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Abstract
A design of a product concentration estimation and a Fault Tolerant Control (FTC) strategy for compensate an

actuator fault in a Continuous Stirred Tank Reactor (CSTR) are developed in this paper. Second and third-order
CSTR systems are considered to validate the proposed FTC scheme. Furthermore, a comparison between nonlinear,
linear and quasi Linear Parameter Varying (qLPV) models for both CSTR systems are presented. The results
demonstrate that the qLPV representation reproduce the nonlinear, in the selected segment, better than the linear
model. Then, a Proportional-Integral Observer (PIO) is designed using the qLPV representation in order to estimate
the states and the actuator fault presented in the process. These estimations are used by the FTC system for compute
a new control law using a Linear Matrix Inequality (LMI) to ensure the stability of both the qLPV PIO and the
FTC law. Thus, the main contributions of this work are four: i) to propose a new representation of the second and
three-order CSTR nonlinear model by means of a qLPV system, preserving the nonlinear dynamics of the original
nonlinear model, ii) to exploit the easiness to extend theoretical results that originally were conceived for linear
systems, to qLPV systems, iii) to estimate the product concentration in order to generate a new FTC law, and iv) to
validate in simulation the FTC scheme to reduce the effect of an actuator fault in a CSTR process.

Keywords: Fault tolerant control, fault estimation, quasi linear parameter varying, continuous stirred tank reactor.

Resumen
En el presente artículo se desarrolla el diseño de un estimador de concentración y una estrategia de Control Tolerante
a Fallas (FTC) para compensar la falla en un actuador de un Reactor tipo Tanque Continuamente Agitado (CSTR).
Para validar el esquema de FTC se considera un sistema de CSTR de segundo y de tercer orden. Además, se presenta
una comparación entre los modelos no lineal, lineal y quasi Lineal con Parámetros Variables (qLPV) de ambos
sistemas CSTR. Los resultados demuestran que la representación qLPV reproduce mejor el comportamiento no
lineal de los sitemas CSTR, en el segmento seleccionado, en comparación con el modelo lineal. Posteriormente,
se diseña un Observador Proporcional-Integral (PIO) utilizando la representación qLPV para estimar los estados
y la falla en el actuador del proceso. Estas estimaciones son computadas para generar una nueva ley de control
utilizando una Desgualdad Matricial Lineal (LMI) para asgurar la estabilidad del PIO qLPV y de la ley de FTC. Así,
las principales contribuciones de este trabajo son cuatro: i) proponer una nueva representación para el sistema no
lineal del CSTR de segundo y tercer orden utilizando un sistema qLPV, el cual preserva las dinámicas no lineales del
modelo no lineal original. ii) aprovechar la facilidad de extender los resultados teóricos, originalmente concebidos
para los sistemas lineales, iii) estimar la concentración del CSTR para generar una nueva ley de control tolerante a
fallas, y iv) validar el esquema FTC en simulación para reducir el efecto de la falla en un CSTR.

Palabras clave: Control tolerante a fallas, estimación de fallas, quasi lineal con parámetros variables, reactor tipo
tanque continuamente agitado.
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Nowadays, chemical industry is characterized by
large plants with complex arrangement of processing
units and highly integrated with respect to material and
energy flows (Daher et al., 2020; Rumbo-Morales et
al., 2018, 2020). Given these characteristics and with
the increase of requirement performances at different
operation conditions, the modern industrial systems
have become progressively vulnerable to faults which
inevitably influence the dynamics of the process
stability, reliability, and safety (Sorcia-Vázquez et al.,
2020). Also, external disturbances can lead to different
faults, such as actuator stuck, actuator degradation,
voltage control failure, structural damage, physical
aging, and fatigue, which can change the states of the
process (Llanes-Santiago et al., 2019).

In order to identify malfunctions at any time and
to improve reliability and safety in a process, Fault
Tolerant Control (FTC) methods can be considered.
The FTC techniques are classified into two types
(Amin et al., 2019): passive and active. On one
hand, in the passive techniques, a fixed controller is
designed for tolerating changes of the plant dynamics
and then, the stabilized system could satisfy its goals
under all faulty conditions. This approach needs
neither Fault Diagnosis (FD) schemes nor controller
reconfiguration, but it has limited capabilities because
it uses fixed parameters. On the other hand, in
the active techniques the controller parameters are
adapted or reconfigured according to the fault using
the information of the FD system, so that the
stability and acceptable performance of the system
can be maintained. According to Blanke et al.,
(2006), different names can be used to distinguish the
diagnostic steps: fault detection, fault isolation and
fault identification (also known as fault estimation).

In the context of fault detection and isolation
applied to a chemical systems, Wang et al., (2020)
presents a novel deep learning based fault diagnosis
scheme in chemical processes. The effectiveness and
performance of the proposed method have been
demonstrated in simulation. In Gholizadeh et al.,
(2019) a fault detection and identification algorithm
is proposed for a Continuous Stirred Tank Reactor
(CSTR) by combining the extended Kalman filter
and neuro-fuzzy networks. Simulation results show
that the proposed methodology is very effective to
detect and identify the faults of the system in different
faulty modes. A model based robust observer for fault
estimation in a CSTR was investigated in Boudjella
and Illoul, (2019). They propose a combination of
two super-twisting observers for state estimation and
fault reconstruction using a linear model of the CSTR.

