable energy for temperature-
control.

2 Materials and methods

2.1 Reactor configuration and start-up

The whole treatment process was performed at the
laboratory where temperature was supplied using an
8-tube solar heater (Figure 1). The UASB reactor was
constructed of glass material, with an inner diameter
of 10 cm. The total volume of the UASB reactor
was of 2.4 L with a working volume of 2.0 L. Six
hundred milliliters of granular anaerobic sludge was
collected from a local Wastewater Treatment Plant for
seeding the system. The reactor was inoculated with
35 ± 2.3 g TSS/L (27 ± 1.5 g VSS/L). The UASB
reactor was operated at Hydraulic Retention time
(HRT) of 6 h, for a period of 100 days. The system
was integrated by a jacket, through which hot water
was circulated to regulate the temperature inside the
reactor. The industrial wastewater was collected from
Wastewater Treatment Plant using an Activated Sludge
System, which is treating a mixture of more than 150
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Figure 1. Configuration and instrumentation of the UASB reactor. 1) UASB reactor, 2) temperature sensor, 3)
microprocessor Arduino, 4) solenoid valve, 5) solar heater of 8 tubes, 6) check valve, and 7) container of water.

industries such as food industries, pharmaceuticals,
textile industries, among others. The liquid sample of
industrial wastewater was collected after the primary
treatment. The biodegradability index (BOD5/COD)
of this kind of wastewater was 0.45, the total nitrogen
concentration was 149 ± 15 mg N/L, 2.5 ± 0.2 g of
COD/L, and pH of 7.3 ± 0.2. The UASB reactor was
evaluated in three stages. In stage I, bioreactor was
fed at a loading rate of 11.29 g COD/L-d at 16.42 ±
1.07 ºC. In stage II, the loading rate was of 11.01 g
COD/L-d at 22.68 ± 0.08 ºC, whereas in the stage III,
the reactor was fed at a loading organic rate of 11.67 g
COD/L-d at 30.20 ± 0.67 ºC.

2.2 Instrumentation for temperature-
control

The electronic system was formed by Arduino®
microcontroller as an automatic control system, an
electronic valve as hot water access (PD02022),
a solid-state relay as a digital switching device
that switches on or off, a temperature sensor
(DS18B20), and a power source (Model Keithley). A
closed loop temperature control system was designed
and constructed, which compiles the magnitude of
temperature from the reaction zone by means of

an isolated temperature sensor. The information was
decoded and transmitted to a computer that compares
the data with the optimum temperature for adjustment.
The monitoring system uses an on/off control law,
which reduces the error due to temperature difference
with an actuator stage (solenoid valves), which
regulates the flow of hot water, and the water supply
time from solar heater.

2.3 Effect of co-substrate on COD
consumption rate

Serological bottles were used for evaluating the effect
of co-substrate (glucose) on methanogenic activity.
The batch cultures were incubated by duplicate at 30
± 2 ºC and 150 rpm. The oxygen was purged from
each experiment during 5 min with helium gas. The
batch cultures were spiked with 4.0 g VSS/L (i.e. from
the last stage) and two initial glucose concentrations
were evaluated, 200 and 400 mg/L, plus 1000 mg
COD/L contained in the industrial wastewater. Control
cultures with only glucose and industrial wastewater
were performed. The COD consumption specific rates
were computed using the Gompertz model (Origin 8.0,
OriginLab, Inc.®) (González-Blanco et al., 2020).

www.rmiq.org 11
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Figure 2. Temperature-control by using the
microprocessor. Red line: reference temperature
programmed. Blue line: real temperature inside the
UASB reactor.

2.4 Monitoring and analytical methods

Temperature, pH, COD concentrations in the influent
and effluent, and biogas production were monitored
three times a week. The biogas was collected in
an inverted column containing saline solution (200
g NaCl/L, pH 2). The soluble Chemical Oxygen
Demand (COD) was quantified by the method of
closed reflux. The volatile suspended solids (VSS)
were determined according to the standard methods
(APHA, 2005), and methane was identified by gas
chromatography-TCD (GOW-MAC Instrument 508).

