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Abstract
This work deals with LQR optimal control problems where the randomness of dynamic systems evolves according to: (a)
multiplicative and additive white noise, (b) mixture of white noise and (c) white noise and colored noise. Total cost quadratic
and discounted cost quadratic are studied. The white noise is represented by the Wiener process whereas the colored noise
is represented by the solution of the Ornstein-Uhlenbeck’s stochastic differential equation, with constant initial condition or
normally distributed. In order to find the value functions and optimal policies, as well as algebraic and stochastic Riccati
equations, the dynamic programming technique was used. The theoretical results are illustrated by four applications. Numerical
simulations are carried out using Matlab.
Keywords: Brownian motion, correlation time, Itô ’s calculus, Markov processes, stochastic Ricatti equation.

Resumen
Este trabajo trata sobre problemas de control óptimos LQR donde la aleatoridad de los sistemas dinámicos evoluciona de acuerdo
a: (a) ruido blanco aditivo y multiplicativo, (b) ruido blanco mezclado y (c) ruido blanco y ruido coloreado. Se estudian el costo
cuadrático total y el costo cuadrático descontado. El ruido blanco es representado por el proceso de Wiener mientras que el
ruido coloreado es representado por la solución de la ecuación diferencial de Ornstein-Uhlenbeck con condición inicial constante
o distribuida normalmente. La técnica de programación dinámica es usada para encontrar las funciones de valor, los controles
óptimos y las ecuaciones de Ricatti estocásticas. Los resultados teóricos son ilustrados con cuatro aplicaciones. Las simulaciones
numéricas se realizaron en MatLab.
Palabras clave: Movimiento Browniano, tiempo de correlación, Cálculo de Itô, procesos de Markov, ecuación de Ricatti
estocástica.

1 Introduction

Many works assume that studied processes x(t)
can be described by ordinary differential equations
(ODE) that take the form dx(t) = b(t, x(t),u(t))dt
for a given function b and a process u(·), and,
it is assumed that the process x(t) is unaffected
by random perturbations (noises). However, in real
systems, every physical process shows perturbations,
such disturbances can be added to the processes in
an additive or multiplicative way depending on the
modelling of the process under study. When the noise
is considered to affect the system additively, the ODE
is replaced by the stochastic differential equation

(SDE) dx(t) = b(t, x(t),u(t))dt+ξ(t)dt, where ξ is some
stationary stochastic process (a process for which the
statistical characteristics do not change with time) with
mean zero and known autocovariance matrix R(τ) :=
E[ξ(t)ξ(t + τ)], the notation E refers to the expected
value operation taken over the ensemble of stochastic
processes {x(t,ω)}. If the noise affects the process in
multiplicative form, then the SDE proposal is dx(t) =

b(t, x(t),u(t))dt + x(t)ξ(t)dt. Finally, if the noise affects
the process in both ways, then one takes as a model the
SDE

dx(t) = b(t, x(t),u(t))dt + x(t)ξ(t)dt + ξ1(t)dt, (1)

where ξ1 is another stationary stochastic process
which can be correlated to the process ξ.
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It is possible to analyze a stationary stochastic
process ξ by its statistic properties (mean, variance,
autocovariance, etc.) or its spectral density which is
defined as the Fourier transform of the autocovariance
function

S ξ(ω) =

∫ ∞

−∞

R(τ)e−2π jωτdτ.

The relationship between the spectral density
function S ξ(ω) and autocovariance function R(τ),
which is summarised in the Wiener-Khintchine
theorem, provides a link between the time-domain and
the frequency domain analyses from the stationary
stochastic processes, Kasdin (1995).

A stationary white Gaussian noise process is
defined as a zero-mean process E[ξ(t)] = 0 with
infinite variance for which, R(τ) = δ(τ), where δ(·)
is the Dirac delta (δ(τ) = 0 if τ , 0 and δ(τ) = 1
for τ = 0). The stationary white Gaussian noise has
spectral density constant S ξ(ω) = 1

2π for −∞ < ω <∞,
for this reason, It is called the white noise and the
process contains equal information at all frequencies.
In 1908, Paul Langevin (French physicist) found that if
the Brownian motion W(t) were differentiable, then its
derivative would be the white Gaussian noise process,
i.e., dW(t) = ξ(t)dt. Therefore, in this case, replacing
ξ(t)dt by dW(t) in (1), we get

dx(t) = b(t, x(t),u(t))dt + x(t)dW(t) +σdW1(t), (2)

where σ is a constant matrix known as the intensity of
noise. Thus, (2) it is a first approximation to (1) (real
dynamics).

In this work, in addition to the stationary white
Gaussian process a coloured Gaussian noise w(t) is
considered. The colored noise process is a zero-mean
stochastic process, exponential correlation function
and whose spectral density is not constant for all
ω, Jung et al. (2005). In this case, the process
w(t) can be regarded as the Ornstein-Uhlenbeck
process. As mentioned in Jia and Li (1998), there
are many systems in physics and other sciences,
which are driven simultaneously by white and colored
noise sources; for instance, the laser systems, the
lattice model, the structure-formation process in liquid
crystals, etc. Here, in addition of the SDE (2) we are
interested in SDEs driven by stationary white Gaussian
noise and a colored Gaussian noise of the form

dx(t) = b(t, x(t),w(t),u(t))dt +σ(x(t),w(t))dW(t), (3)

and

dx(t) = b(t, x(t),u(t))dt +σ(x(t))dW(t) + dw(t). (4)

The Itô’s theory of stochastic calculus allows us
to study systems affected by noises (perturbations)
because the ODEs associated with the systems studied
are replaced by SDEs. In Engineering, stochastic
calculus is used in filtering and control theory. As
well as to study the effects of random excitation
on various physical phenomena and to model the
effects of stochastic variability in reproduction and
environment on populations in Physics and Biology,
respectively, Klebaner (2005). In recent years the
study of SDEs to model physical systems increased,
some important applications are: Stochastic analysis
of the power output for a wind turbine Anahua et al.
(2004). Stochastic Navier-Stokes equations (SNSE) for
turbulent flows Mikulevicius and Rozovskii (2004)
among others.

