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Abstract
Nowadays, the process modeling and simulation exhibit notable importance, allowing the experimentation between different
process designs and control configurations, as well as quality assurance and process optimization studies. In this sense, the
equation-oriented approach, in which all the equations describing each sub-process are compiled into a single equation set, stands
out as an advantageous approach. The current work focuses on the discussion of a developed tool, SLOTH, that is open-source
and developed in Python computational language. The tool was applied in three different cases of study of industrial relevance,
and the results obtained shown that the tool was able to solve the problems, obtaining values coherent with those presented in
the literature, although some tasks required prohibitive computational times. Those aspects will be optimized in future versions
of the tool, which is built collaboratively through the open-source nature of the project.
Keywords: modeling, simulation, equation-oriented simulation, Python, open-source.

Resumen
En la actualidad, el modelado y simulación de procesos tiene una importancia notable permitiendo la experimentación entre
diferentes diseños de procesos y configuraciones de control así como estudios de aseguramiento de la calidad y optimización de
procesos. En este sentido, el enfoque orientado a ecuaciones, en el que todas las ecuaciones que describen cada subproceso se
compilan en un solo conjunto de ecuaciones, se destaca como un enfoque ventajoso. El trabajo actual se centra en la discusión de
una herramienta desarrollada, SLOTH, que es de código abierto y desarrollada en lenguaje computacional Python. La herramienta
se aplicó en tres casos diferentes de estudio de relevancia industrial, y los resultados obtenidos mostraron que la herramienta
fue capaz de resolver los problemas, obteniendo valores coherentes con los presentados en la literatura, aunque algunas tareas
requirieron tiempos computacionales prohibitivos.Estos aspectos se optimizarán en futuras versiones de la herramienta, que se
construye de forma colaborativa a través de la naturaleza de código abierto del proyecto.
Palabras clave: modelado, simulación, simulación orientada a ecuaciones, Python, código abierto.
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1 Introduction

In the task of modern of industrial processes
design, several aspects need to be considered, which
comprehend economical, energetic and environmental
requirements. Those demands are translated in the
necessity of process energy integration, life-cycle
analysis, alternative production routes assessment,
among other studies. Thus, the utilization of integral
solutions to the process analysis such as modeling and
simulation are vital, due to the economical restrictions
imposed to real-file tests, as well as safety assurance
and quick response time. The application of those
alternatives represent valuable resources, especially
for modern systems, characterized by the large-scale
integration between different subprocesses, energy
integration and demand for process intensification,
among other challenging characteristics (Dowling and
Biegler, 2015; Tian et al., 2018; Wu et al., 2016).

In general terms, the modeling of a process
consists in the development of a representation its
behavior – frequently in a quantitative manner –
accordingly to phenomena intrinsic to its operation,
under an appropriated set of considerations and
simplifications that suffice for the level of detail
desired (e.g.: negligible air resistance, homogeneous
material properties, and so on). Under a technical-
scientific aspect, the most useful models are those
expressed through mathematical expressions. Among
those, the dynamics models (which account for
model variables changes over time) are notably
valuable for providing the information about the
system under consideration (Azar & Vaidyanathan,
2015; Ingham et al., 2008). Those mathematical
models can be applied in different scenarios: research
and development, including the kinetic parameter
determination through laboratory or pilot scale, as
well as design, optimization, control and scale-up
studies; industrial design, in which can be included the
study of equipment arrangement and sizing and the
dynamical process performance assessment, material
and energetic integration, as well as simulation
of process start-up, stop and emergency scenarios;
industrial plant operation, including operator training
and in the systematic process control failures
detection, and exploratory safety analysis, among
others (Luyben, 1989; Ogunnaike & Ray, 1994). Other
complex studies, such as process design with phase
transition systems are also made manageable through
an economical and safety point of view, through

the utilization of process modeling and simulation
(Hernández-Díaz et al., 2020; Inei-Shizukawa et al.,
2020; Sánchez-Vargas & Valdés- Parada, 2021; Tsay
et al., 2017).

In this sense, the simulation of process models
can be classified in two categories: the sequential
approach or simultaneous (SM), for which each
equipment composing the process (or sub-processes)
is sequentially solved; and the simultaneous (or
equation-oriented, EO) approach, in which all the
models describing the sub-processes are compiled
in one large array of equations, and then this
equation set is solved. Despite the superior numerical
effort needed for the resolution of problems using
the EO approach when compared to SM, its
numerical stability and versatility represent vital
aspects to be considered (Dowling & Biegler,
2015), especially when the process under study rely
on the mixture between differential and algebraic
systems, the so-called differential algebraic equation
(DAE) problems. Despite the choice of the system
solving approach, the procedural steps for process
modeling can be identified in broad terms as:
problem definition, in terms of the objectives of the
study; assessment of the comprehension regarding
the intrinsic phenomena of the system; mathematical
formulation of the problem, and its ulterior resolution
through simulation; validation for the developed
model, in terms of known results and revaluation of
the systems considerations if necessary (Ingham et al.,
2008).

