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Abstract
The Thomas model is the most common equation to describe the dynamics of fixed-bed adsorption columns. However, its
parameters validity strongly depend on the breakthrough curve region considered for the data fitting. This work aimed to provide
a rigorous analysis of the linear and non-linear forms of the Thomas model based on different error functions. Data simulation
was carried out to determine the accuracy of both equations at different error magnitudes. The non-linear equation proved to be
more robust and less susceptible to experimental error, with less than 0.5% of deviation in qTh calculation. A complete statistical
analysis should be carried out to determine the fitting region if linear regression is preferred.
Keywords: fixed-bed column, Thomas model, linear regression, non-linear regression, adsorption.

Resumen
El modelo de Thomas es la ecuación más utilizada para describir la dinámica de las columnas de adsorción de lecho empacado.
Sin embargo, la validez de sus parámetros depende fuertemente de la región de la curva de ruptura considerada para el ajuste de
los datos. Se llevó a cabo un análisis riguroso basado en distintas funciones de error generando datos simulados para determinar
la efectividad de las formas lineal y no lineal de este modelo a diferentes magnitudes de error. La ecuación no lineal demostró ser
más efectiva, robusta y menos susceptible al error experimental, al mostrar menos de 0.5% de desviación en el cálculo de qTh en
todos los casos. En el caso que se prefiera la regresión lineal, debe realizarse un análisis estadístico completo para determinar la
zona de ajuste para los datos.
Palabras clave: columna empacada, modelo de Thomas, regresión lineal, regresión no lineal, adsorción.

1 Introduction

Continuous adsorption process carried out in a fixed-
bed column is desirable for industrial purposes since
it has proven to be cost-effective, easy to operate, and
feasible to be regenerated in-situ (Verduzco-Navarro
et al., 2020). This separation process performance
is evaluated through the plot of the dimensionless
concentration at the column exit versus time or
eluted volume. This plot is usually referred to as a
breakthrough curve, which provides readily available
information for the direct application of adsorption
columns to treat polluted streams (González-López et
al., 2020a).

In order to scale up the fixed-bed operation,
an accurate model has to be developed to reduce
time and costs often generated through the numerous
experiments required to determine critical design
parameters, such as rate constants or fixed-bed
adsorption capacity (Kumari et al., 2019). In this
sense, the dynamics are often represented by
conservation equations such as mass, energy, and
momentum balances described by partial differential
equations that result in a very complex model that
requires an extensive computation capacity to be
solved.
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For industrial applications, one of the primary
challenges is the application of mathematical models
and software rather than empirical correlations to
predict the concentration distribution along the fixed-
bed, which is essential in the design of separation units
(Gholami et al., 2016). However, it is impractical
to carry out this analysis. Instead, semi-empirical
correlations or less complicated mathematical
relationships (based on assumptions that simplify
mass transfer, energy, or momentum equations)
are employed, reducing computation time without
losing the accuracy in the analysis of experimental
data. Those correlations allow to predict the column
behavior at different conditions without carrying out
further experiments (Arcos-Casarrubias et al., 2018;
Yoshida et al., 2019).

One of the most widely reported models for
predicting breakthrough curves is the Thomas model
(Thomas, 1944). This model was developed from
the equation of mass conservation in a flow
system assuming plug flow, equilibrium described
by Langmuir isotherm, and second-order reversible
kinetics. Particularly, it neglects internal and external
diffusion effects. The non-linear equation for this
model is:

Ct

C0
=

1

1 + exp
((

kTh

Q

)
(qThm−C0Qt)

) (1)

where Q is the volumetric flow rate (mL/min), m is the
adsorbent mass (g), and C0 (mg/L) represents the inlet
concentration, whereas kTh (mL/min g) is the Thomas
rate constant and qTh (mg/g) represents the adsorption
capacity of the fixed bed.

With the advent of computing technology, non-
linear least-squares regression has drawn attention as
it has become less complicated to carry out. Moreover,
it has proven to be more robust and less sensitive to
experimental error (Das et al., 2015). In this method,
model parameters are first estimated and, through a
trial-error procedure, evolve towards the values that
minimize a given error function, i.e., the sum of
squares error, based on a selected algorithm (Tan and
Hameed, 2017).