It is well known that the stochastic linear quadratic
regulator (LQR) optimal control problems deal with
minimizing/ maximizing a quadratic cost/ reward
subject to the dynamic systems evolves according to
linear-SDEs. The SDEs (2), (3) and (4) are called
controlled-linear-SDEs when b and σ are linear
functions of x. There are enough works on LQR-
optimal control both deterministic and stochastic
due to its multiple applications in different areas of
science, Kumar and Jain (2019); Prasad et al. (2011);
Chen et al. (1998); Kalman (1960); Lewis et al.
(1986); Wonham (1968). Moreover, LQR optimal
control is used in situations where no linear dynamic
becomes linear around fix points through Taylor
expansion, Tang et al. (2012); Prasad et al. (2011).
Some applications can be found in Hernández-Osorio
et al. (2019); Rojas et al. (2016); Razmjooy et al.
(2016); López et al. (2011); Sam et al. (2000); Seekhao
et al. (2020); Ahmad et al. (2020)

1.1 Our approach and main contributions

The main aim of this work consist of studying
the LQR-optimal control problems using dynamic
programming (DP) approach where the dynamic
systems evolves according to (2), (3) and (4)
considering that the function b and σ are linear
functions of x. The idea of this approach is to obtain
the so-called Hamilton-Jacobi-Bellman equation or
dynamic programming equation (DPE) from which we
can obtain, under appropriate conditions, the optimal
control problem’s value function and also optimal
control policies. As far as our knowledge goes, our
work is the first of this type to study LQR optimal
control considering both colored noise and white
noise.
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2 Linear stochastic differential
equations

There are excellent books which give a detailed
description of the Itô’s stochastic calculus,
recommended readers are, Klebaner (2005); Arnold
(2013); Durrett (1996); Karatzas et al. (1991).

Consider a n-dimensional controlled stochastic
differential equation evolving according to

dx (t) = b (t, x(t),u (t))dt +σ(x(t))dW (t ), (5)
x (0) = x0,

where b : [0,∞) ×Rn ×U → Rn and σ : Rn → Rn×n1

are given measurable functions called the drift and
the diffusion term, and W(·) is an n1 -dimensional
standard Brownian motion. The stochastic process
u(·) is a U-valued process called a control process,
and the set U ⊂ Rm is called the control (or action)
space. The linear growth condition and Lipschitz
condition on b and σ ensures the existence of a unique
continuous strong solution x(·), which is a Markov
process. Moreover, denoting by Eu

s,x the conditional
expectation given initial state x and the sequence
controllers u, we also have

Eu
s,x|x(t)|k ≤ (1 + |x|k)eC(t−s) k = 1,2, . . . (6)

for some constant C depending on the integer k and the
constant K(T ), see Klebaner (2005); Durrett (1996);
Pham (2009); Arnold (2013).

This paper deals with linear stochastic differential
equations, i.e., the functions b and σ in (5) are linear
functions of x ∈ Rn. More precisely, we are interested
in,

• Linear SDE driven by two Brownian motions

dx (t) = (Ax (t)+au(t))dt+Bx (t)dW1 (t)+bdW2(t).
(7)

The Brownian motions W1(·) and W2(·) can be
correlated, with correlation coefficient | γ |< 1,
that is, E[W1(t)W2(t)] = γt. Here, A, a, B and b
are (n×n), (n×m), (n×n1) and (n×n2)−matrix-
valued, respectively. In addition, W1 and W2
are n1 and n2 -dimensional standard Brownian
motions, respectively.

• Linear SDE driven by a mixture noise,
Baloui Jamkhaneh (2011). A mixture noise may
be interpreted as a linear combination of n

independent Brownian motions Wi, i = 1,2, . . .n,
that is

dφ(t) =

n∑
i=1

αidWi(t),

where αi are constants satisfying
∑n

i=1αi = 1.
Hence, linear SDE driven by a mixture noise is
written as

dx (t) = (Ax (t) + au(t))dt + dφ(t). (8)

• Linear SDE driven by a white noise and
a colored noise. The colored noise evolves
according to the linear stochastic differential
equation

dw(t) = −ρw(t)dt +σρdW(t), (9)

where σ,ρ > 0 are fixed constants, W(t)
is an one-dimensional Brownian motion and
w(0) ∼ N(0,σ2/2ρ) (random variable with
normal distribution, zero mean and variance
σ2/2ρ), see (Arnold, 2013, section 8.3) for more
details on colored noise. Depending on the way
the colored noise is added to the system, the
linear SDE driven by a white noise and a colored
noise can have the following structures.

dx(t) = (A(w(t))x(t) + a(w(t))u(t))dt

+ b(w(t))dW(t), (10)

or

dx(t) = (Ax(t) + au(t))dt + bdw(t). (11)

In (10), A : R → Rn×n, a : R → Rn×m, b :
R→ Rn×n1 and W is a n1 -dimensional standard
Brownian motion independent of W,whereas, in
(11), the matrix dimensions A, a and b are given
in (7).

2.1 Itôs calculus.

We now introduce some notation which will be
used throughout. Let C1,2,2([0,T ] × Rn × R) be the
space of real-valued functions h (t, x,w) on [0,T ] ×
Rn × R which are once differentiable in t and twice
continuously differentiable in x and w. Similarly, we
define the space C1,2([0,T ]×Rn). For each h (t, x,w) ∈
C1,2,2([0,T ] × Rn × R), we denote by hx and hxx the
gradient (row) vector and the Hessian matrix of h,
respectively. The following lemma shows the Itô’s
lemma (also known as the fundamental theorem of the
stochastic calculus). For a proof we quote (Friedman,
2012, Theorem 5.3) or (Morimoto, 2010, Theorem
1.6.2).

www.rmiq.org 1113
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Lemma 2.1. Itô’s lemma.

(a) Let x(·) be a solution of the SDE (5) and let
h (t, x) ∈ C1,2([0,T ] × Rn). Then, the stochastic
process y (t) = h (t, x (t)) satisfies the stochastic
differential equation

dy (t) = [ht (t, x (t))dt + b (t, x (t))hx (t, x (t))

+
1
2

hxx (t, x (t))]dt + hx (t, x (t))σ (x (t))dW (t)

(12)

(b) Let x(·) be a solution of the stochastic
differential equation with two Brownian motions
affecting the system in multiplicative and
additive form, as follows.

dx(t) = b(t, x,u(t))dt +σ1(x(t))dW1(t)
+ σ2(x(t))dW2(t) (13)

with E[W1(t),W2(t)] = γt, σ2(x(t)) = σx(t) and
σ,γ > 0. Now, take h (t, x) ∈ C1,2([0,T ] × Rn),
the stochastic process y (t) = h (t, x (t)) satisfies
the stochastic differential equation

dy (t) = [ht (t, x (t))dt + b (t, x(t))hx (t, x (t))

+
1
2

hxx (t, x (t)) [Tr[σ1(x(t))σ1(x(t))T ]

+ Tr[σ2(x(t))σT
2 (x(t))]]

+ 2σ1(x(t))σ2(x(t))γ]dt

+ hx (t, x (t))σ1 (x (t))dW1 (t)