In the present work, the implementation of an
open-source tool for equation-oriented simulation
process called SLOTH developed using the Python
computational language, will be presented. The tool
was developed (and it still under development) aiming
to be very clear in terms of its code, using state-of-
the-art libraries of the Python computational language
for the resolution of the problems. In this sense,
the SLOTH software has an internal dimensional
coherence mechanism, a system for symbolic process
of the model(s) that describe one case of study
which are declared as classes, that could derive
from other models, exploiting the object-oriented
nature of the computational language and a numerical
mechanism for resolution of the equation system
formed, as well as an interface for optimization
studies and graph plotting. Although other tools
were developed with analogous intent (Nikolić, 2016;
Soares & Secchi, 2003; Westerberg et al., 1994),
SLOTH aims to represent a collaboratively structured
alternative for modeling, optimization and simulation
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studies using the equation-oriented approach. The
main purpose of the software is to provide an
open-source code for EO process simulation and
optimization problems using robust computational
libraries for its necessary internal procedures, such as
symbolic manipulation, differential equation system
integration and optimization studies. The case studies
selected for evaluation of the tool performance are
typical chemical engineering problems, namely the
optimization of a fed-batch fermentation, parameter
estimation for a polymerization kinetics and a vapor-
liquid equilibrium calculation for a non-ideal binary
mixture. It should also be mentioned that the Python
computational language was used in the development
of the tool, due to its high-level syntax and
rich libraries ecosystem for numerical computation
purposes, as mentioned in several works (Abel et
al., 2016; Capocchi et al., 2011; Larsen et al., 2017;
Nikolić, 2016). The tool is available in the Github
repository (https://github.com/hfsf/sloth).

1.1 Concepts employed in the tool
development

1.1.1 General principles

In the present subsection of the work, the conceptual
principles that guided the development of the tool
will be presented. In this intent, some cardinal aspects
for the software development were accounted, in
accordance with those mentioned by other authors
in related works (Nikolić, 2016; Soares & Secchi,
2003): the classification of the objects used in
the process modeling through the software among
different categories according to their function:
variables (elements that represent unknowns for which
the problem need to be solved), parameters (elements
which value are specified in the models simulation, or
are used as free degrees of freedom for optimization
studies) and constants (fixed value elements), which
are used in the declaration of the equations that will
compose the models; implementation of a dimensional
coherence check mechanism in the declaration of the
equations, thus the result of the operations between
the equation elements were allowed for dimensionally
equal ones (e.g.: addition, subtraction) or the resultant
dimension were calculated (e.g.: multiplication,
division, potentiation, and so on); implementation
of a conversion mechanism of equation elements
into symbolic ones, and operationalization of the
equations through a symbolic computation routine;
implementation of a detection mechanism for the

mathematical type of system equations that compose
the problem (e.g.: linear, non-linear, differential, and
so on), and utilization of the corresponding solution
mechanism for the symbolic system.

The open-source software represent important
alternatives to the commercial tools in terms of the
acquisition and license costs, which is frequently
prohibitive for some academic institutions or small
size private entities. In this sense, besides the
aforementioned economical advantages, the open-
source softwares allow for rapid development,
testing and implementation of necessary features
and eventual bug fixes. It is also worth to mention
the important aspect of flexibility of the tool
for problems that go beyond the application-
oriented focused software development common to
commercial closed-source applications. Furthermore,
the utilization of open-source tools corroborates with
research reproducibility, which is cardinal to the
proper development of scientific method. Lastly, it
can also foster the collaboration in joint research
projects between academic institutions and industrial
partners (Bilke et al., 2019; Keilegavlen et al., 2021;
Pfenninger et al., 2017).

The software employed in the present work was
conceived through the utilization of object oriented
program (OOP) paradigm, due to the intended
versatility and reutilization capabilities intended for
the tool. The implementation employs the concept of
inheritance and polymorphism (Hiremath & Tavade,
2016) for the Variable, Parameter and Constant
objects class, that derivate from a broader type
of object class, called Quantity. Those objects
can either have a specified numerical value (absent
for undetermined parameters) and a dimensional
definition through an Unit object. Similarly, the
UnitOp objects are derived from the object class
Model with the addition of mass conservation and
mixture calculations obtained from their input and
output stream properties, which receive information
from other UnitOp objects. In the supplementary
material ( available in the on-line version of the paper)
the aforementioned object classification in the SLOTH
tool are summarized, with additional categories.