The effectiveness and robustness of the scheme are
illustrated in simulation. In Zerari and Chemachema,
(2019) a robust controller is implemented using a
neural network designed for a uncertain CSTR system
with input nonlinearities and external disturbance.
This external disturbance can be considered as an
external fault. In this context, a sensor fault detection
system for a CSTR process is presented in Zhang et al.,
(2020). They consider the CSTR plant as a stochastic
linear time-varying system with parameter uncertainty
and limited resolution. Simulation results are carried
out to illustrate the validity of the proposed method.
In Adam-Medina et al., (2013) a fault detection
scheme using second-order sliding model observers
applied to a double pipe heat exchanger is proposed.
Similar work is presented in García-Morales et al.,
(2015), by designing a FD system based on a super-
twisting sliding mode observers for a double pipe
heat exchanger. Experimental results have shown the
effectiveness of the estimation and isolation of a
fault in one inlet and two outlet sensors of the heat
exchanger.

Usually the mathematical model of a CSTR
is represented by a set of ordinary differential
equations (Zheng et al., 2020; Alshammari et
al., 2020; Boudjella and Illoul, 2019) or linear
approximations (Hernández-Osorio et al., 2020; Yazdi
and Khayatian, 2020; Simkoff and Baldea, 2019).
However an alternative to represent its nonlinear
dynamic is through a collection of linear subsystems.
Recently, Linear Parameter Varying (LPV) systems
have garnered much interest (Marx et al., 2019).
The importance of this representation is that the
LPV mathematical model is able to exactly represent
or approximate the nonlinearities by a set of
linear models blended by scheduling functions. It
is important to remark that the polytopic LPV and
Takagi-Sugeno (T-S) systems are described by the
same form (Rotondo et al., 2015). In fact, in Tanaka
et al. (2006) it is established that the T-S model is
a special case of an LPV model. Nevertheless, the
community of researchers working on T-S models uses
the name “T-S fuzzy systems”, even if the obtained
model is no “fuzzy” because the weighting functions
are completely deterministic that corresponds to LPV
systems as detailed in Rodrigues et al. (2014). In
the literature there are two known methods to obtain
LPV models, the linearization and the sector-nonlinear
approach. Some application of the LPV control theory
to a CSTR using linearization approach have been
presented in Tamboli and Chile (2018). However, the
main drawback is that there is no general method to
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select the linearization points (Ahammed and Azeem,
2019).

A more accurate representation of the nonlinear
system can be obtained by considering the sector-
nonlinearity approach, also known as quasi-LPV
(qLPV) because the scheduling functions are
represented by nonlinear state or input dependent
functions. The main advantage of this approach is
that the qLPV model is an exact representation of
the nonlinear system in the selected sector (Martínez-
Garctía et al., 2020; Ohtake et al., 2003). For instance,
in Alshammari et al. (2019), an advanced fuzzy logic
Proportional-Integral-Derivative (PID) based control
technique has been designed for a fuzzy representation
of a CSTR; simulation results show a more accurate
tracking for the desired output trajectory than a
classical PID controller. In Ebrahimi et al. (2019) a
parallel distributed compensation-based for a CSTR
modelled as a qLPV have been presented. Simulation
results corroborate that the designed controllers, in
term of Linear Matrix Inequalities (LMI), ensure the
global stability of the closed-loop system. A Sensor
fault tolerant control strategy for a CSTR under
modelling uncertainties is presented in Abdullah and
Zribi (2013). The authors have designed a qLPV
observer to estimate both the unmeasured system
states and the sensor fault. Simulation results illustrate
the developed theoretical results. Recently, a fault
detection for uncertain CSTR plant, modelled as a
LPV system, is developed in Wan et al. (2020). A
probabilistic set-membership parity relation approach
is proposed to exploit probabilistic information on
the parametric uncertainties; the effectiveness of
the proposed approach is illustrated in simulation.
To deal with fault reconstruction, Asadi et al.
(2020), present a robust sliding mode observer for
a CSTR modelled as a T-S system. Simulation

results demonstrated the effectiveness of the proposed
strategy in reconstructing actuator faults.

In order to highlight the novelty of this paper,
a comparison of fault tolerant strategies applied to
a CSTR system is presented in Table 1. It is clear
that even the works reported in the literature, there
are few works based on qLPV representation for the
design of active fault tolerant controllers to the CSTR
system, therefore this problem remains important and
a challenge to be solved in a theoretical and practical
way.

The main contributions of this work are four: i)
to propose a new representation of the second and
three-order CSTR nonlinear model by means of a
qLPV system, preserving the nonlinear dynamics of
the original nonlinear model. This new representation
allows to increase the range of applications of control
algorithms for CSTR systems, ii) to exploit the
easiness to extend theoretical results that originally
were conceived for linear systems, to qLPV systems,
iii) to estimate the product concentration in order to
generate a new FTC law, and finally iv) to validate in
simulation the active FTC scheme to reduce the effect
of an actuator fault in a CSTR process.