An alternative to the non-linear regression method
is to linearize the model equation and determine its
feasibility to describe a set of experimental data.
The calculation of the model parameters becomes
associated with the slope and intercept of a straight
line (Rojas-Valencia et al., 2020). However, the linear
transformation strongly modifies error distribution and

alters the weight associated with each point, either
for the worse or the better (Tran et al., 2017).
Although linear regression is no longer recommended
for data modeling, many literature reports still select
this regression method, as discussed in the following
sections.

The linearized form of the Thomas model is
commonly expressed as follows:

ln
(
C0

Ct
− 1

)
=

kThqThm
Q

− kThC0t (2)

From this expression, both constants kTh and qTh

could be obtained from the linear plot of ln
(
C0

Ct
− 1

)
versus t from the slope and intercept, respectively.

Some papers have been published discussing the
use of the linearized form of equilibrium equations
and compared it to its non-linear counterpart, such as
isotherms (Nagy et al., 2017) and kinetic expressions
(Tan and Hameed, 2017). However, only a few reports
have considered the analysis of linear and non-
linear equations of models used for breakthrough
curves modeling (Dissanayake et al., 2016). Several
authors have noted that the application of non-linear
regression is more suitable than linear regression
(Tejada-Tovar et al., 2020; Villabona-Ortíz et al.,
2019). Some authors propose using a proper error
analysis method to corroborate this asseveration
validity (Unuabonah et al., 2016). Even if a proper
error analysis was carried out, it was not evident in
any of these papers whether the values for the model
constants obtained through linearization are consistent
with those obtained through non-linear regression or
reliable to any extent (Han et al., 2007; Zhang et al.,
2013).

The error distortion generated through
linearization could lead to misguiding outcomes when
the experimental error is present, i.e., a suitable
model could present a large error while minimal
error could be observed for an equation that does
not represent the dynamics of the system. Thus, it
is inaccurate to compare model equations that were
subjected to different transformations (Xiao et al.,
2018). Regarding the latter, literature reports a balance
between non-linear regression and the linearized form
of the Thomas model to describe different adsorbent-
adsorbate systems. It stands out that so many papers
employ linear regression despite non-linear regression
is more recommended for this purpose. Interestingly,
it was noticed that the plot of the linear regression is
not shown or remains unclear in many cases.
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Table 1. Literature review on the use of the linear and non-linear form of the Thomas model.
Curve

Adsorbent Adsorbate Linear/non- r2 fitting Reference
linear plot

Graphene oxide/MgO Pb(II) Linear 0.960-0.990 Shown (Mohan et al., 2017)
Watermelon rind Pb(II) Linear 0.910-0.998 Not shown (Lakshmipathy and Sarada, 2015)
Kenaf Cr(VI) Linear 0.959 Shown (Omidvar Borna et al., 2016)
Coconut shell Cu(II) Linear 0.961-0.993 Not shown (Acheampong et al., 2013)

Zeolite Methylene blue Linear 0.723-0.921 Shown (Han et al., 2007)Non linear 0.878-0.969

Biomass Pb(II) Linear 0.904-0.967 Shown (Dissanayake et al., 2016)Non linear 0.993-0.996
Citrus peels Methylene blue Non linear 0.972-0.995 Shown (Aichour et al., 2019)
Tunisian soil Phosphorous Non linear 0.952-0.991 Not shown (Beji et al., 2018)
Biochar Methylene blue Non linear - Shown (Dawood et al., 2019)
Chitosan composite Cr(VI) Non linear 0.981-0.999 Shown (González-López et al., 2020b)

Although it is not the intention of this study to
criticize the experimental work and findings of such
reports, it is critical to emphasize the importance of
the data range used for curve fitting, as it affects the
accuracy of the obtained parameters. For instance, Han
et al., (2007) carried out the analysis using linear
regression within a range of C/C0 between 0.05 and
0.95, while Tsai et al., (2016) carried out the curve
fitting of the breakthrough curves within a range
of 0.01 and 0.99. However, it was not clear why
those ranges were selected in any of these cases or
whether further shortening the range leads to more
feasible data fitting or not. Table 1 summarizes some
literature reports using linear and non-linear forms of
the Thomas model.

