
Vol. 20, No. 1 (2021) 161-171
Revista Mexicana de Ingeniería Química 

 
CONTENIDO 

 
Volumen 8, número 3, 2009 / Volume 8, number 3, 2009 
 

 

213 Derivation and application of the Stefan-Maxwell equations 

 (Desarrollo y aplicación de las ecuaciones de Stefan-Maxwell) 

 Stephen Whitaker 

 

Biotecnología / Biotechnology 

245 Modelado de la biodegradación en biorreactores de lodos de hidrocarburos totales del petróleo 

intemperizados en suelos y sedimentos 

 (Biodegradation modeling of sludge bioreactors of total petroleum hydrocarbons weathering in soil 

and sediments) 

S.A. Medina-Moreno, S. Huerta-Ochoa, C.A. Lucho-Constantino, L. Aguilera-Vázquez, A. Jiménez-

González y M. Gutiérrez-Rojas 

259 Crecimiento, sobrevivencia y adaptación de Bifidobacterium infantis a condiciones ácidas 

 (Growth, survival and adaptation of Bifidobacterium infantis to acidic conditions) 

L. Mayorga-Reyes, P. Bustamante-Camilo, A. Gutiérrez-Nava, E. Barranco-Florido y A. Azaola-

Espinosa 

265 Statistical approach to optimization of ethanol fermentation by Saccharomyces cerevisiae in the 

presence of Valfor® zeolite NaA 

 (Optimización estadística de la fermentación etanólica de Saccharomyces cerevisiae en presencia de 

zeolita Valfor® zeolite NaA) 

G. Inei-Shizukawa, H. A. Velasco-Bedrán, G. F. Gutiérrez-López and H. Hernández-Sánchez 

 

Ingeniería de procesos / Process engineering 

271 Localización de una planta industrial: Revisión crítica y adecuación de los criterios empleados en 

esta decisión 

 (Plant site selection: Critical review and adequation criteria used in this decision) 

J.R. Medina, R.L. Romero y G.A. Pérez 

 

 

 

 

Using artificial neural networks in prediction of the drying process of foods that are rich
in sugars

Uso de redes neuronales artificiales para predecir el proceso de secado por aspersión de
alimentos ricos en azúcares

E. Figueroa-Garcia1,2, V.S. Farias-Cervantes2, M. Segura-Castruita2, I. Andrade-Gonzalez2, M.I. Montero-Cortés2,
A.M. Chávez-Rodríguez2*

1Tecnologico Nacional de México/Instituto Tecnológico José Mario Molina Pasquel y Enríquez domicilio, Campus Cocula,
Calle Tecnológico No. 1000, Col. Lomas de Cocula, C.P. 48500, Cocula, Jalisco, México.

2Tecnologico Nacional de México/Instituto Tecnológico de Tlajomulco. Km 10 Carr. San Miguel Cuyutlán, Tlajomulco de
Zúñiga, Jalisco, C.P. 45640, México.

Received: March 28, 2020; Accepted: July 31, 2020

Abstract
The production of sugar-rich foods powder (SRF) has great economic potential, however, SRF introduced in the spray drying
process (SDP) presents adhesion problems in the dryer that cause low yields due to its low temperature of glass transition (Tg), the
means of transport like maltodextrin (Mdx) are used to increase your Tg, but there is not an exact dose for all SRF; this because
the SRF are very variable in their Tg due to the composition of their sugars; however, models have been developed to predict the
amount of Mdx only for some SRF. Artificial neural networks (ANN) are efficient empirical methods for prediction, especially
for nonlinear systems. Therefore, the objective of this work was to develop a mathematical model using ANN backpropagation
to predict SDP of SRF and avoid adhesion problems, 6 input variables Mdx, fructose (F), glucose (G), sucrose (S), temperature
(T), Organic acids (OA) and 6 outlets, humidity (H), Tg, degrees Brix (°BX), hygroscopicity (HI), water activity (WA) and Yield
(R). The predictive model of the sugar-rich food system (PMSSRF) consists of 4 layers 10-16-14-10 neurons, respectively, were
compared with experimental data using orthogonal regression and shows that PMSSRF predicts SRF SDP, particularly predicts
the required concentration of Mdx and powder quality for SRF.
Keywords: Spray drying, artificial neural networks (ANN), maltodextrin (Mdx), sugar-rich foods (SRF).