1 Materials and methods

1.1 Preliminaries of qLPV systems

The qLPV representation of the CSTR is obtained
using the sector-nonlinearity technique, proposed in
Ohtake et al. (2003). In this section, preliminaries of
the qLPV modelling are presented. Then, the sector-
nonlinearity technique is applied to the CSTR system
in order to design the FTC system.

Table 1. Quality comparison of fault tolerant strategies applied to a CSTR system.

Characteristic References
[1] [2] [3] [4] [5] [6] [7] Our work

Avoid complicated implementation × X X X × × X X
State estimation algorithm X X × X X × × X
Fault detection, isolation or estimation X X X X X X X X
An active fault tolerant controller design × × × × × × × X

[1] Gholizadeh et al. (2019); [2] Boudjella and Illoul (2019); [3] Abdullah and Zribi (2013);
[4] Wan et al. (2020); [5] Zerari and Chemachema (2019); [6] Zhang et al. (2020); [7] Asadi
et al. (2020).
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Consider a nonlinear system described by

ẋ = f (x)x + g(x)u + a,

y = h(x)x,
(1)

where f ,g and h are smooth nonlinear functions
with respect to the states, a represents a constant
vector, x is the state vector, u is the input vector of
the system and y denotes the measurable output vector.
By considering the sector-nonlinearity technique, the
nonlinear system Eq. (1) is exactly represented only in
a convex set, by the qLPV model given by:

ẋ =

m∑
i=1

ρi(ζ)(Aix + Biu) + a,

y =

m∑
i=1

ρi(ζ)(Cix),

(2)

where Ai,Bi and Ci are constant matrices of the proper
dimensions associated to each local model of the
system i, with i = 1,2, . . . ,m. The scheduling functions
ρi are nonlinear and depend on the decision variable ζ
which is represented by the non-constant terms in f , g
and h in Eq. (1). The number of local linear models is
directly related to the number of the nonlinear terms.
For each nonlinear term, two sub-models are obtained
such that for p nonlinear terms, the global model is
composed of m = 2p sub-models. The construction of
the scheduling functions satisfy the following convex
set sum property:

0 ≤ ρi(ζ) ≤ 1, ∀t,∀i = 1,2, . . . ,m,
m∑

i=1

ρi(ζ) = 1, ∀t.
(3)

Note that Eq. (1) is not unique and therefore
the qLPV representation of the nonlinear system
expressed in Eq. (2) obtained by the sector-
nonlinearity approach is not unique. For each
scheduling variable ζ j(t) ∈ [ζ

j
, ζ j] with j = 1,2, . . . , p,

there are two weighting functions µ
j
0,µ

j
1 which are

expressed as:

µ
j
0(ζ j) =

ζ j − ζ j(t)

ζ j − ζ j

, µ
j
1(ζ j) = 1− µ j

0, (4)

where ζ
j

and ζ j are the minimum and maximum
values of the non-constant terms, respectively. In this
paper, it is considered that the scheduling variable ζ j(t)
is measurable. Then, the scheduling functions for each

local mathematical model are defined as:

ρi(ζ j) =

p∏
j=1

µ
j
γ(ζ j), i = 1,2, . . . ,m, (5)

where the index γ is zero or one, depending on
which local scheduling function is considered and
indicate which portion of the j-th scheduling variable
is involved in the i-th sub-model. Consequently, by
using the scheduling functions given by Eq. (5), the
nonlinear system Eq. (1) is exactly represented in
the selected segment Eq. (3) by the qLPV model
expressed in Eq. (2).

1.2 Nonlinear model of the CSTR

The CSTR plant configuration is presented in Fig. 1.2.
The dynamic modeling equations to find the tank and
jacket temperature are established using the following
assumptions (Seborg et al., 2010):

• The thermal capacitances of the coolant and the
cooling coil wall are negligible compared to the
thermal capacitance of the liquid in the tank,

• The volume and liquids are constant with
constant density. Perfect mixing is assumed in
both tank and jacket. The heat of mixing is
negligible compared to the heat of reaction,

• The rate of heat transfer from the jacket to the
tank is governed by the equation −UA(T − T j),
where U is the overall heat transfer coefficient
and A is the area for heat transfer.

F, Tf , Cf

F , Tj jin

ST, C

F j  

Tj

Product

Stirrer

Valve

Valve

Fig. 1. CSTR configuration.
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Table 2. CSTR symbols and values (Seborg et al., 2010).

Description Symbol Value Unit Description Symbol Value Unit

Inlet temperature T jin 283 K Heat Capacity (HC) cp 0.239 J/g K
CSTR volume V 100 L Cooler water HC cp j 0.239 J/g K
Cooler volume V j 50 L Process flow rate F 100 L/min
Activation energy term E/R 8750 K Feed concentration C f 1 mol/L
Reaction rate constant k0 7.2×1010 min−1 Cooler flow rate F j L/min
Heat transfer term UA 5×104 J/min K Product concentration CS mol/L
Heat of reaction −∆H 5×104 J/mol Cooler temperature T j K
Liquid density % 1000 g/L CSTR temperature T K
Cooler water density % j 1000 g/L Temperature of feed T f K

[1] The simulated value of these parameters are different for the second and the third-order CSTR system.