In broader terms, the SLOTH tool aims to
constitute a higher level of computational routines,
constituting an application programming interface
(API) for model development, optimization, parameter
estimation and control. Notable tools such as EMSO
(Soares & Secchi, 2003), DAETOOLS (Nikolić,
2016), IDAES (Gunter et al., 2018) and ASCEND
(Westerberg et al., 1994) stands out as direct
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inspiration for our software, although SLOTH was
developed with the aim to be collaboratively
built and available for reutilization of its code,
constituting an educational resource for equation-
oriented process modeling and simulation studies
regarding the aforementioned capabilities of the tool.
In this sense, SLOTH tool was developed using the
Python computational language, due to its advantages
such as high-level characteristics, broad ecosystem
of libraries for diverse purposes (e.g.: symbolic
computation, differential equation systems solution,
parallel computation, graph plotting, among others)
and easy integration with routines developed in other
computational languages (Gowers et al., 2019; Hazan
et al., 2018; Larsen et al., 2017).

1.1.2 Definition of quantitative objects and equation
insertion

The Variable, Parameters and Constants objects
represent the different types of mathematical entities
that can be used in the equation declaration in the
SLOTH tool, through a Equation object. Those
classification types are presented in the Table 1. Those
types of objects differ themselves by their utilization in
the model declaration process. The Variable object
represents one unknown of the equations system, and
then contributing for the global number of degrees
of freedom of the problem. Similarly, the Parameter
object could contribute to the degrees of freedom if left
unspecified, which is used for parameter determination
studies through the Optimization objects. If its value
is specified, this object is treated as a fixed value for
all the numerical purposes, likewise the Constant
objects, which need to be numerically specified
during its declaration. It is worth to emphasize that
those three classes constitute a group referred as
quantitative objects in the tool scope, being derived
from the Quantity primitive class, as discussed
earlier. Thus, the objects defined from this class exhibit
the characteristic properties of a numerical value
(whether specified or not), and a dimensional value,
defined through an Unit object, as the dimensional
coherence is cardinal for the equation composition,
as will be explained below. It is worth to mention
that in the operation between two different types of
quantitative objects (Variable and Parameter) in
the equations, symbolic computation is employed to
represent the operation between the corresponding
symbols of those objects. If one of the objects has
its value specified (e.g.: specified Parameter or a
Constant object), its numerical value is used for

the symbolic representation. In the Figure 1, the
schematic representation of the symbolic computation
in the SLOTH tool is presented, which synthesize the
aforementioned description of the operations between
SLOTH primitive types for readers convenience.

The quantitative objects can be directly used in the
equation formulation, through their conversion routine
in EquationNode objects, the proper equational
terms. In turn, the Equation objects store the
equations that compose the models declares in the
tool, and are defined through the operation between
the EquationNode objects. As aforementioned, the
operation between adequate dimensional terms is a
cardinal aspect for the equation formarion, as it is
a requirement for the dimensional coherence of the
resultant equational terms. As presented schematically
in the Figure 1, the addition and subtraction of
two quantitative object is only performed if those
objects have equivalent dimensions, otherwise an
error message is returned for the user. For the
multiplication, division, potentiation and rooting,
this dimensional check is not necessary, but the
resultant quantitative object dimension is calculated
accordingly. Lastly, for the transcendental operations
(exponentiation, logarithm, and so on), the operand
must be dimensionless, otherwise an error message is
returned.

1.1.3 Model definition and composition of a problem

The Model objects represent the process models in
the context of the SLOTH tool. For its composition,
quantitative objects of the model are declared, as
well as the equations that describe mathematically the
process under study, forming a well-posed system.
As previously described, the number of degrees of
freedom of a model must be equal to zero for
simulation studies, whereas a positive number is
required for optimization studies, which will represent
ultimately the parameters to be determined by the
internal routines of the tool. The connection between
two Model objects, for instance the case in which one
output stream of a process is the input for another,
is performed through a Connection object, which is
generated by a homonym class, which is derived from
Equation class. In the context of the tool, for the
connection of the models, a special equation is created,
coupling the variables from both models. In Figure 2,
the connection between two models is schematically
represented, obtaining a final set of equations to be
solved, grouped into a single EquationBlock object.
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Table 1. Categories of objects used in the SLOTH tool, describing the conceptual name of objects and their
corresponding nomenclature within the software, and its utilization.

Object type Internal name Utilization

Variable Variable Unknowns that will have their value determined through the
resolution of the equation system

Parameter Parameter Can have their value specified or determined through
optimization studies, or represent one degree of freedom of the
problem

Constant Constant Objects which value is fixed and specified in the declaration of
the model

Quantity Quantity Primitive object for Variable, Parameter and Quantity,
which can have its value specified and has a dimension expressed
through a Unit object

Unit Unit Object which contains the dimensional information about a
Variable, Parameter or Constant

Equation node EquationNode Object that integrates an equation, obtained through a
Variable, Parameter or Constant

Equation Equation Expressions using variables, parameter and constants that
constitute the models

Equation block EquationBlock Array of equations used to describe a model

Model Model Objects which represent the mathematical models used in the
description of the process under study

Unit operation UnitOp Object derived from Model, which contains mechanisms for
mass conservation and mixture calculations through input and
output streams

Problem Problem Set of models used to describe the case of study

Optimization Optimization Object which holds an optimization study to be performed, using
a predefined optimization problem

Optimization Problem OptimizationProblem Object which contains an optimization problem which objective
function is related to a case of study

Figure 1. Schematic representation of the arithmetical operation process in the tool (addition) from two different
Variable objects (a), two equivalent Variable objects (b), a Variable and a specified Parameter or a Constant
object (c) and between a Variable and an unspecified Parameter, with their respective symbolic result.
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Figure 2. Schematic representation of the connection process between two Model objects, through a Connection
object, obtaining a resultant EquationBlock object.

