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Abstract
The β-glucosidase from almond was immobilized using different strategies: ionic adsorption on aminated MANAE-agarose beads
at pH 5, 7 and 9, followed by glutaraldehyde pre-activated supports. The pH of the immobilization was altered to allow different
enzyme molecule orientations on the support surface. The concentration of the enzyme exhibited an effect on the stability of the
free enzyme. Immobilization by ion exchange maintained up to 80% of the activity of β-glucosidase, however the stabilization
was lower than the immobilization by covalent binding on pre-activated supports. The enzyme immobilized on supports pre-
activated at pH 5 showed a higher activity of 78% after 24 h. The immobilized enzymes were inactivated at pH 5 and 7, the
enzyme immobilized at pH 7 and inactivated at pH 5 maintained greater stability than the immobilized at the other pH values.
Considering the enzymatic activity, the stability and the kinetic parameters Km, Vmax and the Km/Ki ratio, the β-glucosidase
immobilized on supports pre-activated with glutaraldehyde at pH 5 and 7 are the best option to use β-glucosidase from almonds.
Keywords: β-glucosidase, enzyme immobilization, glutaraldehyde, amino-agarose supports, enzyme stabilization.

Resumen
La β-glucosidasa de almendras se inmovilizó mediante diferentes estrategias: adsorción iónica en perlas aminadas MANAE-
agarosa a pH 5, 7 y 9, seguida de soportes preactivados con glutaraldehído. El pH de inmovilización se modificó para permitir
diferentes orientaciones de las moléculas de enzima en la superficie del soporte. La concentración de la enzima mostró un efecto
sobre la estabilidad de la enzima libre. La inmovilización por intercambio iónico mantuvo hasta el 80% de la actividad de la β-
glucosidasa, sin embargo, la estabilización fue menor que la inmovilización por unión covalente sobre soportes preactivados.
La enzima inmovilizada sobre soportes preactivados a pH 5 mostró una mayor actividad de 78% a las 24 h. Las enzimas
inmovilizadas se inactivaron a pH 5 y 7, la enzima inmovilizada a pH 7 e inactivada a pH 5 mantuvo una estabilidad mayor
que la inmovilizada a los otros valores de pH. Considerando la actividad enzimática, la estabilidad y los parámetros cinéticos
Km, Vmax y la relación Km/Ki, la β-glucosidasa inmovilizada sobre soportes preactivados con glutaraldehído a pH 5 y 7 son la
mejor opción para utilizar β-glucosidasa de almendras.
Palabras clave: β-glucosidasa, inmovilización de enzimas, glutaraldehído, soportes de amino-agarosa, estabilización enzimática.
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1 Introduction

Nowadays the use of lignocellulosic materials to
obtain bioethanol has been in great demand, due to
these materials are quite abundant polymers in nature
(Mohd Azhar et al., 2017; Rastogi and Shrivastava,
2017; Singh et al., 2017; Zabed et al., 2017). The
enzymatic hydrolysis of cellulose starts with enzymes
cellulases that attack the polymer; the final product is
the disaccharide cellobiose. This disaccharide may be
hydrolyzed via acid catalysis (but this has not sense
if that has not been used in hydrolysis of cellulose)
or enzymatically using β-glucosidases. This last step
will release two glucose molecules and then, the
fermentation to produce ethanol may proceed. The β-
glucosidase may be also used to release some flavors
(e.g., glycosylated terpenes in wine) (Barbagallo et
al., 2004; Krammer et al., 1991; Palmeri et al., 2017;
Palmeri and Spagna, 2007; Todaro et al., 2008) or
produce some glycosylic bonds (Yang et al., 2018).

However, the moderate stability and price of the
enzymes are avoiding their industrial implementation
(Reetz, 2013). Enzyme immobilization eliminates
these problems, as the immobilized enzyme can
be reused; this strategy has also been applied to
immobilize cells (Trujillo et al., 2021), finding that
organic residues can be ideal for cell adsorption,
in addition a reduction in the production costs
of biocatalysts is also achieved. Immobilization
allows enzymes to be easily reused, and multipoint
immobilization tends to improve enzyme stability
as well as create favorable enzyme environments.
Therefore, this process improves the properties of
enzymes such as activity, selectivity, specificity and
even their purity (Cantone et al., 2013; Liese and
Hilterhaus, 2013; Rodrigues et al., 2013; Secundo,
2013; Sheldon and Van Pelt, 2013).