+ hx (t, x (t))σ2 (x (t))dW2 (t) (14)

(c) Let x(·) be a solution of the controlled SDE
(5) and let w(·) be the solution of stochastic
differential equation

dw(t) = b1(t,w(t))dt +σ3(w(t))dW3(t) (15)

where E[W(t),W3(t))] = γt and γ > 0. For
some h (t, x,w) ∈ C1,2,2([0,T ] × Rn × R), the
stochastic process y (t) = h (t, x (t) ,w(t)) satisfies
the stochastic differential equation

dy (t) = [ht (t, x(t),w(t))

+ b1 (t,w(t))hw (t, x(t),w (t))

+ b (t, x(t))hx (t, x (t) ,w(t))

+
1
2

hxx (t, x (t) ,w(t))Tr[σ(x(t))σT (x(t))]

+
1
2

hww (t, x (t) ,w(t))Tr[σ3(w(t))σT
3 (w(t))]

+ γσ3(w(t))σ(x(t))hxw(t, x(t),w(t))]dt

+ hx (t, x (t) ,w(t))σ (x (t))dW (t)

+ hw (t, x (t) ,w(t))σ3 (w(t))dW3 (t) (16)

The stochastic differential equations (12), (14) and
(16) are called the Itô’s formulas and are an extension
of the stochastic theory of the chain rule of ordinary
calculus.

3 LQR optimal control

In this work, we are interested in LQR optimal control
problems with finite and infinite-horizon. The cost that
an agent obtains from their activity in the system is
measured with the performance indexes following.

JT (t, x,u) := Eu
x

[∫ T

t
r (s, x(s),u(s))ds + r1(T, x(T ))

]
,

(17)
and

J(x,u) := Eu
x

[∫ ∞

0
e−αsr (s, x(s),u(s))ds

]
, (18)

where t ∈ [0,T ], x(t) ∈ Rn, u(t) ∈ Rm and the
discount factor α > 0 . Moreover, r (s, x(s),u(s)) :=
xT (s)Qx(s) + uT Ru(s) and r1(T, x(T )) := xT (T )Fx(T )
are the running and terminal cost, respectively, and
F,Q and R are positive semi-definitive symmetric
matrices with F,Q ∈ Rn×m and R ∈ Rm×m. The control
process u(·) depends on the information available to
the controller. Here, to simplify the presentation, we
only consider Markov (or feedback or closed-loop)
controls which are defined as follows.

Definition 3.1. Let M be the family of measurable
functions f : [0,∞)×Rn→ U, and F ⊂M the subfamily
of functions f : Rn → U. A control policy of the form
u(t) := f (t, x(t)) for some f ∈ M is called a Markov
policy, whereas u(t) := f (x(t)) for some f ∈ F is said
to be a stationary Markov policy.

Definition 3.2. (LQR optimal control). Let J(t, x,u)
and J(x,u) be as in (17) and (18), respectively. We say
that a policy f ∗ ∈ M (or F) is optimal for the LQR
optimal control problems if

J∗(t, x) = min
u∈U

J(t, x,u) = J(t, x, f ∗) (19)

or
J∗(x) = min

u∈U
J(x,u) = J(x, f ∗) (20)

subject to that x(t) is a solution of the stochastic
differential equations (7) or (8) or (10). The functions
J∗(t, x) and J∗(x) are known as the value functions.
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4 Dynamic programming
approach

We introduce the dynamic programming approach to
study the LQR optimal control problem. The dynamic
programming (DP) technique is based on the principle
of optimality stated by Richard Bellman (1920-1984)
and gives sufficient conditions for the existence of
an optimal control policy, see Durrett (1996); Pham
(2009). The DP approach is as follows.

1. First, for each optimal control problem, the
DP equation (also known as Hamilton-Jacobi-
Bellman equation) must be deduced;

2. next, it obtains or tries to show the existence of
a smooth solution (i.e., v ∈ C1,2([0,∞) × Rn))
of PD-equation by partial differential equations
techniques;

3. then, it shows that the smooth solution is the
value function from optimal problem control by
Dynkin’s formula, and

4. finally, as a byproduct, it obtains an optimal
feedback control.

Of fundamental importance in the Hamilton-
Jacobi-Bellman equation is the infinitesimal generator
of the process x(t) governed by the general SDE (5).
Next, we calculate the infinitesimal generator of the
diffusion process governed by the SDEs (7), (8) and
(10). For this purpose, we use the following definition.

Definition 4.1. The infinitesimal generator of the
diffusion process x(t) is the operator A, which is
defined to act on functions h : Rn→ R by

Ah(x) = lim
t→0+

Ex[h(x(t)]− h(x)
t

.

Its domain D(A) is the set of functions h twice
differentiable with continuous second derivative and
for which the limit exists.

Consider the general controlled stochastic
differential equation (5) but driven also by a stochastic
process w(t) which is a solution to the SDE (15). This
is,

dx (t) = b (t, x(t),w(t),u (t))dt +σ(x(t))dW (t ), (21)
x (0) = x0, w(0) = w0.

Now, define the operator L f : C1,2,2(R+ ×Rn ×R)→
C(R+ ×Rn ×R) as

L f h(t, x,w) := ht (t, x(t),w(t))

+b1 (t,w(t))hw (t, x(t),w (t))

+b (t, x(t),u(t))hx (t, x (t) ,w(t))

+
1
2

hxx (t, x (t) ,w(t))Tr[σ(x(t))σ(x(t))T ]

+
1
2

hww (t, x (t) ,w(t))Tr[σ3(w(t))σT
3 (w(t))]

+γσ3(w(t))σ(x(t))hxw(t, x(t),w(t)) (22)

Integrating the Itô’s formula (16) from s to t and
taking expected value, we have

Ex,w[h(t, x(t),w(t))]− h(s, x,w) =

Ex,w
[∫ t

s
L f h(s, x(s),w(s))ds

]
(23)

since the expected value of the stochastic integrals are
zero, Klebaner (2005); Durrett (1996), that is

Ex,w
[∫ t

s
hx (s, x (s) ,w(s))σ (x (s))dW (s)ds

]
= 0,

Ex,w
[∫ t

s
hw (s, x (s) ,w(s))σ3 (w(s))dW3 (t)ds

]
= 0.

Using Fubini’s theorem and the Fundamental
theorem of calculus, we get

Ah(s, x,w) = lim
t→s

Ex[h(t, x(t),w(t))]− h(s, x,w)
t− s

= lim
t→s

1
t− s

∫ t

s
Ex,w[L f h(s, x(s),w(s))]ds

= Ex,w[L f h(s, x,w)]
= L f h(s, x,w).