Resumen
La producción de polvo alimenticio rico en azúcar (SRF) tiene un gran potencial económico, sin embargo, el SRF introducido en
el proceso de secado por aspersión (SDP) presenta problemas de adhesión en el secador que causan bajos rendimientos debido
a su baja temperatura de transición vítrea (Tg), los medios de transporte como la maltodextrina (Mdx) se usan para aumentar su
Tg, pero no existe una dosis exacta para todos los SRF; esto porque los SRF son muy variables en su Tg debido a la composición
de sus azúcares; sin embargo, se han desarrollado modelos para predecir la cantidad de Mdx solo para algunos SRF. Las redes
neuronales artificiales (ANN) son métodos empíricos eficientes para la predicción, especialmente para sistemas no lineales. Por
lo tanto, el objetivo de este trabajo fue desarrollar un modelo matemático utilizando la propagación inversa ANN para predecir
SDP de SRF y evitar problemas de adhesión, se tomaron 6 variables de entrada Mdx, fructosa (F), glucosa (G), sacarosa (S),
temperatura (T) , Se tomaron ácidos orgánicos (OA) y 6 de salidas humedad (H), Tg, grados Brix (°BX), higroscopicidad (HI),
actividad de agua (WA) y Rendimiento (R). El modelo predictivo del sistema alimentario rico en azúcar (PMSSRF) consta de
4 capas 10-16-14-10 neuronas respectivamente, se comparó con datos experimentales mediante regresión ortogonal y muestra
que PMSSRF predice el SDP de los SRF, particularmente predice la concentración requerida de Mdx y calidad de polvo para los
SRF.
Palabras clave: Secado por aspersión, redes neuronales artificiales (ANN), maltodextrina (Mdx), alimentos ricos en azúcar (SRF).
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1 Introduction

The production of dehydrated powder starting from
SRF for example, fruit juices and mashes, has great
economic potential due to low-cost storage and
transportation. The preferred technique to obtain the
powder of SRF is spray drying, this according to the
low time of process and temperatures (> 100 °C) to
which is the product is processed (Robaina et al.,
2019; Ho et al., 2019). However, the thermoplastic and
hygroscopic properties from SRF bring issues during
the drying process. These types of foods are composed
of high sugar contents (over 90%) such as S, G, F,
and OA, that are known by presenting low molecular
weight and Tg oscillates between 5 and 62 °C, which
causes that solidly adhere to drying walls (Ho et al.,
2019; Chong et al., 2019). The Tg has been recognized
as a fundamental parameter to explain the adherence of
amorphous and semi-crystalline foods, particularly in
the case of carbohydrates due to their low molecular
weight. On the other hand, the stickiness problem is
not shown when there are carrier agents, these agents
are derived from starch and hydrolyze smoothly in
spray drying, like maltodextrin. This type of product
facilitates the spray drying process of the SRF and is
one of the most used in this process (Bhandari et al.,
1997, 1999; Kaderides et al., 2019; Ho et al., 2019;
Pandey et al., 2019). Many studies have shown that
the use of Mdx during the powder production of SRF,
through spray drying, increases drying performance
about 10 and 30% and reduces the content of humidity
(Zhang et al., 2019); however, it was not specified,
the amount of Mdx for all SRF (Adhikari et al.,
2003). Bhandari et al. (1997), developed a linear semi-
empirical model to predict the amount of Mdx (6
dextrose), necessary for spray drying a product rich
in sugar based on its composition, they determined the
values of the individual drying index of S, G, F, and
OA; therefore, the model they obtained was linear. On
the other hand, this method requires a considerable
amount of testing and the interactive effects between
the parameters were not studied and their responses
are not fully described (Lisboa et al., 2018). In
this sense, there are different alternatives to solve
the aforementioned, such as multivariate statistical
techniques (response surfaces, factorial designs) that
are used to optimize the process based on two or
more variables (Barabadi et al., 2019) and artificial
neural network (ANN) is another alternative (Barroso-
Maldonado et al., 2018; Kumar et al., 2018; Przybył