3 Results and discussion

3.1 Reactor start-up and performance

Initially, UASB reactor was instrumented in order to
control the temperature inside the reaction zone. In
Figure 2 can be seen the temperature control and
monitoring at 30 ºC. The red line is the reference
temperature programmed, while the blue line is
the real temperature inside the UASB reactor. The
instrumentation system allowed the good control of
temperature inside the reactor, for example the annual
temperature of the location (Lerma, Mexico) where
the bioreactor was installed and operated was around
12-16 ºC, in spite of this climate conditions, the
solar heater managed to reach an average temperature
of 30 ºC. At industrial level for heating anaerobic
reactors, the water vapor has been used to transfer
the heat by serpentine tubes into the reaction zone,
but it increases the operating costs. Ren et al. (2012)

investigated the use of solar panels for anaerobic
sewage treatment achieving good results. However,
the use of solar heater has more advantages regarding
the clean energies such as wind power or solar
panels due to the solar heater does not require power
converts. Besides the wastewater treated can be used
and recycled in the solar heater. In addition, the use of
solar heater in places with cold weather might be an
excellent option, due to the control of temperature is
too expensive. To the best of our knowledge, this is the
first time using a solar heater for temperature-control
of an UASB reactor.

pH, temperature and ammonia are the most
significant governing parameters for anaerobic
digestion in order to maintain it at an optimum level
(Arshad et al., 2011). Neutral pH is suggested to be the
most appropriate range for anaerobic digestion (Bhatti,
1995). However, the anaerobic digestion pathway
could take place from 6.5-8.0 (Cioabla et al., 2012). In
the present work, in all stages, pH in the influent was
neutral, whereas in the effluents were between 7.8-8.1.
On the other hand, total ammonium concentration may
inhibit the anaerobic digestion. Rajagopal et al. (2013)
showed that levels of ammonia, up to 200 mg/L, assure
adequate supply of nutrients for anaerobic process
and increase the buffer capacity counteracting the
acidification due to the volatile fat acids production.
But ammonia concentration exceeding the critical
threshold is detrimental to the anaerobic digestion due
to its toxic effect (Polizzi et al., 2018). For example,
Chen et al. (2016) observed in a food wastewater
treatment a strong inhibition of methanogenesis when
ammonia overcome 2 g/L. In the present work, total
nitrogen did not exceed 200 mg/L, therefore the
inhibitory phenomenon linked to ammonia can be
negligible.

In Figure 3 is shown the COD profile and
removal efficiencies in the UASB reactor operated
at HRT of 6 h. In stage I, a steady stage was
achieved in 10 days, after this period of time, the
stabilized biological process showed COD removal
efficiency of 8.6 ± 4 %. Methane production was
not observed. The low COD removal efficiency and
lack of methane production might be linked to the
psychrophilic conditions. Cysneiros et al. (2011)
showed that methanogenesis was the rate-limiting at
10 °C. Gunnigle et al. (2015) observed that sub-unite
of methyl-coenzyme M reductase which catalyzes the
last step of methanogenesis displayed reduced levels
of expression at a temperature of 7 ºC, whereas at 37
ºC the levels of expression of this protein were 18.6-
fold-higher.

12 www.rmiq.org
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Figure 3. Performance of the UASB reactor operated in continuous, at different temperatures. (�) COD/L-d
(effluent), (�) mg COD/L-d (influent), (×) COD removal efficiency.

In stage II, in the steady state, COD removal
efficiency increased to 20 ± 4 %, with a methane
production of 153 ± 40 ml CH4/ g COD removed. Lin
et al. (2016) showed that temperature affects anaerobic
digestion performance due to the shift of microbial
community structure, diversity, and biological activity.
For example, Bialek et al. (2012) and Cysneiros et
al. (2011) observed that hydrolysis step had the rate-
limiting step at 15 °C. Bialek et al. (2013) observed
that anaerobic digestion of diluted dairy wastewater
was possible at 10 ºC, at organic loading rate up to
2 Kg COD/m3-d achieving COD removal efficiencies
above 84%. In the present work, the organic loading
rate tested was higher compared to the work of Bialek
et al., and the chemical composition of the wastewater
was very complex, therefore both factors might be
involved in low COD degradation.

