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Abstract
This research presents the modeling and prediction of the harmonic behavior of current in an electric power supply grid with
integration of photovoltaic power by inverters. The methodology was based on the use of recurrent artificial neural networks of
the nonlinear autoregressive with external input type. Data were obtained from experimental sources through the use of a test
bench, measurement, acquisition and monitoring equipment. The input-output parameters for the neural network were the values
of current in the inverter and in the supply grid respectively. Results shown that the neural network can capture the dynamics of
the analyzed system. The generated model presented flexibility in data handling, representing and predicting the behavior of the
harmonic phenomenon. The obtained algorithm can be transferred to a physical or virtual system, for the control or reduction of
harmonic distortion.
Keywords: model, prediction, inverters, photovoltaic systems, artificial neural networks, nonlinear autoregressive with external
input.

Resumen
Esta investigación presenta el modelado y predicción del comportamiento armónico de la corriente en una red de suministro
eléctrico con integración de potencia fotovoltaica mediante inversores. La metodología se basó en el uso de redes neuronales
artificiales recurrentes del tipo no lineales autorregresivas con entradas externas. Los datos fueron obtenidos de fuentes
experimentales mediante el uso de un banco de pruebas, equipo de medición, adquisición y monitoreo. Los parámetros de entrada-
salida para la red neuronal fueron los valores de corriente en el inversor y en la red de suministro respectivamente. Los resultados
mostraron que la red neuronal puede captar la dinámica del sistema analizado. El modelo generado presentó flexibilidad en
el manejo de datos, representando y prediciendo el comportamiento del fenómeno armónico. El algoritmo obtenido puede ser
trasladado a un sistema físico o virtual, para el control o reducción de la distorsión armónica.
Palabras clave: modelo, predicción, inversores, sistemas fotovoltaicos, redes neuronales artificiales, red neuronal no lineal
autorregresiva.
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1 Introduction

Renewable energies are considered clean, abundant
and increasingly competitive. They differ from fossil
fuels in their diversity, profusion and harnessing
potential in all regions of the planet, and they do
not generate greenhouse gases nor polluting emissions
(Nadeem Javaid, 2018; M.D. Gomez, 2020).

Among renewable energy sources, photovoltaic
energy (PV) is included, which involves the direct
transformation of solar radiation into electrical energy,
this transformation is achieved by leveraging the
properties of semiconductor materials such as silicon,
which can generate electrical power when ionized by
solar radiation (Angèle Reinders, 2017; C. Álvarez,
2019).

PV generation systems are classified into two large
groups: isolated and interconnected (Sunaina Singh,
2019). In the former, the generation is not connected
in any way to the electric supply grid, in the latter, the
energy generated is integrated into the grid by the use
of electronic power inverters.

Inverters used in interconnected PV systems
convert direct waveform power (DC) into sinusoidal
alternating waveform power (AC) (Kumar Gupta,
2017). These devices due to the nonlinear behavior
of their components and operational characteristics,
generate power quality issues, such as transients and
voltage variations, flickering, harmonics (voltages or
currents with a frequency that is an integer multiple
of the fundamental supply frequency -60/50 Hz-) and
interharmonics (voltages or currents with a frequency
that is a non-integral multiple of the fundamental
supply frequency), (Bincy, 2017; Plangklang, 2016).

Harmonic distortion (voltage and current
variations due to changes in frequencies within
the electrical distribution systems), increases Joule
effect losses (physical effect by which the pass of
current through an electrical conductor produces
thermal energy) in electric feeders, overheating
in grounded conductors, motors, generators,
transformers and cables, reducing their service
life; vibration in electrical machines, failure of
capacitor and transformer banks, resonance effects
(electrical resonance occurs in an electric circuit at a
particular resonant frequency when the impedances or
admittances of circuit elements cancel each other), as
well as operational problems in sensitive electronic
devices and interference in telecommunications
systems. (Yu-Wei Liu, 2018).