et al., 2018; Yingngam et al., 2018; Ghosh et al.,
2019; Brusamarello et al., 2020). The ANN are
mathematical models that allow model the drying
processes and that achieve better results than other
techniques (Aliakbarian et al., 2018; Rahmawati et
al., 2019). However, these current models are only
applicable to fruit juices in specific that went through
experimentation; in other words, it does not specify a
range of concentration for each type of SRF. In this
context, it is probable that the ANN modeling inverse
propagation allows predicting optimum values of a
powder product such as the R, WA, H, °BX, HI and
Tg in the function of the type and sugar concentrations
as well as different amounts of Mdx. As previously
mentioned, the objective of this work was to develop a
mathematical model through ANN backpropagation to
predict the spray drying process for all SRF, this model
allows to predict the necessary encapsulation ratio
(Mdx) for the product have no adhesion problems, just
knowing types and concentrations of sugars, it is also
able to predict dry product specifications like R, WA,
H, °BX, HI and Tg for a pilot-scale spray drying.

2 Materials and methods

2.1 Materials and sample preparation

The system sugar-rich food (SSRF) is generated by
food-grade sugars F, G and S from the ADM, Innidigo
and ZUCARMEX brands, mixed in 4 proportions:
0, 33, 66 and 100%, concerning one liter of water,
citric acid (CA) obtained from the drug store “La
Paz”, in Guadalajara, Jalisco, Mexico, was used as
an equivalent of the OA and was added to the
mixture of sugars in 0 and 1%, with respect to
the same proportion that the sugars, the mixture
were homogenized through stirring with which was
simulated the composition of the fruit juice from 11-
15 °BX (Horuz et al., 2012; Sornsomboonsuk et al.,
2019), then the ºBX were measured with a digital
meter (ATAGO®, model POKET Refractometer PAL-
3). After stirring, it was added Mdx (Globe) with the
equivalent of 10 dextrose and humidity of 4.17% in
proportions of 5, 10 and 15%, then again, the mixes
were submitted to shaking for 15 min., after that time,
the different combinations of the SSRF with Mdx was
ready to be submitted to dry (De Souza Lima and
Arlabosse, 2020).
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The experimental design was completely random,
taking into account that there were three types of
sugar (F, G, and S) that were mixed in four different
proportions, to which two separate amounts of OA
were added, two temperature entry conditions in the
process spray drying. Finally, three different amounts
of Mdx, giving 84 treatments with four replicates,
making a total of 336 experimental units of SSRF.

2.2 Spray drying of the sample

The drying process was developed in a pilot-scale
spray dryer (NIRO-Production mirror®, Germany).
The drying operating conditions were inlet air
temperature (T) 180 and 190 ºC and outlet temperature
of 80 ºC; 150 ml min-1 feed flow and 26,350 RPM
spray rate. Drying was fed with each separate
experiment. Once the powder was generated for each
SSRF, it was stored in a plastic bag in a glass container
away from light for further observation. It is important
to mention that the initial weight of the SSRF was
recorded before the drying process, as the weight of
the dehydrated SSRF until the end of the process, in
order to calculate the drying performance by equation
(1), the result that was considered as a study variable.

R =
PF
PI
× 100 (1)

where R is the yield of drying expressed in percentage
(%); PI is the initial weight of the fructose mix,
glucose, saccharose, citric acid, and maltodextrin, or
SSRF in grams (g), and PF is the final weight of SSRF
in g.