Finally, at stage III, COD removal efficiency and
methane production reached was 40 ± 11 % and
257.73 ± 8.6 ml CH4/ g COD removed, respectively.
For example, Lin et al. (2016) observed a linear
trend for methane production when temperature was
increased from 25 to 50 ºC. Donoso-Bravo et al.
(2009) also observed that COD consumption rate
increased linearly when temperature was increased
from 15 to 40 ºC. In the present work, the
low COD removal attained at 30 ± 2ºC might

Figure 4. COD consumption profiles in batch cultures.
W (industrial wastewater).

be due to the complex chemical composition of
wastewater, low biodegradability index, and high
organic loading rate tested. Arshad et al. (2011)
evaluated different organic loading rates (from 0.2
to 2.5 g COD/L-d) of textile industrial wastewater by
anaerobic digestion, for example, at 1.8 g COD/L-
d highest COD removal was observed (around
82%). However, above 1.8 g COD/L-d the removal
efficiencies dropped to 65%. Guerrero et al. (1999)
evaluated extremely high organic loading rates coming
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Table 1. COD consumption specifics rates and
removal efficiencies as result of co-substrate effect, in

batch cultures.
q (mg
COD/g
VSS-h)

COD
removal
efficiency
(%)

Glucose (gl) 85 ± 7 90 ± 5.3

Industrial water (W) 38 ± 4.3 61 ± 4.7

W + 200 mg gl/L
108 ± 12.6 80 ± 7.8co-substrate

W + 400 mg gl/L
110 ± 5.6 87 ± 5.6co-substrate

Figure 5. COD consumption specifics rate in batch
cultures.

from food industries, up to 400 g COD/L-d, but no
significant production of methane was observed. In the
present work, in spite of using an industrial wastewater
of chemical complexity, increasing the temperature
enhanced the COD removal efficiencies as well as the
methane production.

3.2 Effect of co-substrate on COD
consumption rate

In Figure 4 is shown the effect of co-substrate on COD
consumption profiles. The batch culture only spiked
with glucose, COD removal efficiency was of 90 ± 5.6
%, with a COD consumption rate of 85 ± 7 mg COD/g
VSS-h (Table 1). In the batch culture spiked only with
industrial wastewater (as control test), COD removal
efficiency was 61 ± 4.7 %, and COD was consumed
at a specific rate of 38 ± 4.3 mg COD/g VSS-
h. These kinetic results indicated that the complex
industrial wastewater influenced the kinetic behavior,
perhaps due to the presence of toxic compounds. Now,
when 200 mg/L of glucose was used as co-substrate
the kinetic behavior improved since COD removal
efficiency increased from 61 to 80 ± 7.8 %. The COD

consumption rate was 2.8-fold faster regarding the
control test (Figure 5). In the second concentration
of co-substrate evaluated (400 mg glucose/L), the
kinetic behavior did not change significantly. Khan
et al. (2017) observed the positive effect of glucose
as co-substrate for increasing the pentachlorophenol
decomposition under anaerobic digestion. The authors
observed that sludge in touch with glucose appeared
to be quite porous with uniform channels that
confirm better mass transfer thus resulting in higher
degradation rates. Okada et al. (2013) showed that
addition of complex co-substrate improved an anionic
surfactant removal under anaerobic digestion, as
well as an augmentation of anaerobic bacteria since
methanogenic was observed. Işik and Sponza (2005)
observed that decolorization of congo red azo dye
was improved using glucose (i.e. 100-300 mg/L) as
co-substrate. These results indicated that the presence
of glucose improves the organic matter degradation,
and it might be a strategy to enhance the treatment of
complex industrial wastewater.

Conclusions

A solar heater instrumented with an electronic
system formed by Arduino® allowed the temperature-
control in a UASB reactor for treating a mixture of
industrial wastewater of chemical complexity under
anaerobic digestion. In the continuous UASB reactor
fed with complex industrial wastewater, increasing
the temperature from 16 to 30 ºC improved both
COD removal efficiency and methane production. In
batch cultures, 200 mg glucose/L used as co-substrate
enhanced the kinetic behavior of anaerobic digestion,
since COD removal efficiency increased from 61 to 80
%, whereas the COD consumption rate was 2.8-fold
faster regarding the control without co-substrate.
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