The nonlinear model of the CSTR is based on
the mass and energy balance and it is expressed as
a differential equation with a nonlinear third-order
dynamic model, as follows:

Ṫ =
F
V

(T f −T )−
UA

V%cp
(T −T j)−

∆H
%cp

rCS , (6a)

Ṫ j =
F j

V j
(T jin −T j) +

UA
V j% jcp j

(T −T j), (6b)

ĊS =
F
V

(C f −CS )− rCS , (6c)

where

r = k0e(−E/RT ) (7)

is the specific reaction rate, T is the reaction
temperature of the CSTR product, T j is the coolant
temperature entering into the thermal jacket, T f is
the temperature of the substrate entering the reactor
and T jin is the temperature of cooler inlet. The heat
of the reaction is represented by ∆H, k0 denotes the
reaction rate constant, E is the activation energy and R
represents the molar gas constant. The concentration
of the product inside the CSTR is CS , C f denotes
the feed concentration, F represents the volumetric
flowrate, V is the CSTR volume, % and % j are the
density of the mass of reaction and the density of
cooling agent, respectively. The specific heat capacity
at constant pressure is denoted by cp. Note that the
subscript j represents that the parameter is located in
the thermal jacket, see Fig. 1.

The reactor temperature dynamics is expressed
in Eq. (6a), where the difference between the
temperatures T f and T is the heat received or

transferred due to feeding the CSTR. Also, the
heat transferred between the thermal jacket and
the temperature inside the reactor is expressed as
the difference between T and T j. The temperature
dynamics of the jacket is given by Eq. (6b) and
Eq. (6c) denotes the concentration dynamics of the
substrate.

Two systems are considered for the analysis of the
CSTR: i) the first one is constructed using only Eq.
(6a) and Eq. (6c), by assuming that all of the coolant
is at a uniform temperature T j. In other words, the
increase in coolant temperature as the coolant passes
through the coil is neglected; ii) the second system is
constructed by considering the temperature dynamics
T j as a state, represented in the overall third-order Eq.
(6). In Table 2 are listed the symbols used in the CSTR
system and their numerical values.

1.2.1 Second-order CSTR system

The CSTR system modelled by Eq. (6a) and Eq. (6c)
are rewritten in the nonlinear form Eq. (1), with:

f (x) =

 −F
V − r 0
−∆H
%cp

r −F
V −

UA
V%cp

 , g(x) =

[
0

UA
V%cp

]
,

a =

[ F
V C f
F
V T f

]
, h(x) =

[
0 1

]
, (8)

where x = [CS ,T ]> = [x1, x2]> ∈ R2 is the state vector,
u = T j is the input of the system and y = T = x2 is the
measurable output.
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1.2.2 Third-order CSTR system

Now, the nonlinear third-order CSTR system
represented in Eq. (6) is rewritten in the form Eq.
(1), as follows:

f (x) =


−F

V −
UA

V%cp
− ∆H

x1%cp
rx3

UA
V%cp

0
UA

V j% jcp j
−UA

V j% jcp j
0

0 0 −F
V − r

 ,
g(x) =


0

T jin−x2
V j

0

 ,a =


F
V T f

0
F
V C f

 ,h(x) =

[
1 0 0
0 1 0

]
.

(9)

where x = [T,T j,CS ]> = [x1, x2, x3]> ∈ R3, u =

F j and y = [T,T j]> = [x1, x2]> ∈ R2. The control
input design is synthesized while considering the
reaction temperature T and the coolant temperature
entering the jacket T j as the system output, while
the concentration of the product CS is considered the
unmeasurable variable. This latter choice is considered
in both CSTR systems and it is justified based on
the fact that a reliable and consistent concentration
measurements are typically unavailable, and the
sensors are expensive. Moreover, the temperatures
T and T j are considered as critical variables to be
measured in the process. Both temperatures T and T j
will be controlled by manipulating the coolant flow
rate F j. In this paper, the temperature of the substrate
entering the reactor T f and the feed concentration C f
are considered as constant variables.

1.3 qLPV representation of the CSTR

1.3.1 qLPV representation of the second-order CSTR
system

The scheduling variable, which is the non-constant
element in Eq. (8), is ζ1(t) = r = k0e(−E/Rx2) ∈

[0.011,0.142]. These values are established by
considering that the product temperature is varying
from 296 K to 325 K. Experimentally, the scheduling
variables are defined by the designer according to
the knowledge of the system and the experimental
results. These values depend on the desired range that
the designer establish for the CSTR system. Then,
by considering Eq. (4), the weighting functions are
obtained by the following equations:

µ1
0(ζ1) =

0.142− ζ1(t)
0.142− 0.011

, µ1
1(ζ1) = 1− µ1

0. (10)

For p = 1, then m = 2 scheduling functions are
computed using Eq. (5). Note that for one scheduling
variable the scheduling functions are equal to the
weighting functions, as follows:

ρ1(ζ1) = µ1
0(ζ1), ρ2(ζ1) = µ1

1(ζ1). (11)

Consequently, by using the scheduling functions
given by (11), the nonlinear system of the second-
order CSTR is exaclty represented only in the
segmented expressed in Ec. (3), by the following
qLPV model:

ẋ =

2∑
i=1

ρi(ζ)(Aix + Biu) + a,

y = Cx,

(12)

with

A1 =

[
−1.011 0
2.326 −3.092

]
,A2 =

[
−1.142 0
29.707 −3.092

]
,

B1 = B2 =

[
0

2.092

]
,a =

[ F
V T f
F
V C f

]
,C =

[
0 1

]
.