In the supplementary material of the present work,
a code snippet for the creation of a generic model
(Code 1) is presented, in which parameters and
constants are declared, as well as the equations that
describe it mathematically.

1.1.4 Simulation of a problem and optimization
studies

In the context of the SLOTH tool, the simulation
occurs through the Simulation objects, which
in turn are defined from a case of study of
the user, represented by Problem objects. During
the simulation procedure, in the definition of the
Simulation object, the initial conditions necessary
for the resolution of the equation system are declared,
as well as additional configurations (e.g.: solver type,
tolerances, among others). The mathematical type of
equation system in the EquationBlock, obtained
after the consolidation of the case of study, is
automatically detected among the types of equational
systems covered by the SLOTH tool: linear equations,
non-linear equations, ordinary differential equations
and differential algebraic equations (DAE). Upon the
detection of the equation system, the proper internal
routines are used for the resolution of the problem.
After the resolution, depending on the nature of
the solved problem, the stationary set values for
the variables (steady-state problems) or a dynamic
profile for those (dynamic problems) is returned.
Those calculation routines utilizes the resource of
the powerful symbolic calculation library sympy
(Meurer et al., 2017), together with the libraries
assimulo (Andersson et al., 2015) and scipy (Jones

et al., 2001) for the resolution of the differential
and differential-algebraic problems, and the library
pyneqsys (Dahlgren, 2018) for the linear and nonlinear
equations.

The optimization process in the SLOTH tool
is performed through an Optimization object.
During its declaration, an objective function must be
provided, defined through an OptimizationProblem
object, where the user should define the number of
parameters of the objective function, their constraints
and additional configurations. The user should define
which algorithm will be used to solve the optimization
problem. In this intent, the routines provided by the
pagmo (Biscani et al., 2019) library are used, through
its interface for Python computational language. It
is worth to emphasize that this library is endorsed
by ESA (European Spacial Agency), consisting
in state-of-the-art tool for optimization studies.
This library provide support for gradient numerical
calculation through finite differences utilization, what
could subsidize the utilization of gradient-based
optimization routines, although the initial focus has
being meta-heuristic routines, due to its inherent
characteristics of flexibility. As mentioned in the
Section 1.1.3, the problem must have a positive
number of degrees of freedom for the optimization
process, as its mechanism operates through the
iterative process of specifying a numerical value
for the parameters, evaluating the response of the
objective function (OptimizationProblem object)
and storing the result, searching for the minimization
of its value. The user can provide an external
optimization routine for the optimization process
in the SLOTH tool, using the same mechanisms
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implemented in the pagmo library.
In the supplementary material of the present work,

a code snippet for the creation of a Simulation
object from a model declared in SLOTH tool (Code
2) is presented and the subsequent simulation of
the problem, specifically a Lotka-Voltera population
dynamic model (Bomze, 1995) simplification.
Likewise, in the Code 3, a code snippet for an
optimization study of the referred model is presented,
which make direct use of the Code 2, although it is
omitted.

1.2 Architecture of the tool

In order to provide to the reader a broader view
of the software implementation, the computational
architecture of the SLOTH tool is described
conceptually in the supplementary material of the
present work. As aforementioned, the main functional
structure of SLOTH was developed through the
Python computational language.

2 Cases of study and methodology

In the present section, cases of study for the
application of the SLOTH tool are presented.
In order to demonstrate the capabilities of the
tool, benchmarking problems were used, through
the utilization of their corresponding mathematical
models.

The employed stochastic meta-heuristic routines
were employed due to the advantages over
deterministic methods for nonlinear problems, such
as the bioprocess presented in the case study I of the
current work, for which generally good solutions are
normally obtained in relatively modest computational
times. Those methods are also referred by their
flexibility when compared to their deterministic
counterparts, as the analytical properties of the
problem are not directly explored (Rocha et al, 2014;
Ochoa, 2016).

2.1 Case I: Optimization of substrate and
inducer feed in fed-batch cultivation

The present case of study discusses the cultivation of
recombinant bacteria (E. Coli) for the production of
induced foreign protein (β-galactosidase), considering
the addition of glucose substrate and inducer
(Isopropylthiogalactoside, IPTG) (Lee & Ramirez,

1994). The corresponding mathematical dynamical
model is described in the Equations (1)-(7) (Rocha et
al., 2014).

dV
dt

= u1 + u2 (1)

dX
dt

= µX −
(u1 + u2)

V
X (2)

dS
dt

=
u1

V
Cn f −

(u1 + u2)
V

S −
µ

Y
X (3)

dP
dt

= Λ f pX −
(u1 + u2)

V
P (4)

dI
dt

=
u2

VCi f
−

(u1 + u2)
V

I (5)

dK
dt

= −k1K (6)

dR
dt

= k2 (1−R) (7)

The constitutive relations of the model are presented
in the Equations (8)-(11) (Rocha et al., 2014).