Thus, this work aims to discuss the validity of the
linearized form of the Thomas model against its non-
linear form, to describe the dynamic behavior of fixed-
bed adsorption columns and compare the significance
of the parameters obtained through the linearized and
non-linear forms of this equation. A rigorous error
analysis is also carried out to determine the optimal
range of C/C0 that should be considered to obtain
the most reliable parameters through linear regression
depending on the experimental error magnitude.

2 Materials and methods

2.1 Data generation

In order to avoid uncontrolled experimental error
and other errors associated with the adsorbent itself,
such as adsorbate-adsorbent interactions (neglected
for the assumptions inherent to Thomas equation), side

reactions, among others, data were mathematically
simulated according to the following procedure:
firstly, a breakthrough curve was generated with
Thomas equation as a function of parameters of
the fixed-bed adsorption, i.e., Q, C0, and m (which
is directly related to bed length), as well as the
Thomas parameters qTh and kTh, as listed in Table 2.
Then, a simulated error (esim) similar to the typical
experimental error: 2.5, 5.0, or 10.0%, was distributed
to the data using a function that randomly generates an
error in the curve according to a normal distribution.

Also, the simulated error range was selected to
illustrate that larger deviation increases distortion
compared to when a smaller experimental error
is observed. Then, data were corrected to have a
monotonically crescent function by generating a new
value at the point when a value “i” is smaller than its
preceding one “i − 1”. This routine was programmed
in MATLAB®, and five sets of data were generated
to carry out the further analysis of the model linearity
versus its non-linearity. For this purpose, linear and
non-linear regressions were also carried out using
MATLAB®.

Table 2. Parameters used for the simulation of the
breakthrough curves.

Parameter Value

Mass of sorbent (m) 26.30 g
Process Flow rate (Q) 4.22 mL/min

Inlet concentration (C0) 100 mg/L

Thomas kTh 0.1287 mL/min g
model qTh 9.55 mg/g
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2.2 Statistical error (esta) calculation

Error functions represent statistics that measure the
error between experimental and predicted values.
In either linear or non-linear regressions, the fitted
parameters are determined or evolve, according to the
least-squares method to minimize the error according
to the error sum of squares function (SSE) described
as:

S S E =

n∑
i=1

(
yc − yexp

)2

i
(3)

However, other notable error functions are used
to estimate the statistical error (esta). These functions
were calculated to confirm and support the validity of
the model along with the correlation coefficient. Some
of these error functions are the following:

2.2.1 Average relative error (ARE)

ARE =
1
n

n∑
i=1

∣∣∣∣∣∣
(

yc − yexp

yexp

)
i

∣∣∣∣∣∣ (4)

2.2.2 Average relative standard (ARS)

ARS =

√∑n
i=1

( yc−yexp
y−exp

)
i

n− 1
(5)

2.2.3 Root mean sum of squares (RMSE)

RMS E =

√√
1
n

n∑
i=1

(yc − yexp)2
i (6)

In all cases, yc stands for the estimated value, yexp
for the real value, and n is the number of data.

3 Results and discussion

Five simulations (n = 5) were carried out at different
error magnitudes (esim = 2.5, 5.0, and 10.0%), and
the resulting breakthrough curves (mean values) are
presented in Figure 1. The simulated data represents
a breakthrough curve described by the Thomas
equation, and an increase in the simulated error
is noticeable in the breakthrough curves. The error
magnitude is typical according to the range of the data
in the breakthrough curve; values close to zero have
a low error magnitude, which increases when C/C0
starts to increase.

Fig. 1. Simulated mean values for Thomas non-linear
equation at different error magnitude.

Then, as values approximate to the asymptote at
C/C0 = 1.0, the error magnitude starts to decrease.
This behavior could be considered typical for these
plots, and thus the programed routine is considered
valid for further analysis.

Then, linear fitting was carried out according to
Equation 2. Since the logarithmic function is not
defined at C/C0 = 0, these values were removed after
linearization. Figure 2 presents the scatter plot of the
five simulations on their non-linear and linear form.
As discussed above, in the non-linear plot, the Thomas
model general trend is observed even at the highest
magnitude of the simulated error (esim = 10.0%).