1.3.2 qLPV representation of the third-order CSTR
system

The scheduling variables in (9) are selected as follows:

ζ1(t) =
∆H

x1ρcp
rx3 ∈ [−0.024,−0.010],

ζ2(t) = x2 ∈ [296,310],
ζ3(t) = r ∈ [0.014,0.038].

(13)

These values are established by considering that
the cooler mean temperature T j is varying from 296 K
to 310 K, the product temperature T is varying from
300 K to 310 K, and the product concentration CS
from 0.5 mol/L to 1 mol/L. However, the designer can
modify these selected segment according to the control
objective and the experimental results.

For each scheduling variable, two weighting
functions are computed as follows:

µ1
0(ζ1) =

−0.010− ζ1(t)
−0.010 + 0.024

, µ1
1(ζ1) = 1− µ1

0,

µ2
0(ζ2) =

310− ζ2(t)
310− 296

, µ2
1(ζ2) = 1− µ2

0,

µ3
0(ζ3) =

0.038− ζ3(t)
0.038− 0.014

, µ3
1(ζ3) = 1− µ3

0.

(14)

Therefore, for p = 3, m = 8 scheduling functions
are computed, using Eq. (5), as the product of the
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weighting functions that correspond to each local
model of the CSTR, as follows:

ρ1(ζ) = µ1
0µ

2
0µ

3
0, ρ2(ζ) = µ1

0µ
2
0µ

3
1,

ρ3(ζ) = µ1
0µ

2
1µ

3
0, ρ4(ζ) = µ1

0µ
2
1µ

3
1,

ρ5(ζ) = µ1
1µ

2
0µ

3
0, ρ6(ζ) = µ1

1µ
2
0µ

3
1,

ρ7(ζ) = µ1
1µ

2
1µ

3
0, ρ8(ζ) = µ1

1µ
2
1µ

3
1.

(15)

Following the same procedure as in the previous
qLPV model design, nonlinear system Eq. (9) is
written in the qLPV form Eq. (2) as:

ẋ =

8∑
i=1

ρi(ζ)(Aix + Biu) + a

y = Cx

(16)

with

A1 = A3 =

 −3.067 2.092 0
4.184 −4.184 0

0 0 −1.014

 ,
A2 = A4 =

 −3.067 2.092 0
4.184 −4.184 0

0 0 −1.038

 ,
A5 = A7 =

 −3.081 2.092 0
4.184 −4.184 0

0 0 −1.014

 ,
A6 = A8 =

 −3.081 2.092 0
4.184 −4.184 0

0 0 −1.038

 ,

B1 = B2 = B5 = B6 =

 0
−0.265

0

 ,

B3 = B4 = B7 = B8 =

 0
−0.537

0

 ,

a =


F
V T f

0
F
V C f

 , C =

[
1 0 0
0 1 0

]
.

1.4 FTC strategy for the CSTR system

Our interest is to design and validate in simulation the
fesibility of a Fault Tolerant Control (FTC) algorithm
for a CSTR system using the qLPV representation
of the process. In order to achieve this goal a Fault
Accommodation (FA) scheme is proposed. In Fig.
2 general FA structure for both CSTR systems is
depicted. Notice here that the scheme is composed of
two main blocks; i) the CSTR system, and ii) the active
fault tolerant control system constructed by the fault
detection, estimation and accommodation subsystems.

When the CSTR is in fault-free case only the
nominal controller is applied. Once the actuator fault
occurs, the Fault Estimation (FE) signal generated by
a qLPV Proportional-Integral Observer (PIO) is used
to detect and accommodate the actuator fault. The
actuator fault is detected when the FE signal has a
greater value than a predefined threshold.

yf

Fig. 2. Fault tolerant control scheme applied to the CSTR system.
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Note that with this FTC structure the fault
detection is achieved using only the fault
estimation signal without generating a residual
signal (Aaouaouda and Chadli, 2019). The fault
accommodation control law is computed by
comparing the nominal reference model and the faulty
estimation system.

The error between both states is used in the
controller in order to generate a new control law to
reduce the effect caused by the actuator fault and to
keep the stability of the CSTR system (see Fig. 2). It
is important to note that the controller requires all the
state vector of the CSTR to generate the control law.
It means that it is necessary to estimate the product
concentration CS to compute the fault tolerant control
law u f .

1.4.1 Design of the FTC strategy for the CSTR
system

The control objective of the proposed FTC system is to
follow the desired trajectory generated by the nominal
reference model xn with a nominal input u, even when
an actuator fault is presented in the CSTR system,
accepting performance degradation in the process. The
nominal reference model is expressed as:

ẋn =

m∑
i=1

ρi(ζ)(Aixn + Biu) + a,

yn =

m∑
i=1

ρi(ζ)(Cixn).