So, this last result implies that the infinitesimal
generator from the process (21) coincides with the
operator (22). Similar arguments to those given above
allow us to calculate the infinitesimal generator of the
processes (7), (8) and (10).

• If x(t) is governed by the linear SDE driven by
two independent Brownian motions (7) with γ =

0, then, its infinitesimal generator L f applied to
ν(t, x) ∈C1,2([0,T ]×Rn) is

L f v(t, x) = vt(t, x) + (Ax + au)vx(t, x)

+
1
2

[Tr(bbT ) + Tr(Bx(Bx)T )]vxx(t, x) (24)
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• Assuming the x(t) evolves according to the
linear SDE driven by a mixture noise (8), its
infinitesimal generator L f applied to ν(t, x) ∈
C1,2([0,T ]×Rn) is given by

L f v(t, x) = vt(t, x) + (Ax + au)vx(t, x)

+
1
2

n∑
i=1

α2
i vxx(t, x) (25)

• For the linear SDE driven by a white noise and
a colored noise (10) with γ = 0, the infinitesimal
generator L f of the process x(t) applied to
ν(t, x,w) ∈C1,2,2([0,T ]×Rn ×R) is

L f v(t, x,w) = vt(t, x(t),w)− ρw(t)vw(t, x,w)
+(A(w(t))x(t) + a(w(t))u(t))vx(t, x,w)

+
1
2

Tr(b(w(t))bT (w(t)))vxx(t, x,w)

+
1
2
σ2ρ2vww(t, x,w).

(26)

HJB equations for the LQR optimal problems.
The Hamilton-Jacobi-Bellman (HJB) equations

associated with the finite-horizon quadratic cost (17)
and discounted quadratic cost (18) are

min
u∈U
{x(t)Qx(t)T + u(t)T Ru(t) +Luv(t, x)} = 0, (27)

subject to the terminal condition xT (T )Fx(T ) =

v(T, x(T )), and

αv(x) = min
u∈U
{x(t)QxT (t) + uT (t)Ru(t) +Luv(x)}, (28)

respectively. The infinitesimal generator Lu in the
equations (27) and (28) depends on the evolution of
diffusion process x(t), i.e., if x(t) is governed by the
SDE (7), then Lu is given by the operator (24).

Remark 4.2.
(a) (Vanishing discount technique). Another index

basic for LQR is the long-run expected average cost
per unit time which is defined as

J(x,u) := limsup
T→∞

1
T
Eu

x

[∫ T

0
[xT (t)Qx(t)+uT (t)Ru(t)]dt

]
.

The value function for this cost is J∗(x) :=
minu∈U J(x,u). It is well known that if there is a pair
( j∗,h) ∈ R×C2(Rn) and a policy u∗ ∈ U satisfying the
average HJB-equation

j∗ = min
u∈U
{xT (t)Qx(t) + uT (t)Ru(t) +Luh(x)}(29)

= xT (t)Qx(t) + u∗T (t)Ru∗(t) +Lu∗h(x),

then, j∗ = J∗(x) and u∗ is an optimal policy. There
are several ways to get ( j∗,h), the most common being
those based on variants on the vanishing discount
technique, in which we obtain the HJB-equation for
average control problem by letting α tend to zero in a
class of α-discounted cost problems. The basic idea is
as follows. We first consider the α− discount dynamic
programming equation (28); next, select an arbitrary
state x∗ ∈ Rn and define j(α) := αv(x∗) and hα(x) :=
v(x)− v(x∗). Thus (28) can also be written as

αhα(x)+ j(α) = min
u∈U
{xT (t)Qx(t)+uT (t)Ru(t)+Luhα(x)}.

(30)
Comparison of (30) with (29) immediately suggest to
let α tend to zero in (30) to obtain (29) in the limit.
In fact, j(α) → j∗, αhα(x) → 0 and hα(x) → h(x) as
α→ 0. See (Hernández-Lerma, 1994, pages 45-49) for
more details.

Smooth solution of HJB equations.
A consequence of the following Verification

Theorems, whose proofs are quite standard (see, for
instance, Theorem 3.5.2 and Theorem 3.5.2 in Pham
(2009)) is that the pair (J∗(t, x), f ∗) consisting of the
value function J∗ ∈C2([0,T ]×Rn) and a policy f ∗ ∈ F
is a solution of the HJB equation (27).

Theorem 4.3. (Finite horizon) Suppose that G ∈

C1,2([0,T ]×Rn) is a solution of the HJB equation (27)
that satisfies the growth condition |G(t, x)| < K(1+ |x|k)
for some constants K > 0 and k ≥ 1, and 0 ≤ t ≤ T.
Then

(a) G(t, x) ≥ J∗(t, x) for all (t, x) ∈ [0,T ]×Rn.

(b) Let u(t) := f ∗(t, x) be the minimizer of HJB
equation (27). Then G(t, x) = J∗(t, x) on [0,T ]×
Rn. Moreover, f ∗ ∈ F is an optimal Markovian
policy.

Theorem 4.4. (Infinite horizon) Suppose that G ∈
C2(Rn) is a solution of the HJB-equation (28) that
satisfies the growth condition |G(x)| < K(1 + |x|k) for
some constants K > 0 and k ≥ 1. Then

(a) G(x) ≥ J∗(x) on Rn for every policy f ∈ F such
that

e−αtE
f
x [G(x(t))]→ 0 as t→∞. (31)

(b) Let u(t) := f ∗(x) be the minimizer of HJB
equation (28). Then G(x) = J∗(x) on Rn.
Moreover, f ∗ ∈ F is an α−discount optimal
Markovian policy in the class of policies f ∈ F
that satisfy (31).
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5 Main results

Theorems 4.3 and 4.4 are applied in the proof from
Propositions 5.1 and 5.2. These propositions give the
explicit forms of both the value functions and optimal
policies that solves the LQR stochastic optimal control
problems (LQR-OCPs) when the dynamic systems
evolve according to (10).