In linearized data, a portion of the curve exists so
that the linearity is consistent within the five sets of
data. This region is located in the middle of the curve
between breakthrough and exhaustion points, which
are two critical points of the breakthrough curve.
However, in values closer to the function limits, the
error increases drastically, indicating that linearization
provides more significant weight to points near the
limit of the logarithmic function, and this effect
becomes more critical when the used simulated
error increases (Figure 3). As pointed out by other
authors, the problem with linear transformations is
the distortion of the error. Through the linear least-
squares method, scatter points are assumed around a
line that follows Gaussian distribution, and the error
distribution is the same within each point of the
curve. In contrast, in non-linear equations, the error
is uniformly distributed throughout the points at the
whole range of data (Ganguly et al., 2020).

The above behavior was observed in this analysis,
indicating that the range of data used for the curve
fitting must be thoughtfully selected based on error
functions.

878 www.rmiq.org



González-López et al./ Revista Mexicana de Ingeniería Química Vol. 20, No. 2 (2021) 875-884

����������

	 
		 �		 �		 
		 �			

�
��

	

	�	

	�


	��

	��

	�


��	

����������

	 
		 �		 �		 
		 �			

��
��

	
��
��
�

��	

�


��

��

�


	




�

�




����������

	 
		 �		 �		 
		 �			

�
��

	

	�	

	�


	��

	��

	�


��	

����������

	 
		 �		 �		 
		 �			

��
��

	
��
��
�

��	

�


��

��

�


	




�

�




����������

	 
		 �		 �		 
		 �			

�
��
	

	�	

	�


	��

	��

	�


��	

����������

	 
		 �		 �		 
		 �			

��
��

	
��
��
�

��	

�


��

��

�


	




�

�




�
���
��
����

�
���
���	�	���

���
���	�	��

�
���
����	���

���
����	��

�
���
��
����

Fig. 2. Data simulation and linearization at different error values (esim).

Hence, five intervals were analyzed in terms of the
error in predicting the model parameters generated by
linear and non-linear regression (using the complete
range of data). The results for the predicted parameters
qTh and kTh are presented in Table 3. The difference
between qTh,calc, and qTh,real was defined as ∆q (%),
and it was calculated as follows:

∆q(%) =

∣∣∣∣∣∣qTh,real − qTh,calc

qTh,real

∣∣∣∣∣∣× 100 (7)

The values of qTh and kTh are not consistent with
the non-linear regression when the complete range of
data is selected (0 - 1.00), indicating that linearization
leads to error distortion as it has been reported for

adsorption isotherms and kinetic models (Lin and
Wang, 2009). However, by shortening the data range,
parameters start to resemble those obtained by non-
linear regression at all error magnitudes analyzed
(Figure 4).

Error functions were estimated to analyze the
optimal range for data fitting. The statistical error
(esta) is minimized using the non-linear regression.
In the case of the linear regression, shortening the
range minimizes esta up to a minimum obtained when
the linearized curve was fitted between 0.05 - 0.95
when the simulated error was equal or below 5.0%,
and further decreasing this range increases the error
because the number of available data becomes smaller
after this point.
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Table 3. Error analysis of Thomas linear and non-linear model as a function of the C/C0 range.
Simulated kTh qTh Statistical Error r2