Due to the imminent growth in the use of PV
systems interconnected to power grids, which have
led to an increase in energy quality problems (Ariya
Sangwongwanich, 2019), specifically those caused
by harmonic distortion; need to characterize and
model harmonic behavior due to the integration of
the PV power is necessary, particularly to control
and/or suppress the harmonic distortion at the
common coupling point (CCP -the point where the
Interconnection Facilities connect with the Utility’s
System-), as well as in the power supply grid.

Several researches show the modeling of harmonic
behavior in electrical grids with power integration
from PV generation systems, both in medium and
low voltage (Nduka and Pal, 2017; Vargas, Ramirez
and Lazaroiu 2017; Deng, Rotaru and Sykulski
2017; Todeschini, Balasubramaniam and Igic 2019).
Artificial Neural Networks (ANN) have traditionally
been used for detection, classification and control of
energy quality problems, in particular those related
to voltage and current harmonic distortion, as well
as in systems that aim to control and/or eliminate
such phenomena (Mubarok et al., 2017; Mejia-Barron
et al., 2017; Rodriguez et al., 2019; Kumar and
Panigrahi, 2019; Shukl and Singh, 2020). Recurrent
Neural Networks (RNN) and diffuse interference
have been used in the modeling and prediction of
current harmonics injected into energy micro grids, by
different types of loads (Hatata and Eladawy, 2017;
Panoiu M.; Panoiu C.; Ghiormez L., 2018).

This paper shows the modeling and prediction
of current behavior in a power grid under critical
operating conditions, when the CCP integrates powers
from this grid and a PV system, through a solid-state
inverter, simultaneously powering resistive loads. The
methodology used is based on the use of nonlinear
autoregressive with external input (NARX), and the
results may serve as a future guide for the control
and/or suppression of harmonic content in the CCP of
such systems.

ANN are computer algorithms that simulate the
biological activity of neurons and the processing
of human brain information (Alhroob et al., 2019).
They are distinguished in fields of science where the
conception of solutions or characteristics of problems
analyzed, are difficult to determine with conventional
programming, such as image and voice processing,
pattern recognition, planning, adaptive interfaces for
human/machine systems, control and optimization,
signal filtering, modeling and prediction (Shrestha and
Mahmood, 2019). According to their topology they are
classified into monolayers, multilayers, convolutional,
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radial-based and recurrent.
RNN do not have a layer structure (such as

single-layer, multilayer, and convolutional networks),
but allow arbitrary connections between neurons,
even being able to create loops, thus establishing
temporality, allowing the network to have memory
(Rezk, et al., 2020). Data that enters at a time "t" to
the entry of the network, are converted and transferred
in it, even in the later moments of time, t+1,
t+2, t+3. . . This architecture of neural networks has
become a model implemented in different domains,
due to its natural ability to process sequential inputs
and know their dependencies in the long term (Xia et
al., 2018). Unlike conventional ANN (forward), RNN
are connected to each other in the same hidden layer
and a training function is applied repeatedly to hidden
states (Salas, Barros, and Martinez, 2019). RNNs are
archetypes of deep learning, which are repeatedly fed
back.

NARX networks have performed adequately
in diverse applications, especially in sequential
problems, as well as in dynamic system modeling and
time series prediction (Li and Cao, 2018), (Cortez et
al., 2018), (Liu, Chen and Wang, 2018). The equation
that defines the NARX network model is:

y(t) = f [(y(t− 1),y(t− 2), . . .y(t− ny), x(t), x(t− 1),
x(t− 2), . . . x(t− nx)] (1)

where the next value of the dependent output signal
y(t) is calculated from previous output signal values
and previous values of the independent (external) input
signal.

When applying a NARX network to a system,
the end result to obtain a model for it. This is
accomplished by using feedback (the output is fed
back to the input) whether in a closed loop or in a
parallel loop. By having such output available during
the training phase of the network (the real output),
other configurations can be achieved, such as the
serial-parallel or the open loop one. This brings forth
several benefits to the training phase. One such benefit
is more precision on the input of the network and a
feedforward orientation, which can be used to apply a
static backpropagation (Hudson, Hagan, and Demuth,
2019; E. Figueroa, 2020; L. Díaz, 2020).

