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Abstract
The use of Near-Infrared Spectroscopy (NIRS) and Chemometrics in-situ or in-line monitoring of xylitol fermentation process
by Candida tropicalis IEC5-ITV was investigated in a bioreactor and in a complex analytical matrix. Xylose, xylitol, biomass,
and glycerol determinations were performed by a transflection fiber optic probe, immersed in the culture broth and connected to a
Near-Infrared (NIR) process analyzer. The NIR spectra recorded between 800 and 2,200 nm, these NIR Spectra were pretreated
using Savitzky-Golay smoothing and second derivative to perform a partial least squares regression (PLSR) and generate the
calibration models. These calibration models were tested by external validation and then used to predict concentrations of xylitol
fermentations in batch culture. The standard errors of calibration (SEC) and determination coefficients (R2) for xylose, xylitol,
biomass, and glycerol were 0.234 (R2 = 0.991), 0.220 (R2 = 0.999), 0.234 (R2 = 0.991) and 0.015 (R2 = 0.999) gL−1 and
standard errors of prediction (SEP) were 1.771, 0.192, 0.011, 0.503 g/L, respectively. Calibration and validation criteria were
defined and evaluated to generate robust and reliable models of a xylitol fermentation process. For validation models, SEV and
SEP were ≤ 10 % of initial concentration of xylose and R2 ≥ 0.96 were obtained. These results indicate that in situ NIRS probe
is suitable for real-time monitoring of xylitol production.
Keywords: Near Infrared Spectroscopy (NIRS); xylose; Candida Tropicalis; real-time monitoring; xylitol.

Resumen
Se investigó el uso de la Espectroscopia de infrarrojo cercano (NIRS por sus siglas en ingles) y la quimiometría en la medición
en tiempo real del proceso de producción de xilitol utilizando Candida tropicalis IEC5-ITV en biorreactor y en una matriz
analítica compleja. Las determinaciones de xilosa, xilitol, biomasa y glicerol se realizaron mediante una sonda de fibra óptica
de transflexión, sumergida en el caldo de cultivo en el biorreactor y conectada a un analizador de procesos de infrarrojo cercano
(NIR). Los espectros NIR registrados fueron entre 800 y 2200 nm, estos espectros NIR fueron pretratados utilizando el suavizado
de Savitzky-Golay y la segunda derivada para realizar una regresión de mínimos cuadrados parciales (PLSR) y generar los
modelos de calibración. Estos modelos de calibración se probaron mediante validación externa y luego se utilizaron para predecir
las concentraciones del proceso de fermentación de xilitol en un cultivo por lote. Los errores estándar de calibración (SEC) y
los coeficientes de determinación (R2) para xilosa, xilitol, biomasa y glicerol obtenidos fueron 0.234 (R2 = 0.991), 0.220 (R2 =

0.999), 0.234 (R2 = 0.991) y 0.015 (R2 = 0.999) g/L y los errores estándar de predicción (SEP) fueron 1.771, 0.192, 0.011, 0.503
gL−1, respectivamente. Se definieron y evaluaron criterios de calibración y validación para generar modelos robustos y confiables
de un proceso de producción de xilitol. Para los modelos de validación, el SEV y SEP fueron <10 % de la concentración inicial
de xilosa y se obtuvieron R2 >0.96. Estos resultados indican que la sonda NIRS en línea es adecuada para el monitoreo en tiempo
real del proceso de producción de xilitol.
Palabras clave: Espectroscopia de infrarrojo cercano, xilosa, Candida tropicalis, monitoreo en tiempo real, xilitol.
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1 Introduction

Xylitol is a five-carbon sugar alcohol that can be found
in nature in small quantities. It has attracted global
attention because of its sweetening power like that of
sucrose but provides much fewer calories.