2.3 Physiochemical properties

After that, the SSRF powders were determined by the
following characteristics or variables of the study, H,
WA, HI, and Tg, as it is mentioned below: The H was
obtained with the method proposed by the AOAC.,
(1990), that is about calculating the sample; to which
was utilized a balance of humidity (PRECISA®,
model HA 300-310, Swiss) to register the initial
and final weight (after the calculation), while the
calcinate was made in a muffle (TERLAB). The WA
was registered with a digital meter (AGUALAB®,
model LEER, EE. UU.). The values obtained from
the activity may vary from 0 to 1. To get the
HI has used the method of Cai and Corke. (2000)
and was estimated this index by equation (2). The
hygroscopicity index is expressed in g of water
absorbed by every 100 g of dry matter:

HI =
(PV + PMF)− (PV + PMI)

24
(2)

where HI is the hygroscopicity index in g; PV is the
glass weight in g; PMF is the final sample weight in g
and PMI is the initial sample weight in g.

The Tg was calculated by equation (3) of Fox,
according to Gutierrez et al. (2004).

Tg =
1(

W1
Tg1

)
+

(
W2
Tg2

)
+

(
Wn
Tgn

) (3)

where Tg1 belongs to the proportion 1, Tg2 belongs to
the proportion 2 and Tgn belongs to the proportion n,
respectively. This expression assumes that the specific
volumes of the components of a binary dissolution are
approximate equals. Separately, was made a database
with the results of the variables of study of the SSRF,
that were mentioned previously.

2.4 Generation of the model artificial
neuronal networks

The ANN model that was developed to simulate the
behavior of the experimental data was one of the
types of backpropagation, which was developed in the
MATLAB mathematical software (Matlab-R2017a,
2017). The network was fed with the experimental data
matrix, which was generated in the spray drying of
the experimental units. The patterns used in modeling
during training were 60 patterns, this matrix was
reduced from the initial one that consisted of 84
patterns due to the decision not to take the patterns
in which R results as 0; each pattern was obtained
from the average of each treatment with its respective
replicates. Each pattern had 12 variables, six inputs,
and six outputs. The input or input variables were X1-
T, X2-F, X3-G, X4-S, X5-OA, and X6-Mdx; while
the outputs were Y1-R, Y2-H, Y3-WA, Y4-HI, Y5-
Tg, and Y6-°BX were the output ones. The main
characteristic of ANN of the backpropagation (it has
two different stages: one, on the network training
(search of the expected output) and the other, of
the application of the trained network to any input
and obtaining the respective output) with the limit
of one thousand interaction, log-sigmoid transference
function and tangential. The training consisted of three
stages: (1) advance of the input training pattern, (2)
calculus and propagation backward of the associated
error, and (3) adjustment of the weights.
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2.4.1 Optimization with ANN

The learning optimization process consists of two
steps:
Step 1.- To find the neuronal network that with the
output data such as the input ones allow to have the
objective values, Inverse Network.
Step 2.-To find the neuronal network that with the
input data allow us to obtain the objective values.
Once the trained network is obtained the input data
are applied optimized to get the optimized objective
values (Cevallos. 2004).

The neuronal network is trained with six input
values X1, X2, X3, X4, X5 and X6 and six output
values Y1, Y2, Y3, Y4, Y5 and Y6. Once the network
is trained, the optimized values are applied X1, X2,
X3, X4, and Y1 as input variables, the network is
simulated and it gives us Y2, Y3, Y4, Y5, Y6 and X6
as output values, that are optimized results. The output
of the neuronal network that belongs to the input
patterns was compared to the objective values and the
weights were adjusted to reduce the sum of the squared
errors (Chokphoemphun and Chokphoemphun, 2018;
Alkronz et al., 2019). This procedure gave as result a
prediction model of the simulation of sugar-rich foods
(PMSSRF).

The adjustment of the ANN parameters included
the number of layers and hiding neurons, the type
of function of transference, the learning speed, the
momentum, and number of patterns. The log-sigmoid
transference function and tangential were used to train
and activate the neurons.