(17)

An actuator fault can be modelled as an additive
or a multiplicative external signal. For instance,
multiplicative actuator fault affecting the control input
can be represented by the following equation:

u f = (1− θ)u, (18)

where θ is the actuator Loss of Effective (LoE) with
f = θu, and the value of θ indicates:

θ = 1 ⇒ a total actuator fault,
θ = 0 ⇒ the actuator is healthy,
θ =]0,1[ ⇒ LoE of the actuator.

In this paper, it is considered only the case of an
actuator LoE presented in the CSTR system.

Now, Eq. (18) can be rewritten as an external
additive fault signal as follows:

u f = − f + u. (19)

By using Eq. (19), the faulty system can be written
in the following form:

ẋ f =

m∑
i=1

ρi(ζ f )(Aix f + Bi(u f + f )) + a,

y f =

m∑
i=1

ρi(ζ f )(Cix f ),

(20)

where x f ,y f and u f are the faulty state vector, the
faulty measured vector and the fault tolerant control
input signal, respectively. The faulty scheduling
function vector is represented by ρi(ζ f ) and it depends
on the faulty scheduling variable ζ f . The actuator fault
signal is expressed by f . The presence of an actuator
fault can changes abruptly the CSTR system structure
and it can generate instability in the process. It means
that FTC design is necessary to ensure the stability of
the process.

The faulty controlled state vector x f is affected
because of the presence of the actuator fault f . As
a consequence, the faulty states may differ from the
nominal reference trajectory. In order to reduce this
difference, the control input of the CSTR process has
to be modified, and the resulting fault tolerant control
input u f is rewritten as follows:

u f = − f̂ + K(xn − x̂ f ) + u (21)

where the controller gain is represented by K. The
accommodation control law Eq. (21) is composed
of three terms: i) the actuator fault estimation f̂ , ii)
the difference between the nominal reference model
and the faulty estimation system xn − x̂ f , and iii) the
nominal control input u. The faulty state estimation
and the actuator fault estimation is provided using a
qLPV PIO, with the following structure:

˙̂x f =

m∑
i=1

ρi(ζ f )
(
Ai x̂ f + Bi(u f + f̂ ) + H1i(y f − ŷ f )

)
+ a,

˙̂f =

m∑
i=1

ρi(ζ f )
(
H2i(y f − ŷ f )

)
, (22)

ŷ f =

m∑
i=1

ρi(ζ f )(Ci x̂ f ),

where the observer gains are represented by H1i
and H2i. Note that the qLPV observer provide
the estimation of the state vector, including the
product concentration CS , that it is considered as an
immeasurable variable in the process. The estimated
state vector will be used to generate the control law,
using the term K(xn − x̂ f ).
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Thus, the overall scheme of the proposed FTC
system, depicted in the Fig. 2, is based on the
application of the control law Eq. (21) and the
estimation variables using the qLPV PIO Eq. (22),
such that the controller system state x f is as close
to the nominal model reference state xn as possible.
Consequently, the objective is to find the appropriate
controller gain K and observer gains H1i and H2i, that
minimize the trajectory tracking error and the state and
fault estimation error, respectively, in order to ensure
the stability of the CSTR process when an actuator
fault is presented in the system.

Let consider the tracking error e, the state
estimation error ex and the fault estimation error e f ,
respectively, defined by:

e =xn − x f ,

ex =x f − x̂ f ,

e f = f − f̂ .

(23)

Then, from Equations (17)-(22) the dynamics of
the errors (22) are represented by:

˙̃e =

[
Ai − BiK −L̃i

0 Ãi −HiC̃i

]
ẽ + Ξ̃δ, (24)

with

δ =

m∑
i=1

(ρi(ζ)− ρi(ζ f ))(Aix + Biu),

ẽ =

 e
ex
e f

 , Ξ̃ =

 I
0
0

 ,
Hi =

[
H1i
H2i

]
, L̃i =

[
BiK Bi

]
,

Ãi =

[
Ai Bi
0 0

]
, C̃i =

[
Ci 0

]
.

The following result gives a sufficient LMI
condition to guarantee the global asymptotic
convergence of ẽ to zero in order to compute the
controller gain K and the observer gains H1i and H2i.

Theorem 1. (Ichalal et al., 2012) The error system
Eq. (24) that generates the state tracking error e and the
state and fault estimation errors ex and e f , respectively,
is stable and the L2-gain of the transfer from δ to e is
bounded if there exists a positive scalar λ, symmetric
and positive definite matrices X1,X2, P2, matrices

H̄, K̄ and a positive scalar γ̄ solution to the following
optimization problem:

min
X1,X2,P2,H̄,K̄

γ̄, (25)

subject to

Γii < 0,
1

m− 1
Γii +Γi j +Γ ji < 0,

(26)

where i < j, i = 1,2, . . . ,m and j = 1,2, . . . ,m, with

Γi j =


Ψi −BiM 0 I X1

−M>B>i −2λX λI 0 0
0 λI ∆i j 0 0
I 0 0 −γ̄I 0

X>1 0 0 0 −I

 < 0,

Ψi = He{AiX1 − BiK̄},

∆i j = He{P2Ãi − H̄iC̃i j},

M =
[

K̄ X2
]
,

X =

[
X1 0
0 X2

]
,

where He{AiX1 − BiK̄} = (AiX1 − BiK̄) + (AiX1 −

BiK̄)>, equivalent for He{P2Ãi−H̄iC̃i j}. I is an identity
matrix with proper dimension. Then, the controller and
observer gains are computed by:

Hi =

[
H1i
H2i

]
= P−1

2 H̄i,

K = K̄X−1
1 ,

(27)

and the L2-gain from δ to the tracking error e is
obtained by

γ̄ =
√
γ. (28)

1.4.2 Fault detection system

The actuator additive fault estimation signal f is used
to detect the actuator fault at any time, as follows:

| f̂ | ≥ α ⇒ in faulty case (Alarm = 1),

| f̂ | < α ⇒ in fault-free case (Alarm = 0),
(29)

where α is a constant threshold, chosen according to
experimental results. In fault-free case the estimated
value | f̂ | is close to zero, while in faulty case the
estimated value has a greater value than the threshold,
for indicating a fault occurrence. If the fault estimation
value is greater than the threshold then it is considered
a faulty case and the alarm indicator is one.
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2 Results and discussion

In order to validate the proposed concentration
estimation and the FTC strategy, four scenarios were
considered: i) a CSTR nonlinear model validation is
presented, ii) a comparison between the nonlinear,
linear and the qLPV representation is performed, iii)
a nominal scenario in order to validate the product
concentration estimation is given, and finally iv) an
actuator fault is injected in the process and the
performance is evaluated by comparing the CSTR
system without and with the FTC system. It is
important to note that the FTC strategy is applied in
simulation to the validated nonlinear CSTR system.

The parameters of the CSTR systems (second
and third-order CSTR) used in the simulation are
introduced in Table 2. Initial conditions considered for
the three representations (nonlinear, linear and qLPV)
are given in Table 3, and the initial conditions for each
qLPV PIO are presented in Table 4.

Controller and observer gains for Eq. (21) and Eq.
(22) are obtained by solving the LMI of the Theorem
1 using the Yalmip Toolbox (Lofberg et al., 2004), and
results in the following matrices for the second-order
CSTR system:

K =
[

0.495 6.585
]
, γ = 1.334,

H1 =

 0.095
−0.101
0.160

 ,H2 =

 0.683
0.016
0.632

 ,
and the gains for the third-order CSTR system are:

K =
[
−4.608 −3.505 −0.001

]
, γ = 0.960,

H1,H2,H5,H6 =


−1.691 5.024
1.004 −2.689
0.001 −0.001
1.488 −0.767

 ,

H3,H4,H7,H8 =


−1.656 5.046
1.023 −2.584
0.001 −0.001
1.465 −0.922

 .

2.1 CSTR nonlinear model validation

A comparison between CSTR process data and the
nonlinear model (6) is presented in order to validate
the CSTR mathematical model. The CSTR process

data are obtained from Seborg et al., (2010). The
mathematical equations are solved in MATLAB using
Euler method over a 10 min horizon and a fixed step
time of 0.001 sec. The experiment consists in a step
change in the coolant temperature T j in positive and
negative directions. Table 2 shows the parameters for
the CSTR system.

Table 3. Nonlinear, linear and qLPV CSTR initial
conditions.

Second-order CSTR
Variable Parameter Value Unit
x1(0) CS (0) 0.988 mol/L
x2(0) T (0) 296.6 K
u(0) T j(0) 292 K

T f 350 K
C f 1 mol/L

Third-order CSTR
x1(0) T (0) 300 K
x2(0) T j(0) 298 K
x3(0) CS (0) 0.7 mol/L
u(0) F j(0) 15 L/min

T f 303 K
C f 1 mol/L

Table 4. qLPV PIO initial conditions.
Second-order CSTR

Variable Parameter Value Unit
x̂ f1 (0) ĈS (0) 0.5 mol/L
x̂ f2 (0) T̂ (0) 300 K

f̂ (0) 1 K
Third-order CSTR

x̂ f1 (0) T̂ (0) 296.15 K
x̂ f2 (0) T̂ j(0) 290 K
x̂ f3 (0) ĈS (0) 1.2 mol/L

f̂ (0) 1 L/min

Table 5. Performance indexes between process data
and nonlinear model simulation.

Quality indicator IAE

Error Input step change
T j = 290 K T j = 305 K

CS −CS p 0.0039 0.2026
T −Tp 0.2760 0.3710

[1] IAE: Integral of Absolute Error, CS p: Reactor
concentration from process data, Tp: Reactor
temperature from process data.
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(a)

(b)

Fig. 3. Comparison between process data
and nonlinear model simulation: (a) Reactor
concentration, (b) Reactor temperature.

The results of the CSTR nonlinear model
validation are depicted in Table 5 and Fig. 3. In Table
5 the performance of the CSTR nonlinear system
is presented by using the Integral of Absolute Error
(IAE) between the process data and the nonlinear
model simulation. Fig. 3 shows the rector temperature
and concentration as a function of time. Also,
Fig. 3 depicts an oscillatory response due a jacket
temperature of 305 K. By analyzing these results,
it can be concluded that the mathematical model
presented in this paper can be used to design an
effective FTC strategy for CSTR systems.