Proposition 5.1. (Finite horizon LQR-OCP). Assume
that x(t) evolves according to an SDE driven by white
noise and colored noise as in (10). Then, the policy
that minimizes the finite cost (17) at each time 0 ≤ t ≤
T, is

f ∗(t, x,w) = −R−1aT (w)K(t)x(t), (32)

whereas that the corresponding value function is given
by

v(t, x,w) = xT (t)K(t)x(t) + g(w(t)), (33)

where K(t) is a positive semi-definite matrix that
satisfies the Ricatti differential equation

K′(t) + AT (w)K(t) + K(t)A(w)
−K(t)a(w)R−1aT (w)K(t)

+Q + Tr[b(w)bT (w)]K(t) = 0, (34)

and g(w(t)) satisfies the ordinary differential equation

−ρwg′(w) +
1
2
σ2ρ2g′′(w) = 0. (35)

Proof. The HJB equation for the LQR optimal control
problem (20) with x(t) evolves according to (10) and
finite cost (17) is

min
u∈U
{xQxT + uT Ru +Luv(t, x,w)} = 0, (36)

together with the terminal condition xT (T )Fx(T ) =

v(T, x(T ),w(T )), where Luv(t, x,w) is the infinitesimal
generator given in (26). We are looking for a candidate
solution v ∈ C1,2([0,T ]×Rn ×R) to (36) in the form

v(t, x,w) = xT K(t)x + g(w), (37)

for some continuous function g(·) and K(·) a positive
semi-definite matrix. We assume that g

′′

> 0 for all w ∈
R, so that, the function (x,w)→ v(t, x,w) is convex. In
addition, note that

|v(t, x,w)| ≤ |xT (t)|K(t)|x(t)|+ |g(w(t))|
≤ max

t∈[0,T ]
{K(t),g(w(t))}(1 + |x(t)|2),

thus, (37) satisfies the growth condition given in
Theorem 4.3. Moreover, in order for (36) together
with its terminal condition to hold, we required that
K(T ) = F and g(w(T )) = 0.

Now, inserting the partial derivatives of v with
respect to x and w in the HJB equation (36), we obtain

0 = x(t)Qx(t)T + xT (t)K′(t)x(t)− ρw(t)g′(w(t))
+ 2A(w(t))x(t)K(t)xT (t)

+ Tr(b(w(t))bT (w(t)))K(t) +
1
2
σ2ρ2g′′(w(t))}

+ min
u∈U
{uT (t)Ru(t) + 2a(w(t))u(t)xT (t)K(t)}.(38)

Furthermore, given that R is a positive-definite
symmetric matrix, the function u ∈ U → uT Ru +

2a(w)uxT K is strictly convex on the compact set U,
and thus, attains its minimum at

u(t) = f ∗(t, x,w) = −R−1aT (w(t))K(t)x(t). (39)

Substituting (39) into (38), turns out that K(·) and
g(·) should satisfy the Ricatti differential equation (34)
and ordinary differential equation (35), respectively.
Finally, from the Theorem 4.3 it follows that f ∗ is
an optimal Markovian policy and the value function
J∗(t, x,w) is equal to (37). That is,

J∗(t, x,w) = min
u∈U

J(t, x,u,w) = v(t, x,w) = xT K(t)x+g(w).

�

Proposition 5.2. ( α−discounted LQR-OCP). Assume
that x(t) is governed by an SDE driven by white
noise and colored noise, (10). Then, the policy that
minimizes the α− discounted cost (18) is

f ∗(x(t),w(t)) = −R−1a(w)T KT x(t), (40)

and the value function is given by

v(x,w) = xT (t)Kx(t) + g(w), (41)

where K satisfies the algebraic Riccati equation

Q−Ka(w)(R−1)T aT (w)K + KA(w) + A(w)T K

+Tr[b(w)b(w)T ]K −αK = 0, (42)

and g(w(t)) satisfies the ordinary differential equation

− ρwg′(w) +
1
2
σ2ρ2g′′(w)−αg(w) = 0. (43)
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Proof. The HJB equation for the α−discounted LQR-
OCP is

αv(x,w) = min
u∈U
{xQxT + uT Ru +Luv(x,w)} = 0. (44)

with Luv(x,w) as in (26) taking vt ≡ 0. To solve (44),
we propose a function v ∈C2,2(R2 ×R) of the form

v(x,w) = xT Kx + g(w) (45)

with K a positive- definite symmetric matrix, and g a
continuous function, both to be determined. Observe
that

|v(x,w)| ≤ |xT |K|x|+ |g(w)| ≤max
w∈R
{K,g(w))}(1 + |x|2),

and therefore, the function (45) satisfies the growth
condition from Theorem 4.4.

By using similar arguments to those given in the
proof from Proposition 5.1, the optimal control is
obtained. In fact,

f ∗(x(t),w(t)) = −R−1a(w)T KT x(t). (46)

Substituting the derivatives of v and (46) in (44),
turns out that K and g should satisfy the algebraic
Riccati equation (42) and the ordinary differential
equation (43), respectively.

On the other hand, note that the process x(t)
associated to the control f ∗(x(t),w(t)) is dx(t) =

A(w)x(t) − a(w)R−1aT (w)Kx(t)dt + σdW(t). By
rearranging terms we obtain

dx(t) = −[−A(w) + a(w)R−1aT (w)K]x(t)dt +σdW(t),
(47)

which is the so-called Langevin equation. Thus, the
solution of the Langevin equation (47) is

x(t) = xe−[−A(w)+a(w)R−1aT (w)K]t

+ σ

∫ t

0
e−[−A(w)+a(w)R−1aT (w)K](t−s)dW(s).

See, for instance, (Arnold, 2013, Section 8.3).
Therefore, by the properties of stochastic integrals,

E
f ∗
x [e−αt xT (t)x(t)] =

[
x2 − σ2

2[−A(w)+a(w)R−1aT (w)K]

]
e−(α+2[−A(w)+a(w)R−1aT (w)K])t

+
σ2

2[−A(w) + a(w)R−1aT (w)K]
e−αt.

Finally, choosing R such as α + 2[−A(w) +

a(w)R−1aT (w)K] > 0, we get

lim
t→∞
E

f ∗
x [e−αt xT (t)kx(t)] = 0 ⇒

lim
t→∞
E

f ∗
x [e−αtv(x(t),w(t))] = 0.

Therefore, from the verification Theorem 4.4 it
follows that f ∗ minimizes (44) within the class of
admissible stationary policies F satisfying (31) and the
value function J∗(x,w) is equal to (45). �

A similar proof of those gives in Propositions 5.1
and 5.2 allows us to get the Ricatti equations for the
LQR optimal control problems with dynamic systems
evolving according to the linear SDEs (7) and (8).

Remark 5.3. Linear SDE driven by two independent
Brownian motions.

• Finite-horizon quadratic cost. The policy that
minimizes the finite cost (17) at each time 0 ≤
t ≤ T have the structure (32) with x(t) solution
of (7). The corresponding value function is (33)
taking g(w(t)) = 0, where K(t) satisfies the
Ricatti differential equation

K′(t) + AT K(t) + K(t)A−K(t)aR−1aT K(t) + Q

+[Tr(bbT ) + Tr(Bx(t)(Bx(t))T )]K(t) = 0.