Fig. 1 shows an open-loop NARX network for
modeling (a), while a closed-loop NARX network for
prediction is shown in (b), were the Tapped Delay Line
(TDL), is a memory structure formed of n buffers,
were every oldest input is replaced by a new one, and

a)

b)

Fig. 1. NARX network architecture: (a) Open loop
network (parallel-series); (b) Closed loop network
(parallel).

each input takes part in the learning process per turn.

2 Methodology and development

For modeling and prediction of current’s behavior
in a 220 V, 60 Hz electrical supply grid, where
the powers of the electrical grid and a PV system
are integrated through electronic inverters, a test
bench was used. This test bench is comprised by
six monocrystalline solar panels with a rating of
250 watts each, providing 1500 watts in total. A
voltage controlled central inverter in full bridge mode
with a power rating of 3000 watts at 220 volts is
used. The PCC is located on a single phase, 220
volt, 100 amp electrical panelboard. Resistive loads
rated at 530 watts for 127 volts are used for the
model. To acquire the system’s current, Hall Effect
sensors (model ACS712) are used in conjunction with
a National Instruments acquisition device (model NI
USB-6008). The experimental methodology for data
acquisition and modeling of dynamic system behavior
using ANN is as follows:

1. Design and construction of the test bench,

2. Connection and configuration of acquisition
equipment,

3. Data acquisition for references,

4. Data acquisition for modeling,

5. Determination of the ANN to be used,

6. Structure of the ANN to be used,
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7. Application of ANN (training, validation and
testing of ANN),

8. Results and conclusions.

Fig. 2 shows the arrangement of the test bench
elements.

The phase conductors in each feeder (inverter and
supply grid) were connected in series to the ACS712
current sensors, between their terminals: source (IP+)
and load (IP-). With a polarization voltage of 5
Vdc between the Vcc and GND terminals of each
sensor. Fig. 3 shows the connection of data acquisition
devices.

Data acquisition of current was carried out in

the network feeder for 5 seconds, without power
inputs from the PV system, used a sample rate of
10,000 samples/second to obtain information about
background harmonic distortion (harmonic distortion
produced by external loads to the network under
study), in the feeder. Data acquisition of the system´s
current was done simultaneously in both feeders
(supply grid and inverter), at CCP, with a sample rate
of 5,000 samples/second for each feeder for 5 seconds.
Table 1 shows the measurement points and signal
acquisition conditions.

Fig. 4 shows the graphical representation time and
magnitude parameters of supply grid signal, without
inputs power from the PV system.

a) b)

Fig. 2. Arrangement of elements in test bench: a) Schematic diagram; (b) Physical arrangement of equipment.

a) b)

Fig. 3. Connecting devices for data acquisition: (a) Schematic diagram; (b) Physical arrangement of data acquisition
equipment.

Table 1. Description and conditions for data acquisition.

Data acquisition

No. Description Conditions of acquisition

1 Supply grid feeder No current input from the inverter and charging at CCP

2 Supply grid feeder With input of current by the inverter and charging at CCP

3 Inverter feeder With charging at CCP
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Fig. 4. Current in the grid feeder without inputs power
from the PV system.

Fig. 5. Currents in supply grid and inverter, feeding a
resistive load.

Fig. 4 shows a sinusoidal signal with a
positive peak magnitude of 5.98 amps, with a
small background harmonic distortion (1.07%), and
non-dynamic (invariant in time) behavior. Fig. 5
corresponds to the current in both feeders (supply
grid and inverter), simultaneously feeding resistive
load. This graph shows the change in the waveform
of the current signal in the supply grid after PV
power integration. Both signals show distortion due
to the presence of harmonics and nonlinear dynamic
behavior.

Due one of the characteristics of ANNs is that
of not having a single structure, a NARX networks
configured with a series-parallel architecture (open
loop), was used for the modeling network and in
parallel (closed loop), for the prediction network, used
to check the proper functioning of the resulting model
(Hudson, Hagan, and Demuth, 2019). Both networks
are powered by input signals at the start of the network,

a)

b)

Fig. 6. Architecture of configured NARX networks:
a) Serial-parallel architecture (open loop); b) Parallel
architecture (closed loop).

containing two hidden layers with 10 neurons each,
activated by sigmoid functions and an output layer
with a single neuron activated by a linear function. Fig.
6 shows the structures of the NARX networks used.
These networks have four variable offsets (shown by
the 1:4 ratio in the Tapped Delay Line), this indicates
that the input signals are made up of x(t), x(t-1), x(t-2),
x(t-3) and x(t-4), and have input variables y(t-1), y(t-
2), y(t-3) and y(t-4), for the series-parallel network;
and z(t-1), z(t-2), z(t-3) and z(t-4), for the network
in parallel, being "y" the actual output and "z" the
estimated output.