2.2 Comparison between nonlinear, linear
and qLPV model of the CSTR system

In this subsection a comparison between the nonlinear,
linear and qLPV representation of the CSTR systems
is presented in order to validate the qLPV approach

to be applied in the design of the FTC system. For
comparison propose we select the first linear model of
the qLPV representation which is only one operation
point of the CSTR process. In Fig. 4 and Fig. 5 a
states comparison between the nonlinear, linear and
the qLPV model for the second and third-order CSTR
are displayed, respectively.

It is clear that the qLPV representation matches
the nonlinear behavior correctly. Also, these figures
illustrates that the linear model has bigger differences
respect to the nonlinear model and the qLPV approach
presents better performance to represent the nonlinear
system compared to the linear one. We conclude that
the qLPV system is an effective alternative for the
representation of the nonlinear dynamics of the CSTR
systems and it can be used for the design of the
proposed FTC strategy.
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1
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0 10 20 30 40 50 60 70 80 90 100
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290

300

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

1.5

(b)

(c)

(a)

Fig. 4. (a) State comparison between nonlinear, linear
and qLPV second-order CSTR, (b) Control input for
nonlinear, linear and qLPV second-order CSTR, and
(c) Gain scheduling functions for the qLPV model.
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Fig. 5. (a) State comparison between nonlinear, linear
and qLPV third-order CSTR, (b) Control input for
nonlinear, linear and qLPV third-order CSTR, and (c)
Gain scheduling functions for the qLPV model.

Additionally, in Fig. 4(b) and Fig. 5(b) the control
input of each CSTR system are presented. Fig. 4(c)
and Fig. 5(c) show the scheduling functions which
represent the soft interpolation between the models
in order to reproduce the nonlinear behavior of each
CSTR system.

2.3 Concentration estimation for the CSTR
system

In this scenario the CSTR process is considered in
fault-free case and only the product concentration
estimation is analyzed. The initial conditions for the
qLPV observers are given in Table 4.

0 2 4 6 8 10 12 14 16 18 20

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20

290

295

300

Fig. 6. Product concentration estimation and control
input for the second-order CSTR system.
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Fig. 7. Product concentration estimation and control
input for the third-order CSTR system.

The concentration estimation for the second and
third-order CSTR systems are presented in Fig. 6 and
Fig. 7, respectively. For both systems, the observer
product concentration converges fast to the real one
and with small errors. Thus, the qLPV observer Eq.
(22) is used, not only for state estimation but also for
fault estimation. The nominal control input is depicted
on the bottom part of Fig. 6 and Fig. 7.

2.4 FTC for the CSTR system

In this scenario an actuator fault f is injected to the
second-order CSTR system as follows:

f =


0, t < 100,
2 + sin (t/30), 100 ≤ t ≤ 300,
5, 300 < t,

(30)
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and for the third-order CSTR system:

f =


0, t < 100,
5 + sin (t/30), 100 ≤ t ≤ 300,
15, 300 < t.

(31)

From Fig. 8(a) and Fig. 9(a) a comparison between
the model reference and the faulty CSTR system with
and without the fault tolerant controller using the
fault estimation generated by qLPV PIO is displayed.
Notice from these figures that the error between the
model reference and the states is bigger when the FTC
is not applied.
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Fig. 8. (a) Comparison between the faulty second-
order CSTR system with and without FTC strategy, (b)
Additive fault estimation, alarm indicator and control
input.

In addition, as seen in Fig. 8(a), the second-order
CSTR system become unstable at 300 min, due to the
presence of the actuator fault, when the proposed FTC
is not applied.

In the top part of Fig. 8(b) and Fig. 9(b) the
estimated additive fault and the fault detection used for
generating the FA control law Eq. (21) are introduced.
Observe here that shortly after the fault is injected,
the magnitude estimation reasonably approximates the
true fault magnitude.

Before the occurrence of an actuator fault, the
additive fault estimation signal remain bellow the
threshold, when the fault occurs, fault estimation value
exceeds its threshold, indicating the occurrence of an
actuator fault.
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Fig. 9. (a) Comparison between the faulty third-order
CSTR system with and without FTC strategy, (b)
Additive fault estimation, alarm indicator and control
input.
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The bottom part of Fig. 8(b) and Fig. 9(b) depict
the nominal control u and the FTC u f . Even if an
actuator fault occurs, the CSTR system trajectory
follows the reference model, which represents the
trajectory of the system in the fault-free situation.
Thus, the FTC control law compensates the fault and
allows normal performance of the CSTR systems in
the presence of faults.

Conclusions

A product concentration estimation and an actuator
fault tolerant control based on fault estimation for
CSTR process were proposed in this paper. The CSTR
nonlinear model is validated by comparing it with
CSTR process data. Product concentration estimation
strategy were simulated using a model-based observer
for a second and third-order CSTR process. Then,
a comparison between nonlinear, linear and qLPV
CSTR system have been presented. The results
demonstrate that the qLPV representation reproduce
the nonlinear behavior of each CSTR systems. A
qLPV PIO was used into the CSTR systems in order
to simultaneously estimate the state variables and the
actuator fault. Then, a fault accommodation control
law was introduced using the state and fault estimation
to track a reference trajectory given by a fault-free
reference model. Furthermore, the qLPV PIO and the
tracking error system was analyzed for ensure the
stability of the scheme. Finally, simulation results have
corroborated the effectiveness of the proposed FTC
strategy.
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