• α−discounted quadratic cost. The policy that
minimizes the α− discounted cost (18) is
(32) taking x(t) as a solution of (7). The
corresponding value function is (33) taking
g(w(t)) = g with g a constant and K(t) = K
satisfies the algebraic Ricatti equation

Q + AT K + KA−KaR−1aT K

+Tr(Bx(t)(Bx(t))T )K −αK = 0,

and g is the constant

g =
Tr(bbT )K

α
.

Remark 5.4. SDE driven by mixture noise.

• Finite-horizon quadratic cost. The policy that
minimizes the finite cost (17) at each time 0 ≤
t ≤ T have the structure (32) with x(t) solution
of (8). The corresponding value function is (33)
taking g(w(t)) = 0, where K(t) satisfies the
following Ricatti differential equation

K′(t) + Q + AT K(t) + K(t)A−K(t)aR−1aT K(t)

+

n∑
i=1

α2
i K(t) = 0. (48)
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• α−discounted quadratic cost. The policy that
minimizes the α− discounted cost (18) is (32)
with x(t) solution of (8). The corresponding
value function is (33) taking g(w(t)) = g with g
a constant and K(t) = K satisfies the algebraic
Ricatti equation

Q + AT K + KA−KaR−1aT K −αK = 0,

g =

∑n
i=1α

2
i K

α
.

6 Applications

In this section four applications are presented with the
aim of to illustrate the theory developed in previous
sections.

6.1 DC motor

The motor model has electrical variables that are:
supply voltage of the rotor, Vin current i that will
circulate through the rotor (armature current), winding
resistance of the rotor R, and the inductance of the
winding of the rotor L, the mechanical characteristics
are: the angular position θ, angular velocity of rotation
of the rotor dθ

dt and moment of inertia of the rotor
shaft J as shown in Fig. 1, see Ruderman et al. (2008)
,Saisudha et al. (2016), Emhemed and Mamat (2012).

The second-order differential equation that model
the angular position and angular velocity in a DC
motor is given by

d2θ

dt2
= −

KbKT

RJ
dθ
dt

+
KT Vin

RJ
, (49)

assuming that in many motors the inductance can be
neglected. The variables KT (armature constant) and
Kb (motor constant) are proportionality constants. The
ODE (49) can be written in matrix form as

dx(t)
dt

= Ax(t) + au(t) (50)

where A =

[
0 1
0 −KT Kb

RJ

]
, a =

[
0

KT
RJ

]
, u(t) = Vin(t)

and x (t) :=
[
θ (t)

dθ
dt

]
.

In this application a stochastic voltage source
(white noise) and a stochastic resistance (colored
noise) are considered. The noise in voltage is due

to factors such as ripple voltage generated by
incomplete suppression of the alternating waveform
after rectification whereas the noise in the resistance
is by discreteness of electric charge (thermal noise),
see Rawat and Parthasarathy (2008); Kolarová and
Brancík (2016); Kolarová (2005). Random effects due
to both white and colored noise can be included by
replacing the input and internal parameters in the
deterministic model (50) through a random process as
shown in the following.

SDE driven by a mixture noise. Consider a
stochastic voltage source of the form Vin(t) = Vin(t) +∑n

i=1αidWi(t), therefore, the SDE (50) is replaced by

dx (t) = (Ax (t) + au(t))dt +
KT

RJ

n∑
i=1

αidWi(t), (51)

with
∑n

i=1αi = 1.
SDE driven by a white noise and a colored noise.

In this case, it adds noise in both the voltage source
(white noise) and the resistance (colored noise), i.e.,
voltage and the resistance are replaced by Vin + ηξ1(t),
and R+βw(t), respectively, where ξ1(t) is a white noise
and w(t) is the solution of the Ornstein-Uhlenbeck’s
differential equation (9). Under these two noises the
stochastic differential equation that model the angular
position and angular velocity in a DC motor is

dx(t) = (A(w(t))x(t) + a(w(t)))u(t)dt + b(w(t))dW(t)
(52)

where x (t) :=

 w(t)
θ(t)
dθ
dt

 , A(w(t)) =


−ρ 0 0
0 0 1
0 0 −KT Kb

(R+βw(t))J

 ,
a(w(t)) =


0
0

KT
(R+βw(t))J

 , b(w(t)) =


σρ 0 0
0 0 0
0 0 ηKT

(R+βw(t))J

 ,
W(t) =

 W(t)
0

W1(t)

 , and u(t) = Vin(t).

Comparison of the solutions from (50), (51) and
(52) with experimental data.

A motor with Encoder of 6V / 12 V (4000/8000
RPM) and 30 mA, was used to carry out the
experiment. The electrical variables values of the
motor are R = 5.2 Ω, J = 0.01 kg.m2, KT =

0.75 N.mA−1, Kb = 0.75 V
(
Rad.s−1

)−1
, and Vin =

12 V . The experiment consists of connecting the
direct current (DC) source to the DC motor and
measuring the angular position θ(t) and calculating
angular velocity dθ(t)/dt. This process was repeated
20 times with a duration of T = 0.5 seconds.
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Fig. 1. DC motor.

Table 1. Comparison of the measurements of the angular position and angular velocity variables vs solution of
ODE and SDE.

Comparison of Measurements vs RMS Error θ
(Rad)

RMS Error
dθ/dt (Rad/s)

Solution of ODE 2.9035 2.1922
SDE driven by a white noise and a colored noise 2.49014 1.8605
SDE driven by a mixture noise 2.9039 2.2023

To obtain the measurements a Compact Rio 9068,
a digital inputs module 9375, an encoder connected to
the motor shaft and the Labview software were used.

Table 1 shows the root mean square error (RMSE)
between the experimental data (measurements) and the
analytical solutions of the ODE (50) and the SDEs
(51) and (52). These RMSE show that the SDE (52)
presents the best good fit to the experimental data (real
system). Therefore, we solve the finite-horizon LQR
optimal control problem considering that the dynamic
system for the DC motor evolves as in (52).
Finite-horizon LQR optimal control problem.

In this application U = [−12,12]. Fig. 2 shows the
simulation of the angular position and angular velocity
of the DC motor considering the dynamic system
(52) and the optimal control u(t) as in (32). Observe
that both the angular position and angular velocity
stabilize in zero at t = 2.5 s. The values of parameters
used in the simulation are σ = 0.1,η = 1,ρ = 1.0,
β = 1.0, the matrix R = 100000, Q is the identity
matrix, and the initial states are θ(0) = 10 rad and
dθ(0)

dt = 10 rad s−1. The Figs. 2 and 3 show that both
the states θ(t), dθ(t)/dt and the value function J∗(t, x)
tends to zero since in this application the objective of
the LQR controller is stabilize the dynamic system to
zero, precisely.