NARX network training is supervised, giving the
network input patterns, as well as expected output
(correct result). The input and output data consist
of vectors line of 1 by 25,000 elements each one,
and correspond to the magnitudes of currents in the
inverter feeder (input data) and the magnitudes of
currents in the electrical supply grid (expected output).
The Levenberg-Marquardt algorithm is used as a
training method, along with the mean squared error
(mse) performance function, with a total of a thousand
iterations (epochs). The method used for calculating
gradients was dynamic backpropagation.

The criteria for stopping training is defined by
the number of epochs (1,000 iterations), gradient (less
than 10−5), and 6 as the number of validation checks.

The general procedure in both networks consisted
of the introduction of inputs (where the input neurons
are activated); then the information is propagated
through the networks and outputs were generated;
then the outputs of the networks are compared to
the desired outputs and the errors are calculated;
finally, corrections are made to the weights that are
based on these errors until they were minimized.

www.rmiq.org 5
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During training, the dataset is randomly divided (to
avoid an over fit effect), into three subsets for each
network. The first subset was the training set. With
this dataset network learning are carried out through
weight adjustment and corresponded to 70% of the
total data. The second subset (with 15% of the data),
was the validation set that served to monitor the error
during the training process. The last subset with the
remaining 15% of the data are the test set, it was not
used during training, but was subsequently used to
evaluate network performance (Hudson, Hagan, and
Demuth, 2019).

3 Results

After the parameterization of the series-parallel
NARX network, this network was trained using the
Levenberg-Marquardt method, using 269 iterations
of the 1,000 available epochs to obtain the lowest
performance value before stopping the algorithm,
because 6 or more times there were no changes in that
performance during testing with validation data. Fig. 7
exhibits a very fast drop in mse, before 10 iterations.

Fig. 7 shows how errors in training, validation, and
test data follow the same trends during the algorithm
execution; stopping when it gets an mse less than
10−2. It also shows the minimum value of the network
performance obtained in iteration 269, this being
0.067622.

Fig. 7. Development of training, validation and testing,
in relation with the number of iterations used, as well
as the mse obtained.

Fig. 8. Histogram of the error of outputs against target.

Fig. 8 shows the histogram containing the errors in
the three datasets. It is determined that, on the center
line, the data ratio of the training set is higher, and
this behavior is constant during the analysis of the data
furthest from the null error, while always retaining the
higher proportion of the training data, in relation with
the validation and test data. This trend observed in the
behavior of the data shown in Fig. 7.

Linear regression is used to analyze the errors for
each dataset (training, validation, and testing). Fig.
9 shows the values between the achieved output and
the required targets. The best conditions being those
of training data that have a 99.938% effectiveness in
regression. This result can be attributed to a greater
amount of data (70% of the total), with which the
training was carried out. There is also a lot of
proximity to the other data groups regarding the
effectiveness of regression.

a)

6 www.rmiq.org
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b)

c)

d)
Fig. 9. Datasets linear regressions: a) Training data
regression; b) Validation data regression; c) Test data
regression; d) Total data regression.

Subsequently, the temporary response obtained
was evaluated by graphically relating the result of
NARX network, against the required values. Fig. 10
shows the comparison between the results generated
by each of datasets, against the target, in addition to

Fig. 10. Temporary response obtained and error, with
respect to the objective.

Fig. 11. Error-time autocorrelation.

the error present in each of moments of time. The
response exhibits the characteristics of the difference
between the current signal in the grid feeder in
presence of power supplied by the PV system and
the response obtained by the NARX, when entering
the current signal from the electronic inverter to the
PCC. From the errors’ graph (Fig. 10), it is observed
that the differences between the target values and
those resulting from the three training datasets are
very close to zero; showing the biggest errors when
signal behavior exhibits rapid and abrupt changes in
its waveform.