ΛR =
0.22

0.22 + I
(8)

µ =
0.407S

0.108 + S + 6.7495× 10−5S 2
(K + RΛR) (9)

Λ f p =
0.095S

0.0108 + S + 6.7495× 10−5S 2
0.0005 + I
0.022 + I

(10)

k1 = k2 =
0.09I

0.034 + I
(11)

The initial conditions for the simulation of the
aforementioned model are presented in the Table 2, as
well as the its parameters values.

The present optimization problem consists in
the maximization of the profitability of the fed-
batch process, expressed mathematically though the
Equation (12) (Rocha et al., 2014). By definition,
the SLOTH tool treat optimization problems as
minimizations, so the referred objective function is
expressed in the negative form when compared to the
literature definition (Rocha et al., 2014).

J f = −P(t f )V(t f ) + Q

t f∫
0

u2(t)dt (12)
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Table 2. Initial conditions and parameter values for the model used in the present case of study (Rocha et al., 2014).

Term Unit Value Meaning

V L 1 Reactor volume
X g L−1 0.1 Celular biomass concentration
S g L−1 40 Glucose substrate concentration
P g L−1 0 Foreign protein (product) concentration
I g L−1 0 Inducer concentration
K g L−1 1 Concentration of inducer shock factor on cell growth rate
R g L−1 0 Concentration of inducer recovery factor on cell growth rate

Ci f g L−1 4 Inducer feed-stream concentration
Cn f g L−1 100 Nutrient feed-stream concentration
Y h−1 0.51 Growth rate yield coefficient
k1 h−1 Calculated Model calculated parameter
k2 h−1 Calculated Model calculated parameter

In Equation (12), the term Q represent the ratio
of the cost of the inducer to the value of the protein
product, and t f is the fed-batch duration, which are
defined respectively as 5 and 15h. Thus, the final
product (J f ) is calculated through the profitability of
the quantity of foreign protein produced, deduced by
the cost of inducer feed-stream employed. For this
open-loop optimization problem, the variables u1 and
u2 constitute the manipulated variables, constrained to
the interval [0; 1.0]. In order to provide a parametric
representation of the substrate and inducer feed rates
(u1 and u2), a cosinoidal expression was employed,
that has the advantages of exhibiting a smooth flow
rate profile (Ochoa, 2016). Thus, the functions for
dynamic determination of the manipulated variables
are presented in Equations (13)-(14)

u1(t) = a1 + cos(b1 + c1t) (13)

u2(t) = a2 + cos(b2 + c2t) (14)

In Equations (13)-(14) the terms a1, b1, c1, a2, b2
and c2 represent the parameters to be optimized, in
order to minimize the output of the objective function
of the problem (J f ), calculated through Equation (12).
In the work of Rocha et al. (2014), the authors
have employed a sequence of linear profiles for the
optimization, with 4 segments for each manipulated
variable (thus, 8 decision variables). In the present
work, the cosinoidal parametrization was preferred
due to the lower number of decision variables and the
resultant smooth feeding profile.

2.2 Case II: Parameter estimation of
polymerization kinetics

The present case of study presents the estimation
of reaction parameters of ethylene polymerization,
carried out with nickel complexes (Schwaab et
al., 2008). It is assumed that the reaction rates
and the active species exhibit a dynamic behavior,
which can be described mathematically through the
Equation (15).

Rp(t) =

m∑
i=0


 m∑

n=i

K pnAn
i

exp (−kit)

 (15)

In the Equation (15), the terms t, Rp, K pn, n, i, ki,
m represent respectively the reaction time (min), the
rate of ethylene consumption along time (molmin−1),
the polymerization rate constant for the n-th active
specie (molmin−1), the n-th active specie, the i-th
active specie, the rate constant for transformation
of i-th active species into (i+1)-th (min−1) and the
maximum number of active species in the reaction
medium of catalyst. The coefficients An

i are defined
recursively as presented in the Equations (16)-(18)

A0
0 = 1, (16)

An
i = An−1

i
kn−1

kn − ki
, i = 1 . . .n− 1,n > 0, (17)

An
n = −

n−1∑
i=0

An
i (18)

In the present case, the occurrence of three active
species (m = 3) was assumed, due to the most accurate
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model results when compared to the experimental data
(Schwaab et al., 2008). Thus, under this consideration,
the obtained model for the reaction rates are presented
in Equation (19).