2.5 Statistical Analysis

A variance analysis (P< 0.05) from the experimental
results of the variables of study from the SSRF was
made to establish the differences between treatments
and interactions between variables that affect the
process spray drying of the SRF. Likewise, there were
performed linear regressions to compare the results
between the output variables from the PMSSRF and
the experimental of the SSRF, where the determination
coefficient (R2), the value of Fc (P< 0.05) of the
interdependent variables and the inflation factor of
the variance (IFV) obtained from the variance of
the regressions (Cuadras 2004) were implemented for
such comparison. On the other hand, the performance
of these models was obtained through statistical
indexes, such as root mean square deviation (RMSE)
and the mean bias error (MBE), by equations 4 and 5
(Douglas et al., 2009):

RMS E =

√√(
1
n

) n∑
i=1

(Xei − Xpi)2 (4)

where the RMSE is the square root of the average
error; is the number of the tests, Xei is the
experimental result of the SSRF and Xpi is the output
result of the PMSSRF model.

MBE =

(
1
n

) n∑
i=1

(Xei − Xpi) (5)

where MBE is the average bias error; The rest of the
symbols indicates the same that the equation (4).

The RMSE is a performance indicator of a
model in a certain period and the value is always
positive; while the MBE gives information of the
long-term behavior of the correlations, which allows
a comparison of the real deviation between forecasted
and measured values, end to end (Gunhan et al., 2005)
in both cases, the cero is ideal (Segura-Castruita and
Ortiz Solorio, 2017).

On the other hand, an orthogonal regression was
performed with the objective of establishing if the
results that the PMSSRF were equivalents or predicted
the results that were obtained experimentally from the
SSRF. In this case, the values of the model PMSSRF
were considered as the independent variable and the
experimental results from the SSRF study as an
independent variable. The parameters of the regression
were helpful to determine what was mentioned above
since the conditions to follow are the following: The
confidence interval (CI) of the slope must contain
the number 1 and the CI from the intersection must
contain the 0, considering the CI at a 95% in both cases
and assuming that the dependent and independent
variables have the same variance (Segura-Castruita
and Ortiz-Solorio, 2017). The data processing was
made in the Minitab Software 17 (2017).

3 Results and discussion

3.1 Performance

An analysis was carried out to determine the influence
of the study variables about the variable R to find
which the main influencing variables and their optimal
conditions are to obtain a higher yield from the SSRF
process spray drying.

The best treatment was the one with the highest
yield and it was the experiment with T-180 ° C with
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15% -Mdx 0% -F, 0% -G, 100% -S, 1% -OA with
which a 93.44% R. The input variables that influence
R, are Mdx (P> 0.000), F, (P> 0.001) and S (P>

0.0014), the Mdx variable shows an increase in R,
proportional to the amount of Mdx added. However, it
mentions that you must add a certain amount of Mdx
to prevent excessive amounts of Mdx from adhering to
the product (Villalobos-Castillejos et al., 2018; Yinbin
et al., 2018; Kaderides and Goula, 2019; Kang et al.,
2019), all treatments above 10% by weight * volume-
1 (wv-1) of Mdx do not present drying problems in
any SSRF; With respect to F, when we have a higher
concentration in the SSRF, it presents problems of
adhesion to the drying walls, which causes a low or no
yield, this agrees with that established by Bhandari et
al. (1993), this is related to the low Tg and when there
is a concentration greater than 50% wv-1 F, it is not
possible to obtain powder unless you add more than
15% wv-1 of Mdx, being the only variable that can
be modified (Samborska, 2019), however, when the S
is presented in a higher concentration in the SSRF, a
better yield is obtained and it is the simplest sugar to
dry of the 3 that are addressed in this study because its
Tg is greater than those of the rest. When SRF have
low or no S concentrations, it may show low or no
yield (Singh et al., 2019), the amount of Mdx required
for a successful R depends on the composition of the
SRF (Robaina et al., 2019).