Xylitol is known to metabolize through insulin-
independent pathways in human body and therefore
it can be used as sugar substitute for diabetics.
Moreover, a significant property that has been found
in xylitol is to be anticariogenic, which can help
promote oral health and prevent caries (Prakasham
et al., 2009; Mussatto et al., 2012; Hernández Pérez
et al., 2019). The Xylitol market continues to see
strong demand and rapid growth worldwide, due to an
increasing health-conscious consumer and fast growth
in chewing gum sales (Franceschin et al., 2011).
To produce this chemical in a more environmental-
friendly manner, research has been conducted on
alternative strategies that utilize microorganisms for
conversion of Xylose to Xylitol from hemicellulosic
hydrolysates (Seonghun, 2019; Reshamwala & Lali,
2020). The ability to produce Xylitol as a normal
metabolic product has been frequently observed for
diverse yeasts, and particularly Candida species have
been reported to produce a high yield of Xylitol
under oxygen-limited conditions (Walther et al.,
2001; Ping et al., 2013; Castañón-Rodríguez et al.,
2019; Carneiro et al, 2019; Martínez-Corona et al.,
2020). Some investigators have published studies
in different processes using glucose and xylose as
carbon source to produce biotechnology products
(Marison et al., 2013; Pérez et al., 2013; Goldfeld
et al., 2014; Tamburini et al., 2014; Corro-Herrera
et al., 2016; Corro-Herrera, et al., 2018; Pérez-
Cadena et al., 2018; Haq et al., 2020; Hamid et
al., 2021). Industrial level monitoring of Xylitol
production is another challenge to be overcome
due to the lack of a methodology that allows the
capacity to ascertain real-time fermentation conditions
and to use this information for taking decisions.
Furthermore, reliable monitoring can help to improve
fundamental understanding of cellular metabolism and
thus be able to optimize the bioprocess (Vaidyanathan
et al., 1998; Morita et al., 2011; Fazenda et
al., 2013; Xu et al., 2019; Pessoa-e-Silva et al.,
2020). Development and bioprocess optimization are
highly dependent on accurate real-time monitoring
of chemical and physical process variables (Blanco
& Peinado, 2004; Arnold et al., 2012; Alves-Rausch

et al., 2014; do Nascimento et al., 2017). Hence,
Near Infrared Spectroscopy (NIRS) can be applied
as real-time fermentation monitoring methodology
using rapid and non-destructive multi-constituents’
analyses, without involving sample pretreatment,
which leads to effective bioprocess control, a tool
for increased yield, productivity and reproducibility
(Wold et al., 2001; Scarff et al., 2006; Workman, 2008;
Liebman et al., 2009; Lourenço et al., 2012; Li et
al., 2020). In the present study, the utility of NIR
spectrometry for the real-time monitoring of Xylitol
production by Candida tropicalis IEC-5 using xylose
as a carbon source was investigated.

2 Material and methods

2.1 Strain

Candida tropicalis IEC5-ITV a strain isolated from
sugarcane bagasse, in Bioengineering Laboratory
of National Technology Institute (TecNM)-
Technological Institute of Veracruz (ITVer). This
strain was stored at 4 ºC and maintained in semi
synthetic medium agar plates consisting of (gL−1):
bacteriological agar, 25.0 (Bioxon, Mexico); xylose,
20.0 (J.T. Baker, Mexico); yeast extract, 10.0 (Bioxon,
Mexico).

2.2 Inoculum preparation and batch
cultures

A defined medium was used for both inoculum
preparation and batch cultures, which contained
xylose, 20 gL−1; KH2PO4, 5.0 gL−1; Urea, 3.0 gL−1;
MgSO4· 7H2O 0.4 gL−1; yeast extract, 1.0 gL−1.
Incubated at 30 °C for 24 h at 250 rpm (incubator-
shaker Daihan LabTech CO., LTD, model: LSI ?
3016A). Batch cultures were carried out in a 14 L New
Brunswick bioreactor (BioFlo 3000, USA) with a 5 L
working volume. Process conditions were 30 ºC, 150
rpm, pH 5.5, inoculum size 6 × 106 cell/mL with 99
% viability (Viability was assessed by the methylene
blue staining method proposed by Lange et al. (1993)).
Samples were taken periodically. Near-Infrared (NIR)
monitoring was made online using transflection probe.
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2.3 Reference analytical methods

2.3.1 Biomass

Culture (5.0 mL) was filtered onto a pre-weighed
Whatman Glass Filter grade (GF/C) 0.2 µm
(Whatman, England). The cells were then washed
twice with distilled water and the filter cake dried to
a constant weight in an oven (Yamato Scientific Co.
Ltd, USA) at 60 ºC.

2.3.2 Xylose, Xylitol and Glycerol

Xylose, xylitol and glycerol concentrations
were determined by high performance liquid
chromatography (HPLC) (Waters 600, TSP Spectra
System, Waters, Milford, MA, USA), with a Waters
2414 index detector (TPS Refracto Monitor V Waters,
Milford, MA, USA) at 50 °C. A Shodex SH 1011
column (8 x 300 mm) (Waters, Milford, MA, USA)
was used to separate sugars by size exclusion and
organic acids and alcohols by ion exclusion mode,
using 5 mM H2SO4 as mobile phase at a 0.6 mL/min
flow rate. The analysis was carried out in duplicate.

2.3.3 NIRS measurements

Spectra of whole matrix were acquired with a Near-
Infrared Spectrophotometer XDS Process Analytics
(Foss-NIRSystems, Silver Spring, USA) using an in-
situ fiber optic transflection probe, 3 mm path length.
The fiber optic probe is made of 316 L stain-less steel
with the corresponding corrosion resistance against
sulfuric and acids. The samples were scanned in
duplicate over the whole NIR range (800-2200 nm)
every 3 hours until carbon source depletion. The
spectra were then averaged and derivatized (second
derivative) with a segment size of 10 nm and gap size
of 2 nm to reduce the relation sample/instrument noise
(Williams, 1987).