Rp(t, p̃) =
(
K p1A1

0 + K p2A2
0 + K p3A3

0

)
exp(−k0t)

+
(
K p1A1

1 + K p2A2
1 + K p3A3

1

)
exp(−k1t)

+
(
K p2A2

2 + K p3A3
2

)
exp(−k2t)

+ K p3A3
3

(19)

In Equation (19), the term p̃ represent the
parameters to be estimated, namely K p1,K p3,K p3
and k0,k1,k2. Thus, there are six parameters to be
determined. In the aforementioned equation, the terms
k3 and K p0 are considered zero, as the last specie is
stable, and the initial catalyst species is not active for
polymerization, respectively, as discussed in Schwaab
et al. (2008). The expressions for calculation of the
recursively defined coefficients (e.g.: A0

0,A
0
1, . . . ,A

3
3) as

functions of the rate constant of transformation (e.g.:
k0,k1, . . . ,k3) were omitted, however they could be
promptly calculated through the Equations (16)-(18).

The parameter estimation consists in the
minimization of an objective function that describes
the deviation of the model results from the
experimental data presented in the literature (Dias
et al., 2006), obtained graphically from Schwaab et
al. (2008) using the DataThief software (Tummers,
2006). The objective function used is presented in
the Equation 20, which correspond to the well-known
square-loss equation (Tulsyan & Barton, 2016), or the
sum of squared errors between the experimental and
calculated data.

J f =

N∑
i=1

(y− ŷ)2 (20)

In Equation (20), the terms J f , N, y, ŷ represent
respectively the objective function value, the number
of experimental data-points, the experimental value
and the output calculated by the model. The search
space for each parameter to be estimated is presented
in the Table 3, determined accordingly to the literature
(Schwaab et al., 2008).

Table 3. Search region (constraints) for parameter
estimation for the model (Schwaab et al., 2008).

Parameter Lower bound Higher bound

K p1 0 100
K p2 0 1
K p3 0 10
k0 0 100
k1 0 50
k2 0 1

2.3 Case III: Vapor-liquid equilibrium of a
non-ideal binary mixture

The present case of study presents the calculation
of a vapor-liquid equilibrium for a non-ideal binary
mixture using the modified Raoult’s law and the
Wilson equation. Those calculations are employed
in the process design and analysis in the industrial
context, as example of distillation columns (Ferro
et al., 2015; Kister et al., 1992; Medina-Leaños
et al., 2020; Mendoza & Riascos, 2020). The
thermodynamic model that describes the referred
problem is presented in the Equations (21)-(30)
(Shacham & Brauner, 2017), constituting one set of
non-linear equations to be solved.

Psat
1 = exp[17− 3600/(T − 54)] (21)

Psat
2 = exp[16.5− 3850/(T − 47)] (22)

y1 =
x1γ1Psat

1
P

(23)

y2 =
x2γ2Psat

2
P

(24)

y1 + y2 = 1 (25)

γ1 =
exp (x2W)
x1 + x2Λ12

(26)

γ2 =
exp (−x1W)
x1Λ21 + x2

(27)

W =
Λ12

x1 + x2Λ12
−

Λ21

x1Λ21 + x2
(28)

Λ12 =
V2

V1
exp

(
−a12

RT

)
(29)
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Table 4. Parameter values for the model used in the
present case of study (Shacham & Brauner, 2017).

Term Unit Value

V1 cm3 mol−1 77
V2 cm3 mol−1 18
P kPa 100
x1 − 0.85
x2 − 0.85
a12 calmol−1 440
a21 calmol−1 1250
R cal K−1 mol−1 1.987

Λ21 =
V1

V2
exp

(
−a21

RT

)
(30)

In the Equations (21)-(30), the terms Psat
1 and

Psat
2 , T , x1 and x2, P, γ1 and γ2, V1 and V2

represent respectively the saturation pressure values
(kPa), temperature (K), liquid mole fraction, pressure
(kPa), the activity coefficients and the molar volume
(cm3 mol−1). The terms a12, a21, W, Λ12 and Λ21
represent the parameters of the Wilson equation,
which are presented in the Table 4, along with other
relevant parameters for the equation set.

3 Results and discussions

3.1 Results and discussion for case I

The solution of the optimization problem presented
in the Equations (1)-(7) were performed through
the utilization of the SLOTH tool. Due to the high
non-linearity observed in the refereed problem,
common to biotechnological systems, meta-heuristic
algorithms were employed in the optimization, as
aforementioned. In this sense, two different routines
were selected: self-adaptive differential evolution
(SADE) and particle swarm optimization (PSO) with
constriction coefficient velocity update, available
through the interface with the pagmo library (Biscani
et al., 2019). The configuration employed for both
algorithms corresponds to 30 candidate solutions
(or 30 particles, for PSO), and the stop criterion
is defined as 500 iterations. Additionally, the PSO
required the configuration of the social component
(2.05), cognitive component (2.05), maximum particle
velocity (0.5) and inertia value (0.7298), defined

Table 5. Results obtained for the estimation of the
parameters for the model referent to the case I, for

PSO and SADE routines.