3.2 Physic and chemical Properties

Regarding WA, SSRF shows significant differences
(P> 0.05) in the input variables T (P> 0.000), F (P>

0.001) and G (P> 0.014), where the WA range is
(0.057-0.357), this range is acceptable for powdered
food products (Pereira et al., 2020); while the SSRF
dried at 190 ° C showed less WA since there was
a longer residence time within the drying time.
However, for H a significant difference was observed
in the input variables T (P> 0.001), Mdx (P> 0.23)
and G (P> 0.015), of which two of these variables
influenced the WA because they were related, since,
in the drying, the temperature influences the loss of
water, which shows low humidity and water activity,
the range obtained was (0.1660 to 0.2119) (Bandhari et
al., 1997; Chavez-Rodriguez et al., 2016; Limpiäinen
et al., 2018; Villegas-Santiago et al., 2020).

The Tg analysis (P> 0.05) showed significant
differences in the F variables (P> 0.000), S (P> 0.000)
and Mdx (P> 0.000). Likewise, when F increased its
concentration, the Tg from the SSRF diminish. On
the other hand, the S has an inverse behavior, being

this more favorable to avoid stickiness issues in the
spray drying process. However, the Mdx when the
greater is its concentration, the Tg increased to all
SSRF (Bonilla-Ahumada et al., 2018).

3.3 ANN prediction spray drying of SRF

The PMSSRF conditions that selected were 4 layers
of 10-16-14-10 respectively. As seen in figure (1). The
log-sigmoid and tangential transfer functions were the
best transfer functions based on the results of training
errors and cross-validation. These algorithms provide
a numerical solution to the problem of minimizing
a function nonlinear (Hermannseder et al., 2017).
Artificial neuron transfer functions make it difficult for
results to reach a very large magnitude that can disable
ANN and inhibit training which has a significant
influence on ANN learning and performance (Przybył
et al., 2018). Regarding neurons in the layers, few
hidden neurons reduce the ability of ANN to map the
input/output relationship.

Fig. 1. ANN PMSSRF diagram.

Fig. 2. ANN PMSSRF model validation.
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However, ANN with too many hidden neurons
are over-trained and the networks learn insignificant
details, therefore, they produce an overfit (Pradhan et
al., 2020), behavior similar to the behavior of the times
and I can increase or decrease the error (Castro et al.,
2018).

Figure 2 shows the validation against the number
of training periods for the selected network. This
figure shows that the error in training and cross-
validation had a descending form, the errors were

fed back to the neurons and were used to adjust the
weights so that the error is reduced by iteration and
the neural model gets closer and closer to produce
the desired output. Furthermore, it is clear from
this figure that the ANN model was successfully
trained, indicating that the selected ANN topology was
able to adequately establish the relationship between
input and output parameters (Janjai et al., 2018;
Brusamarello et al., 2020).

Fig. 3. Orthogonal regressions: a) relation between PMSSRF WA and the validation data (REAL) WA; b) relation
between PMSSRF R and REAL R; c) relation between PMSSRF HI and REAL HI; d) relation between PMSSRF H
and REAL H; e) relation between PSSRF °BX and REAL °BX; relation between PSSRF Tg and REAL Tg.
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Table 1. Predictive capacity of the PMSSRF.

PARAMETER R H WA HI Tg ºBX Mdx

MBE 0.0027 0.01 -0.025 -0.00065 1.1 -0.096 -0.008
RMSE 0.073 1.14 0.073 0.0089 25.25 3.85 0.154

R2 0.319 -0.09 0.169 0.022 0.619 -0.041 0.1

Fig. 4. Orthogonal regression regarding PMSSRF
%Mdx and REAL %Mdx.

The PMSSRF model was compared to SSRF in
order to measure its predictive capacity; every output
variable complies with the CI condition (95%), both
for the slop as for the intercept (figure 3 (a), (b), (c),
(d), (e), (f)); thus, there isn’t evidence that indicates
that predicted values from PMSSRF are similar to
SSRF; in such way that is deducted that there is no
evidence that the model calculates different data than
real.