6.2 Single-phase grid-connected inverter
with LCL filter

The mathematical model for the grid-connected pulse
width modulated inverter was developed in Tang et al.

(2012). The noises present in the real system did not
into account. However, to illustrate our theory, we
consider that the equivalent series resistors (R1 and
R2) are influenced by a colored noise (thermal noise)
whereas the inverter output voltage vo is affected by a
white Gaussian noise, (vo(t) = vo(t) +σ1ξ(t)). So, the
model studied is

dx(t) = (A(w(t))x(t)+ B1vo(t)+ B2vs(t))dt +σBT
1 dW(t)

(53)

with x (t) :=

 i1(t)
i2(t)
vc

 ,
A =

 −R1 + w(t)/L1 0 1/L1
0 −R2 + w(t)/L2 1/L2

1/C −1/C 0

 ,
B1 :=

 1/L1
0
0

 , B2 :=

 0
−1/L2

0

 , σ =

 σ1
σ1
σ1

 ,
where L1 is inverter side inductance; L2 is grid side
inductance; R1 is equivalent series resistor of L1;
R2 equivalent series resistor of L2; i1 inverter output
current; i2 grid side current; vc capacitor voltage; vs is
the grid side voltage. The main function of the inverter
consists with to convert the direct current (DC) power
delivered by photovoltaic panels to alternating current
(AC) power. In order to transmit the AC power, the
inverter must follow voltage and current reference
signals, therefore, a LQR controller can be applied.
In this case, the objective of the LQR controller
consists of achieving maximum power delivery from
the inverter to the grid.
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Fig. 2. Angular position θ (left) and angular velocity dθ/dt (right) for the finite-horizon LQR problem.
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Fig. 3. Optimal control f ∗(t, x) (left) and value function J∗(t, x) (right) for the finite-horizon LQR problem.

The reference signals proposed in Tang et al.
(2012) are: i2re f = 20sin(ωt), vsre f = 311sin(ωt),

i1re f = C
dvs

dt
+ i2re f , and vcre f = L2

di2re f

dt
+ vs.

LQR optimal control.
A LQR controller can be found linearizing

A(w(t))x(t) + B1vo(t) + B2vs(t) around an operating
point (xre f ,vcre f ,vsre f ) assuming that the deviation
vs − vsre f = 0.

In the infinite horizon case, the LQR optimal
control is (40) with x(t)−xre f in lieu of x(t) and a(w) ≡
B1. The value function is (41) with K satisfying the
Riccatti equation (42) and g(w) is the solution of the
ODE (43). In the simulation of (9), (32), (37) and (53)
the parameters used were; L1 = L2 = 1mH, R1 = R2 =

0.01Ω, C = 20µF, DC bus voltage Vdc equals 400V ,
switching frequency of 10kHz, grid voltage (line to
line) of 380V , and grid frequency of 50 Hz, σ = 1,
ρ = 2, α = 1. A random behavior in the states i1 and
i2 is observed because the resistances were modeled

with colored noise, see Fig. 4. It can be seen that
these states follow the reference signal very precisely,
so the stochastic LQR controller has good steady-
state performance and can be more nearby to the real
system. The law control f ∗(x) and the value function
J∗(x) are displayed in Fig. 5, note that f ∗(x) is in
interval [−60,60] while that J∗ ∈ [0,6× 104].

6.3 Temperature control of a non-
isothermal continuous stirred-tank
reactor (CSTR)

In the work Meghna et al. (2017), the authors used a
LQR controller in order to maintain the temperature of
the reactant mixture to the given set point by means of
coolant medium. It’s well known that in steady state,
the heat removed by the coolant medium should be
equal to the heat that is produced by the reaction.
Therefore, its objective was to control the temperature
of the product manipulating the temperature of the
coolant.
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Fig. 4. Infinite horizon LQR for single phase grid connected inverter.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Time (s)

-60

-40

-20

0

20

40

60

v o
  (

V
)

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Time (s)

0

1

2

3

4

5

6

A
m

pl
itu

de

104

Fig. 5. Optimal control f ∗ (left) and value function J∗ (right) for infinite-horizon LQR problem.

The concentration Ca and temperature T in the
non-isothermal CSTR are modelled by the nonlinear
stochastic differential equations

dCa

dt
=

Q
A

(Cai −Ca)−Koe−
E

RT Ca, (54)

dT
dt

=
Q
T

(Ti−T )+ JKoe−
E

RT Ca−
UA
ρcpV

(Tc−T ). (55)

The parameters in (54)-(55) are: Ca :=
concentration of A in the CSTR (mol/m3); Q :=
volumetric flow rate (m3/s); V := volume of the CSTR
(m3); Cai := inlet concentration (mol/m3); Ko :=
constant (1/sec); E := activation energy (J/mol);
R := universal gas constant (J/molk); J := heat of
reaction (J/mol); U := overall heat transfer coefficient
(W/m2 − K); A := Area (m2); Ti := inlet temperature
(K); T := temperature in the CSTR (K); Tc := coolant
temperature (K); ρ := density of the A-B mixture
(Kg/m3).

Now, we linearized (54)-(55) about the steady state
(Cass,Tss,Tcss) by means of Taylor series neglecting

the higher order terms. To this end, we consider

f (Ca,T,Tc) :=
Q
A

(Cai −Ca)−Koe−
E

RT Ca,

g(Ca,T,Tc) :=
Q
T

(Ti−T )+JKoe−
E

RT Ca−
UA
ρcpV

(Tc−T ),

and
dCa

dt
− f (Cass,Tss,Tcss) =

∂ f
∂Ca

(Ca−Cass)+
∂ f
∂T

(T−Tss)

+
∂ f
∂Tc

(Tc −Tcss), (56)

dT
dt
−g(Cass,Tss,Tcss) =

dg
∂Ca

(Ca−Cass)+
∂g
∂T

(T−Tss)

+
∂g
∂Tc

(Tc −Tcss). (57)

In the steady state dCa
dt = dT

dt = 0 implying that
f (Cass,Tss,Tcss) = g(Cass,Tss,Tcss) = 0. Taking Ca =

4, Q = 1, V = 100, Cai = 1, Ko = 0.01, E = 8697,
R = 1, A = 1, J = 104, U = 104,Ti = 289, ρ = 100,
cp = 100, Tss = 365, Tcss = 289 and Cass = 4, we get
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∂