Error % Equation C/C0 range (mL/min g) (mg/g) ∆q(%) SSE ARE ARS RMSE

2.5

Non-linear 0 - 1.00 0.1285 9.564 0.15 0.00135 0.22701 0.46589 0.00721 0.9997

Linear

0 - 1.00 0.103 9.349 2.11 0.03065 0.31203 0.56963 0.03434 0.9797

0.01 - 0.99 0.107 9.414 1.42 0.01965 0.28017 0.53978 0.0275 0.98

0.05 - 0.95 0.129 9.55 - 0.00139 0.22807 0.48702 0.00733 0.9995

0.10 - 0.90 0.13 9.578 0.29 0.00144 0.2325 0.49174 0.00746 0.9995

0.20 - 0.80 0.129 9.588 0.4 0.00147 0.23039 0.4895 0.00752 0.9995

5

Non-linear 0 - 1.00 0.124 9.543 0.07 0.00194 0.22523 0.48399 0.00863 0.9988

Linear

0 - 1.00 0.096 9.145 4.24 0.05919 0.28933 0.54854 0.04772 0.9977

0.01 - 0.99 0.096 9.167 4.01 0.05644 0.28563 0.54503 0.04659 0.9725

0.05 - 0.95 0.126 9.512 0.4 0.00561 0.27277 0.53262 0.01497 0.9971

0.10 - 0.90 0.129 9.519 0.32 0.00603 0.28422 0.54368 0.01523 0.996

0.20 - 0.80 0.123 9.597 0.49 0.00593 0.26819 0.52813 0.0151 0.9928

10

Non-linear 0 - 1.00 0.1093 9.591 0.42 0.01256 0.24076 0.50039 0.02198 0.9969

Linear

0 - 1.00 0.09 9.156 4.13 0.05821 0.23521 0.49459 0.04731 0.9804

0.01 - 0.99 0.09 9.176 3.91 0.05567 0.23425 0.49358 0.04627 0.9775

0.05 - 0.95 0.097 9.474 0.79 0.02091 0.24426 0.50401 0.02835 0.9928

0.10 - 0.90 0.118 9.619 0.72 0.01494 0.30268 0.56106 0.02397 0.9928

0.20 - 0.80 0.112 9.572 0.23 0.01272 0.28208 0.54163 0.0221 0.9909

Fig. 3. Error distribution in linear and non-linear fitting.

Linear regression becomes more questionable at
the simulated error of 10.0% since the range should
be shortened even up to 0.20 - 0.80, and the number
of data used for curve fitting could not be enough
to feasibly represent the experimental behavior. Thus,
the aforementioned shows a serious deficiency of
the linearized equation in predicting the operation
parameters due to the logarithm function nature.

Figure 5 presents the breakthrough curve fitted
to the non-linear and the linear Thomas model. The

curves with the parameters obtained through the
linearized equation present a larger deviation, which
is clearly observable nearby the breakthrough and
exhaustion points. When the experimental error is
small (such as presented in this work, esim = 2.5,
5.0%), the discrimination between linear and non-
linear forms represents a minor effect. However, as
experimental error becomes larger (esim = 10.0%),
error in the calculation of operation parameters could
lead to incorrect conclusions.
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Fig. 4. Linear curve fitting plots at different error and ranges of C/C0.
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Fig. 5. Breakthrough curve fitted to Thomas model at different error magnitude.

Hence, non-linear regression is more effective
and robust (less susceptible to experimental error)
to calculate the Thomas model parameters. If linear
regression is preferred, the linearization must be
carried out using a proper range of data to obtain
valid parameters of the fixed-bed operation that
would be consistent with those obtained by non-linear
regression.

Conclusions

Through a rigorous analysis of Thomas model linear
and non-linear forms, it was observed that the range
of data used for the linear curve fitting strongly
affects the validity of the estimated parameters. The
difference between real and estimated parameter qTh
was significantly high when the entire data range
was used. However, if the data range is shortened
between C/C0 values of 0.05 and 0.95, the difference
between the calculated and estimated parameters
diminishes even at large error magnitudes. According

to several error functions, linearization of values that
are close to zero (logarithmic function limit) and one
(asymptotic value) leads to a critical distortion in error
distribution due to the logarithmic nature function.
These findings support the hypothesis that the non-
linear method should be performed instead of using
the Thomas model linearized equation. Moreover, if
linear regression is performed, the range of data should
be thoughtfully selected within C/C0 values between
0.05 and 0.95 or depending on the magnitude of the
experimental error. Herein, it was demonstrated that
Thomas non-linear form must be preferred over the
linearized equation to describe the dynamic behavior
of fixed-bed adsorption columns.
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Nomenclature

C Concentration
C0 Inlet concentration
esim Simulated error
esta Statistical error
kTh Thomas rate constant
m Adsorbent mass
Q Flow rate
qTh Thomas capacity constant
qTh,calc Calculated Thomas capacity constant
qTh,real Thomas capacity constant (fixed value)
∆q Deviation in Thomas capacity constant
yc Calculated value
yexp Experimental value
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