On the other hand, the result of the inverted model
PMSSRF were reversed two variables, Mdx changed
input variable to output variable and R changed from
output variable to input variable, this to establish the
model PMSSRF reversed (V-PMSSRF), in order for
the model to calculate the percentage Mdx need to
obtain the expected performance. In such a way the
results of the reversed model once compared to SSRF
comply with the condition factors figure (4); thus,
it may be simulated the amount of Mdx to be used
establishing the sugar concentration from the SSRF
and the referential expected performance.

The MBE, in general, shows an ideal condition
(closer to 0), being the best for the output variable HI
(-0.00065), while the R had the greater error (Table 1).
The RMSE shows that this model calculates with low
error variables H, WA, HI, °BX, R, Mdx, while the
variable Tg has a greater error (25.25). Thus, the R2

was low due to the behavior of the model is not linear.
The result of R2 indicates the low linear relation

of the drying process from SRF. However, when

the orthogonal regression test was made the error
was considered in the dependent variables (data
from the proposed model) and independent (REAL),
when generally in the regression analysis it is
considered only the error in the independent variable
so that this procedure is recommendable (Lim and
Keles, 2018) where there could exist error in the
measurement of the dependent and independent
variables. This is evidence of the applicability of ANN
models to simulate complex and non-linear dynamic
systems such as the drying process. This indicates
that the developed PMSSRF model can accurately
track experimental data and can certainly replace
mathematically constitutive models for prediction of
exercise from the spray drying process, as it is trained
with experimental data and automatically improved
through learning. Furthermore, ANN models can
improve their performance by relearning new data
with or without new processing conditions (Janjai
et al., 2018). A properly trained PMSSRF ANN
model uses only one set of weights for all drying
conditions and is capable of simultaneously producing
all outputs. Unlike the empirical models that are
applicable to the prediction of data in the simulated
range, a trained ANN can estimate the behavior of
the process both inside and outside the simulated
range. Of course, the empirical models are physically
explainable, while the structure of the PMSSRF is
difficult to interpret (Kaveh et al., 2018).

Conclusions

In general, the percentage of Mdx needed for
a successful dry depends on the composition
of the product, drying temperature and expected
performance, and it is based mostly in the test
experience of trial and error and on the operator;
nevertheless with the proposed model it is intended not
to need the operators experience, but only knowing the
product’s composition and expected performance we
may calculate the amount of Mdx needed to dry and
obtain the whished physio-chemical properties. The
proposed model in the current study showed that the
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input variables T, Mdx, F, G, S and OA may be utilized
in ANN models to calculate the spray drying process.
Likewise, the Mdx influences the drying process,
in such way that when its concentration increases
the drying process becomes easy and it is the only
variable that may be modified in the process since
fruit juice has specific concentrations depending on
the fruit or its combination. On the other hand, the
orthogonal regression ended up being a statistical tool
useful in the model comparison through SSRF, such
as PMSSRF. Likewise, based on RMSE, MBE and
the orthogonal regression, the model to calculate the
spray drying process of SSRF is appropriate. The
results of this method are similar to the ones obtained
with Bhandari et al. (1997), Youssefi et al. (2009)
and Chaurasia et al. (2019), with the advantage of,
this model predicts all combinations that may form
the SRF in combination with Mdx and not only one
specific. So, the V-PMSSRF model that calculates
values of Mdx or R, H, AA, HI, Tg and °BX for each
SRF that is submitted to the spray drying.

Nomenclature

F Fructose
G Glucose
S Sucrose
OA Organic Acid
Mdx Maltodextrin
SRF Sugar-Rich Foods
SSRF Simulation of Sugar-Rich Foods
T Temperature
Tg Glass Transition Temperature
°BX Brix degrees
HI Hygroscopicity index
WA Water Activity
R Yield
ANN Artificial Neural Networks
PMSSRF Prediction Model of Simulation of

Sugar-Rich Foods
V-PMSSRF Reversed Prediction Model of

Simulation of Sugar-Rich Foods
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