2.4 Spectra pretreatment

First, for all analytes, spectra were averaged and
the second derivative with Savitzky-Golay smoothing
was applied to 10 nm segment sizes and 2 nm
gap sizes. Segment sizes describe the number of
data points involved in the degree of smoothing
(reducing sample/instrument noise), with a specific
gap size between the segments (Williams, 1987).
Second derivative was used to deconvolute any broad
overlapping peaks and reduce any baseline shift
(Crowley et al., 2005).

Table 1. Wavelength regions used for calibration and
validation.

Analyte Wavelength (nm)

Xylose
1182 - 1234; 1439 - 1489; 1674 - 1731;
1839 - 1889;
1903 - 1944; 1999 - 2080; 2094 - 2121;
2168 - 2183

Xylitol
1179 - 1223; 1463 - 1489; 1677 - 1716;
1834 - 1886;
1925 - 1944; 2000 - 2056

Biomass 824 - 930

Glycerol 892 - 958; 1095 - 1118; 1175 - 1324; 1680
- 2061

2.5 Model development and validation

Xylose, xylitol, biomass, and glycerol were modeled
using the whole bioreactor sample and its spectral
region used to construct the model was showed in
Table 1. Selections of these spectral regions were
supported by spectral second derivative analysis.
Analytical models were constructed using partial
least square regression (PLSR) in Vision v3.5 (Foss-
NIRSystems, Silver Spring).

External validation was performed using random
subsets technique, standard error in calibration
and prediction/external validation (SEC and SEP,
respectively) and determination coefficient (R2) were
used as chemometry parameters to assess the quality
of the models.

3 Results and discussion

3.1 Kinetic of xylitol production with
Candida tropicalis IEC5-ITV

The batch process to produce xylitol by xylose using
Candida tropicalis IEC5-ITV is presented in Figure
1, typical profiles of the key analytes (xylose, xylitol,
biomass, and glycerol) measured with reference
analytical methods (HPLC and VIS Spectroscopy) are
showed. During the first five hours of the process,
xylose consumption was low due to the lag phase;
from the sixth hour, exponential phase starts, and
fermentation time is approximately 45 h and xylitol
concentration achieved 6 gL−1 with a yield of 0.35
g xylitol par g xylose. Xylitol is a growth associated
metabolism, by this, higher biomass concentrations
means, higher xylitol in medium.

www.rmiq.org 3
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Figure 2 shows in-line NIR spectra of xylitol
production during xylose fermentation. Absorbance
line increasing in the graph is due to the biomass
scattering effect. For calibration model construction, is
necessary to extract all useful information of the NIR
canonical spectra applying chemometrics.

Another useful information to take in
consideration is the intense shift shows in wavelength
window between 1350 - 1450 nm, due to the strength
vibration of -OH functional group in water. This
window must be extracted of the wavelength analysis
using a spectral subtraction, because there is not useful
information for the calibration of any analyte and
contribute to avoiding model overfitting.

3.2 Calibration model construction

Firstly, to build a NIRS calibration model, analysis
and definition of the wavelength regions must be
performing (Table 1). As has been stated, NIR
spectra have as common features, weak and broad-
overlapping absorption bands compared to middle IR
spectra. The organic molecular bonds are absorbers
of NIR radiation, and these types of bonds can
be present in the different analytes of a biological

Figure	3:	
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sample, transforming in a complex matrix, whose
zero order or raw NIR spectrum (Figure 2) with
its known overlapping characteristic, in most cases,
cannot provide for each analyte the above mentioned
specific wavelengths. In the present case, all the zero
order spectra underwent second order derivatization to
enhance spectral features, overcoming or decreasing
drawbacks (broad-overlapping peaks) and biomass
baseline shift changes (Figure 3). All peaks appear
in zero order spectra, deconvolute and appear as
depression in second derivative spectra.

In a typical fermentation process, second
derivative of the zero order spectra have four spectral
regions of analysis. First region (900 - 950 nm)
is where the most of yeast interact with the NIR
radiation. Second and third regions (1150 - 1250;
1350 - 1450 nm) represents the absorption of the
water. Finally, the fourth region (1700 - 1900 nm),
is where all the interest analytes have the most intense
interaction with the radiation. According to Cavinato
et al., (1990), it is important for the calibration
to eliminate the water regions to construct reliable
prediction models.

3.3 Biomass model

Typically, biomass is measured off-line by gravimetric
and optical methods with the corresponding delay in
results. NIRS is applicable as invasive in-situ or in-
line monitoring, allowing the possibility of real-time
biomass monitoring using correlations with dry cell
weight (Williams, 1987; do Nascimento et al., 2017).