Finally, the correlation plots of errors with respect
to time and inputs are displayed. Fig. 11, presents
error-time autocorrelation; in it can be seen how the
training is adequate; the central correlation (mse) with
zero value, is greater, while the rest are within the
expected confidence limits.

Fig. 12 shows the existence of a large number
of correlations between inputs and error, which are
within the limits; mostly concentrated in the zero
value, so the training has optimal performance.

www.rmiq.org 7
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Fig. 12. Error-input correlation.

Fig. 13. Comparison of the temporal response of
closed loop network against target output.

By replacing the configuration of the open-loop
to closed-loop neural network (Fig. 6b), in such a
way that, from the target inputs, the network uses its
own predictions to check whether the model obtained
through the open loop network has adequately defined
the behavior of the current signal in the feeder of
the electrical supply grid. This architecture produces
results that differ from the temporal response of Fig.
10, and depend on how appropriate the training has
been; but now, the target values will be unknown and
the temporary response obtained will be the one shown
in Fig. 13.

Fig. 14 shows the comparison of the output of the
open loop network (model) against the target output.
Similarity to Fig. 13 can be seen, small difference is
being observed between the temporal response of the
closed loop network and the open loop.

Table 2 shows the mse for each of the algorithms.

Fig. 14. Comparison of the temporary response of
open loop network against target output.

Table 2. mse in modeling and prediction.
No. Algorithm mean

squared
error

1 Open loop NARX network
(parallel-series)

0.0067

2 Closed loop NARX network
(parallel)

0.0094

4 Discussion

Despite the results obtained with the use of
deterministic analysis (shown in literature), these
models do not give suitable results when trying to
represent the behavior of non-stationary signals, due
to the limitations presented by mathematical tools such
as the transformed and Fourier series.

While ANNs have proven their efficiency when
used for identification and classification processes,
the ANN topologies used, have not been suitable
for modeling and predicting time variant systems.
With the application of the NARX network, the
disadvantages that occur when analyzing non-
stationary systems with deterministic methods based
on the frequency domain were overcome, as well as
extending the scope of such computational algorithms
commonly used in the identification and classification
of electrical loads and the harmonic distortion they
produce.
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On the other hand, the results of the application
of the NARX network for modeling and predicting
distorted current behavior in the supply grid, of
dynamic characteristics are similar to the results
obtained in the research that have used this same type
of resource, in modeling and predicting the behavior
of load current harmonics injected into energy micro-
networks, as well as in the study of nonlinear high
power loads.

Among the main advantages of this modeling
methodology over others are:

1. Ability and ease to represent the nonlinear
dynamics of the system,

2. Convergence with a small number of data with
reduced computational time,

3. Suitability to represent internal dynamics
through few input variables to the network,

4. Robustness for training-like conditions,

5. Simplicity in the use of the neural network.

Conclusions

At the end of the analysis of results, it was
determined that the sinusoidal waveform of current
in the electrical supply grid is affected, when
integrated power from PV systems into the CCP
through electronic inverters. Modeling the dynamic
and nonlinear behavior of that signal using NARX
networks, produce of a highly efficient pattern in terms
of execution times, as well as computational resources,
presenting a mse of 0.0067 with respect to the actual
behavior of the signal; exhibiting a high performance
of the neural network. The validity of the model was
checked by forecasting the results, obtaining a mse of
0.0094 when using the closed loop NARX, showing
a strong correlation between inputs and error values
within the confidence limits.

Results suggests that a neural network with the
appropriate characteristics may be considered suitable
for capturing the dynamics of the harmonic current
distortion in electrical grids, caused by the integration
of power from PV systems. The obtained model
presents great flexibility in terms of variety and
amount of data that can be managed, allowing to
represent and predict the behavior of the system
under test in long periods and under various operating
conditions. On the other hand, the resulting algorithm

can be used for generation of physical or virtual
systems that can be used for the control or reduction
of harmonic phenomena affecting electrical grids.
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