Parameter SADE PSO

a1 −0.833 −0.819
b1 −4.768 −9.996
c1 −4.814 5.015
a2 −0.827 −0.832
b2 −0.589 8.247
c2 −8.384 8.368∣∣∣J f

∣∣∣ (Equation 12) 5.922 5.873

Fig. 3. Dynamic profiles for the manipulated variables
for the problem presented in the case I (u1 and u2),
for the parameter set obtained by PSO and SADE
algorithms.

empirically. The configurations are presented in
summarized form in the supplementary material
(available in the on-line version of the paper). It is
worth to mention that due to its self-adaptive nature,
the SADE algorithm requires only the parameters
of number of candidate solutions and number of
generations to its operation.

In Table 5, the results obtained for the estimation
of the parameters for the model referent to the
case I are presented, namely in the Equations (13)-
(14), for both optimization routines employed in this
intent, along with the final result for the objective
function (J f ), calculated through the Equation (12).
In Table 5, the value of the productivity index is
presented in the positive form (inverse of calculated
through Equation (12).
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Fig. 4. Dynamic profile of the concentration of the
components of the fermentation medium, for the
solution obtained through the utilization of PSO
algorithm.

Fig. 5. Dynamic profile of the concentration of the
components of the fermentation medium, for the
solution obtained through the utilization of SADE
algorithm.

In Figure 3, the dynamic profile for the
manipulated variables for the problem presented in
the case I, namely u1 and u2, are presented. The
dynamic profile of the inducer and substrate flow
rate exhibit a series of repetitive pulses with an
approximate amplitude of 15 minutes. In Figures 4-
5, the dynamic profiles obtained for each optimization
routine are presented (PSO and SADE, respectively),
in terms of the concentration of pertinent metabolites
in the concentration medium. The almost identical
graphical representation of the dynamic profile of
the components of the fermentation medium endorse
the assumption that both optimization algorithms
were equivalent in terms of the objective function

minimization for this specific problem, with some
advantage for the results obtained with SADE
algorithm (higher productivity index, J f , as presented
in the Table 5). Those results are far superior from
those presented in the literature: 0.8165 (Rocha et
al., 2014), and 0.7899 (Lee & Ramirez, 1994),
which can be explained by the pulsative profile
prodived by the cosinoidal parametrization of the
feed rate, contributing to lower consumption of
inducer, thus implying in a higher productivity. It is
worth to emphasize that the exploration of superior
optimization routines for the problem presented in
this case of study is beyond the scope of the
present work, which is more directly related towards
the discussion of relevant aspects of EO simulation
tools development, focusing in the applicability of
SLOTH tool. The utilization of different optimization
algorithms can be performed by the integration of
an external solver, which can be easily integrated in
the SLOTH tool, which can also include monolithic
solvers developed in other languages (FORTRAN,
C++, R, among others) through modern alternatives
for interface between Python and other computational
languages, which are beyond the scope of this work.

3.2 Results and discussion for case II

The solution of the parameter estimation problem
presented in the Equations (15)-(20) were performed
using the SLOTH tool, using the same meta-heuristic
algorithms employed in the Section 3.1. In the Table 6,
the results obtained for the estimation of the model
parameters for the case II are presented, for both
optimization routines employed (SADE and PSO),
along with the final result for the objective function
(Equation (20)). The results presented in the Table 6
indicate that the PSO algorithm was able to find a
better solution for the parameter estimation problem
referent to the case II, with a final value of the
objective function (Equation 20) significantly smaller
than the found by SADE algorithm. It is reasonable
to suppose that due to the self-adaptive nature of
this last routine, which tests several strategies for
recombination of the candidate solutions, it would
be necessary to empirically determine the better
combination of strategies for the minimization of
the objective function. In the Figure 6, the model
results are compared graphically to the experimental
data for both optimization routines. Both results are
far superior from those presented in the literature
(Schwaab et al., 2008), which include two minima
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Table 6. Results obtained for the estimation of the parameters for the model referent to the case II, for PSO and
SADE routines.

Parameter SADE PSO Minimum A (Schwaab et al., 2008) Minimum B (Schwaab et al., 2008)

K p1 99.989 78.153 55.98 249.6
K p2 1.000 0.584 0.000 0.000
K p3 9.999 8.757 7.587 7.587
k0 48.222 3.239 10.31 2.313
k1 49.999 4.858 2.313 10.30
k2 0.868 0.208 0.232 0.232

J f (Equation 20) 1530.314 42.267 15127.372 275.638

Table 7. Results obtained using the SLOTH tool for the problem presented in the case III.