Table 2, shows the values of SEC, SEP and R2

for biomass modeling and Figure 4 shows curve for
calibration and validation of the biomass. R2 value
was close to one, indicating a fine correlation between
laboratory data and NIRS data.
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Table 2. Models quality parameters f: number of factors in the calibration model; SEC: standard error in calibration;
SEP: standard error in validation/prediction; R2: determination coefficient. Units for SEC and SEP are g/L.

Calibration Validation

Analyte f SEC R2 SEP R2

Biomass 8 1.396 0.95 1.191 0.974

Xylitol 8 2.365 0.95 1.166 0.977

Xylose 8 4.803 0.96 1.778 0.984

Glycerol 8 0.134 0.95 0.288 0.96
Figure	4:	
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The standard error of calibration (SEC) for
biomass model being 1.396 g/L. Biomass standard
error of external validation or standard error of
prediction (SEP) was 1.191 g/L. In case of the
validation curve, the prediction adjusts very well (R2

= 0.974) to the natural kinetic behavior of the process.
Furthermore, considering the inherent difficult for the
biomass calibration due to all spectral features to take
in consideration, the variability of the prediction is
consistent to the SEP and SEC values. In case of the
calibration curve, accumulation of points in the lower
scale represents the phenomena of lag phase and low
growth during the yeast adaptation to the media. There
are reports for this low growth of this yeast (Castañón-

Rodríguez et al., 2019). Despite this, the prediction
capacity of the model adjusts to the variability of the
growth during fermentation, as shows the plot.

3.4 Xylitol model

In this study, the selection of the wavelength regions
for xylitol was based on the second derivative analysis
(Figure 3). Table 1 incorporates the spectral windows
selected for xylitol. Figure 5 shows the calibration
and validation datasets for xylitol model that were
generated in the present investigation.

Table 1 shows that xylitol was successfully
modeled using three wavelength regions, with an R2

value of 0.95 and low SEC and SEP (2.365 and
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1.166 g/L, respectively). According to the quality
parameters and the information in the validation curve,
the perform of xylitol prediction model, adjusts to
the variability of the process. Although, xylitol and
xylose are similar from the molecular perspective, the
wavelength selections prove to be effective for the
spectral identification of both analytes. Furthermore,
the prediction shows robust, adjusting to the smooth
variations during process. For example, the production
gap around 20 h. Chemometrically speaking, this
due the high concentration of samples in the low
and medium of the calibration curve, assuring a
robust prediction. This is a very desirable condition,
considering the dynamic of the process and further
real-time in line prediction.

3.5 Xylose model

The NIR wavelength selected for xylose monitoring
(Table 1) was based on the analysis of second
derivative spectra. Xylose NIRS monitoring becomes
a challenge in time, due to the increase of biomass
in medium and the correlation between xylose
consumed and xylitol-glycerol production. A strategy
such as adaptive calibration by spiking experiments
breaks this correlation and light scattering caused by
biomass (Agbogbo and Coward-Kelly, 2008; Princs
et al., 2014; Corro-Herrera, et al., 2018). During
fermentation, samples were filtered and spiked with
known concentrations of xylose (Tanino et al., 2010).
Figure 6 shows the calibration and validation datasets
for the glucose model.

The values of SEC and SEP were 4.803 and 1.778
g/L respectively (Table 1). Efficiency of this prediction
model was the best of the study. Calibration curve
shows a more homogeneous distribution of points,
and in consequence, there is a quite good adjust in
the prediction. This due, the application of adaptive
calibration. Despite the xylose consume was constant
with no important gaps in the points, prediction power
adjusts to the variation during the process.

3.6 Glycerol model

Glycerol is another product present in xylose
fermentation due to cell stress induced by culture
conditions or lack of nutrients. The errors for the
calibration set and for external validation were 0.134
g/L and 0.288 g/L, respectively (R2 = 0.95). Figure 7
shows the calibration and validation datasets for this
analyte. As shown in the calibration curve, there is
a breach between data. A big cluster of data is in

the lower position of the curve and there are three
points (not outliers) that are in upper position. This
situation is not rare but usually, modeling analytes
with lower production during the process. For avoiding
this problem, the use of Standard Normal Variation
(SNV) is recommended. Despite this, the validation
curve shows an acceptable adjusts of the prediction
data vs reference data.

Conclusions

The technical feasibility of monitoring the xylose
fermentation by Candida tropicalis IEC5 for xylitol
production employing NIRS and Chemometrics has
been demonstrated. This affirmation is based on the
production employing NIRS and Chemometrics has
been demonstrated. This affirmation is based on
the generation of functional prediction models for
biomass, xylitol, xylose, and glycerol, all with R2

values close to 1 and low SEC and SEP. The models
are based on large datasets compared to previous
studies, contributing to likely operational robustness.
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