∂Ca
f (Ca,T,Tc) = −

Q
A
−Koe−

E
RT |T=Tss = −0.01, (58)

d
dT

f (Ca,T,Tc) = −
CaEKoe−

E
RT

RT 2 |T=T ss,Ca=Cass = 0,

(59)

d
dTC

f (Ca,T,Tc) = 0, (60)

∂

∂Ca
g(Ca,T,Tc) = JKoe−

E
RT |T=Tss = 0, (61)

∂

∂T
g(Ca,T,Tc) =

−
AU

Vcpρ
−

QTi

T 2 +
EJKoCae−

E
RT

RT 2 |T=T ss,Ca=Cass = 0.006,

(62)
and

∂

∂Tc
g(Ca,T,Tc) = −

AU
Vcpρ

= −0.01. (63)

Substituting (58)-(63) in (56) and (57) we
obtain the linearized mathematical model for the
concentration and temperature in the non-isothermal
CSTR

dCa

dt
= −0.1(Ca −Cass),

dT
dt

= 0.006(T −Tss) + 0.01(Tc −Tcss).
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Fig. 6. Temperature (left) and concentration (right) of the reactant mixture in the CSTR.
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Fig. 7. Controller: temperature of the coolant.
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0 1 2 3 4 5 6 7 8 9 10

Time (s)

-20

0

20

40

60

80

100

A
m

pl
itu

de

SDE
ODE

0 1 2 3 4 5 6 7 8 9 10

Time (s)

-20

0

20

40

60

80

100

120

140

A
m

pl
itu

de

SDE
ODE

Fig. 9. Input flows (u1(t),u2(t)).

Finally, aiming at designing the finite-horizon
stochastic LQR controller (17)-(32)-(48), we define
Cal(t) := Ca(t) − Cass;Tl(t) := T (t) − Tss and u(t) :=
Tc(t)− Tcss to get the linear SDE driven by a mixture
noise

dx(t) =

[
−0.01 0

0 0.006

] [
Cal(t)
Tl(t)

]
+

[
0

0.01

] [
0

u(t)

]

+

[
α1 0
0 α1

] [
dW1(t)
dW2(t)

]
+

[
α2 0
0 α2

] [
dW3(t)
dW4(t)

]
, (64)

where x(t) :=
[
Cal(t)
Tl(t)

]
, Wi(·) and W j(·) are independent

Brownian motions for i , j, i, j = 1,2,3,4, with
amplitudes α1 and α2, respectively. In the simulation
α1 = 0.5,α2 = −0.5, R = 1 and

Q =

[
1 0
0 2500

]
. (65)

Figs. 6 and 7 show that the temperature of the
reactant mixture achieved given set point (level) Tss =

365,Tcss = 289. Therefore, we can conclude that the
stochastic LQR is a good control that capture external
noises possibly caused by the operation of the pump.

6.4 Volume and concentration control of an
CSTR

In order to maintain the concentration and volume of
liquid in the CSTR to the given set point (level) a LQR
controller is designed. The finite-horizon stochastic
LQR controller (17)-(32)-(48) based on the linearized
mathematical model of the CSRT is proposed in this
section. We recommend the reader to see Bin Poyen
et al. (2013) for more details.

In the CSTR there are two time varying inlets to
the tank with flow rates F1(t) and F2(t). The dissolved
material concentrations of both the inlets are c1 and
c2, respectively, with c1 , c2. The outgoing flow
has a flow rate F(t). It is assumed that the tank
is continuously stirred and mixed well, so that the
concentration of the outlet equals the concentration
in the tank i.e., c(t). In the steady-state situation, all
quantities are assumed to be constant, say V0 for the
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volume, c0 for the concentration and F10, F20 for the
flow rates. Let V(t) be the volume of the fluid in the
tank and define η(t) := V(t) − V0, β(t) := c(t) − c0,
u1(t) := F1(t) − F10 and u2(t) := F2(t) − F20. The
volume and the concentration in the tank are modelled
by the stochastic differential equation with mixture
noise

dx(t) =

[
−0.01 0

0 −0.02

] [
η(t)
β(t)

]

+

[
1 1
−0.25 0.75

] [
u1(t)
u2(t)

]
+

[
α1 0
0 α1

] [
dW1(t)
dW2(t)

]

+

[
α2 0
0 α2

] [
dW1(t)
dW2(t)

]
, (66)

where x(t) :=
[
η(t)
β(t)

]
,Wi(t) and W j(t) are independent

Brownian motions for i , j i, j = 1,2,3,4, and α1 +

α2 = 0. The added external noise in (66) may be
due to the operation of pumps, affecting flow rates.
The set point in our simulation is V0 = 10 Kmol/m3,
c0 = 1.25 Kmol/m3 F10 = 0.015 m3/sec, F20 =

0.005, m3/sec, α1 = 0.8,α2 = 0.1 and T = 10 sec .
Figs. 8 and 9 show that the volume, the concentration,
as well as, the flow rates of the liquid in the tank
achieved given set point. Therefore, the stochastic
LQR controller with mixture noise, maintain desired
volume and concentration of liquid in the CSTR and
moreover, capture possible external noises.

Concluding remarks

This paper concerns with LQR- stochastic optimal
control problems where the dynamic systems are
affected by a combination of white and colored noises.
Our main results can be summarized as follows,

1. It shows the general procedure to calculate
through Itô’s lemma the infinitesimal generator
of the Markovian diffusion processes. This is
a crucial step to raise the HJB-equations in
the dynamic programming approach to solve
stochastic optimization problems.

2. The infinitesimal generators for the controlled
linear SDE studied were explicitly given.

3. The LQR stochastic optimal control problems
where the system’s dynamic evolved according
to: (a) a multiplicative and additive white noise,
(b) a mixture white noise and (c) a white

and colored noise, were explicitly resolved, see
Propositions 5.1 and 5.2 and Remark 5.4.

4. The value functions and optimal policies,
as well as, algebraic and differential Riccati
equations were analytically found.

5. The operator in (22) is the infinitesimal
generator of a diffusion process of the form:

dx(t) = b(t, x(t),w(t),u(t))dt +σ(x(t))dW(t),

where w(t) evolves as in (15), i.e., w(t) is
not necessarily a colored noise. Therefore, we
obtained the HJB-equation associated to more
general optimal control problems which allow
us to study other applications. In fact, our
results can be extended to LQR-OCPs where the
system’s dynamic is a hybrid dffusion process,
Pola et al. (2003), Blom (2003), Mao et al.
(2007).

Base on our experience the type of noise impacting
the dynamic system and the way it will be added has to
be check before to solve the optimization problem. In
our case, the LQR-optimal control problem associated
with the DC motor dynamic which evolves with a
combination of white and colored noise was used
because is the best fit to experimental data.
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