Variable Result (this study) Result (Shacham & Brauner, 2017) Unit

Λ12 0.1228 0.123 -
Λ21 0.6879 0.688 -
γ1 1.022 1.022 -
γ2 2.675 2.675 -

Psat
1 99.077 99.077 kPa

Psat
2 34.706 34.706 kPa
T 344.23 344.227 K
W -0.7948 -0.795 -
y1 0.8607 0.861 -
y2 0.1393 0.139 -

Fig. 6. Comparison between the model results and the
experimental data, for the parameter set obtained by
PSO and SADE algorithms.

points in the objective function (Equation 20).
The authors discuss the challenging aspect of the
underlying minimization problem, as the point of

minima is located in a very narrow region of the
parameter space, endorsing the capabilities of current
tool in the parameter estimation task. This result is
explained by the utilization of the algorithms provided
by the robust library pagmo as discussed earlier. It is
worth to mention that due to the stochastic nature of
the PSO, SADE and other metaheuristic routines, the
performance is specific to each particular problem, and
the user need to test the individual performances of the
algorithms.

3.3 Results and discussion for case III

The solution of the non-linear equation system
presented in the Equations (21)-(30), were performed
through the internal routines of the SLOTH tool. The
results obtained are presented in the Table 7. It is worth
to emphasize that those results are equivalent to those
presented in the literature (Shacham & Brauner, 2017),
endorsing the software as a reliable tool for related
problem solving.
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Table 8. Results obtained using the SLOTH tool for residuals of the equations of the problem presented in the case
III.

Equation Residual value ξ (this study) Residual value ξ (Shacham & Brauner, 2017)

21 7.1× 10−14 4.16× 10−17

22 −7.10× 10−14 −1.11× 10−16

23 0.0 1.39× 10−16

24 −2.77× 10−17 −4.95× 10−16

25 5.55× 10−17 0.0
26 0.0 3.55× 10−15

27 4.44× 10−16 2.78× 10−17

28 0.0 −3.33× 10−16

29 1.66× 10−16 0.0
30 1.44× 10−15 1.71× 10−12

In Table 8, the residuals obtained through the
SLOTH tool for each of the Equations (21)-(30) are
presented, and compared to those presented in the
work of Shacham & Brauner, (2017),. The residual
form of the equation is obtained through the algebraic
manipulation of the aforementioned expressions to the
form described in the Equation (31) below.

L−R = ξ (31)

In Equation (31), the L, R and ξ terms mean
respectively the left-hand side of the equation, the
right-hand side and the residual.

The obtained values are very similar to those
presented in the literature, and minor differences
could be attributed to rounding errors due to
floating point precision numbers employed in the
calculations. It is evident that the inclusion of a
high precision calculation mode in the SLOTH
tool could be beneficial for applications requiring
high accuracy levels, which can be implemented
through utilization of arbitrary precision mathematical
support, e.g.mpmath library functions (Meurer et al.,
2017), which can however increase the computational
demand for the calculations.

Conclusions

In this work, a study concerning the utilization of
an in-house developed tool for equation-oriented
simulation and optimization of processes, called
SLOTH, was conducted. In this sense, three different
cases of study were performed: maximization of the
production of heterologous protein in a fed-batch

fermentation process (case I); parameter estimation
of a mathematical model for ethylene polymerization
carried out with nickel complexes, using experimental
data (case II); calculation of a vapor-liquid equilibrium
for a non-ideal binary mixture (case III). The SLOTH
tool has exhibited good capabilities in the resolution
of the studied problems, being obtained numerical
results coherent to those presented in the literature for
the aforementioned study cases. The results obtained
for case I represent superior productivity indexes to
those presented in the literature, due to the utilization
of a cosinoidal feed profile parametrization and meta-
heuristic optimization routines employed; for the
case II, good agreement with experimental data was
obtained, also superior to the results presented in the
literature for these specific case; for the case III, the
obtained residual values for the equilibrium equations
are compatible to those presented in the literature, with
some divergences attributed to rounding errors and the
floating-point precision employed in the calculations.
Additionally, mathematical resources such as
surrogate modelling could also be implemented
for reducing the computational burden in function
evaluation, especially for optimization problems that
require several evaluations of an objective function.
The inclusion of convenience routines for inclusion of
external solvers in the tool is also a relevant aspect for
further SLOTH software development.

However, it is worth to mention that the
optimization process has exhibited extensive
computational times, which is justified by the
interpreted nature of the main computational language
employed in the development of the software, Python.
This fact suggested the importance to identify
computational bottlenecks and migrate some of
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the calculation intensive tasks to be performed by
a compiled language (e.g.: C++, FORTRAN), as
well as the utilization of parallel computation. This
aspect need to be considered for those interested
in development of EO simulation tools. Also, it is
worth to mention that the implementation of high
precision floating-point calculations when necessary
may benefit specific user cases.

Despite the aforementioned fact concerning the
lack of speed of the SLOTH tool for some tasks, it has
proven to be suited for the purpose of its development,
the equation-oriented simulation of processes and
correlated problems. The intent of the software is not
to compete with well-established tools such as EMSO,
GAMS, DAETOOLS, IDAES, MODELICA, among
others. The main goal of the project is to provide
an open-source code in a higher-level language such
as Python for tackling equation-oriented process
simulation, which could be continuously enhanced as
the source-code is open to contributions, as well as to
provide an auxiliary structure for those interested in
develop their own tools.
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