One of the most used methods for the
immobilization of enzymes is through a covalent
bonding (Castro et al., 2013) using activated supports
such as glutaraldehyde (Barbosa et al., 2014), glyoxyl
(Mateo et al., 2006), epoxy (Mateo et al., 2007),
from the latter, the glutaraldehyde stands out due its
versatility (Betancor et al., 2006; Salazar-Leyva et al.,
2014; Barbosa et al., 2015; Zaak et al., 2017). Through
the application of this method the activation of primary
amino groups is achieved (Barbosa et al., 2014). In
this way, it may be considered a heterofunctional
support (Barbosa et al., 2013). This may present
some advantages if properly used. Therefore, using

the properties of glutaraldehyde, three different routes
can be applied to immobilize any enzyme of interest
(Betancor et al., 2006; Barbosa et al., 2012). The
first is to immobilize the enzyme by ion exchange
and then add glutaraldehyde (Betancor et al., 2006).
This treatment must assure the modification of each
amino group of the protein and the support with only
one glutaraldehyde molecule; this is achieved with
mild immobilization conditions. (Monsan,1978). This
method has the disadvantage that it modifies the entire
surface of the protein and this in turn modifies the
properties of the enzyme.

The others immobilization strategies consist of
in using supports pre-activated with glutaraldehyde
(Betancor et al., 2006; Barbosa et al., 2014). Contrary
to the previous method the conditions must be drastic
to ensure the modification with two glutaraldehyde
molecules; it must be also taken care to avoid
the uncontrolled polymerization of glutaraldehyde.
(Monsan,1978). Immobilization occurs randomly; if
it is carried out at a low ionic strength, the first
step is through ion exchange and subsequently
covalent bonding is achieved. Otherwise, by using
high ionic strength, the covalent immobilization
occurs immediately through the most reactive amino
group. The appropriate pH for immobilization using
glutaraldehyde must be very close to pH 7.0, because
in alkaline environments it loses stability. After
the first immobilization, the proximity between the
glutaraldehyde and the amino of the proteins increases
the effective concentration, and thus more enzyme-
support bonds can be established. However, at pH 7 the
reactivity of amino groups Lys will be very low, while
amino glutaraldehyde will maintain reactivity over a
wide pH range. (Barbosa et al., 2014; Dos Santos et
al., 2015; Zaak et al., 2017).

The alteration of the immobilization conditions
can increase the options for the use of glutaraldehyde
(Wine et al., 2007). Previous studies have shown
that the immobilization of enzymes by the adsorption
method results in different stabilities (Salazar-Leyva
et al., 2014). In addition, when using glutaraldehyde
(Zaak et al., 2017) pH influences the properties of the
immobilized enzymes (Barbosa et al., 2014).

The β-glucosidase from almonds through
biocatalysis is used in the industry to synthesize
compounds such as isoflavones used in the formulation
of drugs against hypertension due to low production
costs (Hati et al., 2020), however the obtained
glucose can be applied on other studies. Therefore,
this research aimed to immobilize the dimeric β-
glucosidase enzyme obtained from almonds in amino-
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agarose supports preactivated with glutaraldehyde
and study the stability under different immobilization
conditions.

2 Materials and methods

2.1 Materials

β-glucosidase from almonds (β-glucosidase),
ethylenediamine and 4-nitrophenyl-β-D- glucopyranoside
(p-NPG) and sepharose CL-4B were purchased from
Sigma-Aldrich (St. Louis MO, USA). All other
compounds and solvents were of analytical degree.
Protein concentration was evaluated using Bradford´s
method using bovine serum albumin as standard
(Bradford, 1976). The supports of aminated MANAE
and MANAE-glutaraldehyde agarose beads were
prepared as previously described (Zaak et al., 2017).

2.2 Determination of β-glucosidase activity

β-glucosidase activity was determined following the
increment of absorbance at 380 nm produced by
the release of p-nitrophenol in the hydrolysis of 5
mM p-NPG in 50 mM sodium phosphate at pH 7
and 25ºC (ε was calculated to be 3,459.3 M-1 cm-1
under these conditions) using an spectrum (DR 6000
of HACH, Loveland, Colorado, USA) with stirring
and thermostatization. The reaction was initialized by
adding 200 µL of enzyme solution or suspension in
2.5 mL of substrate solution, for 5 minutes. The initial
activity was taken as reference, which corresponded to
100%. One unit of β-glucosidase activity was defined
as the amount of enzyme required to release 1 µmol
pNP/min under the stated conditions. The activity was
determined for both free and immobilized enzymes. To
determine the kinetic parameters, the concentration of
p-NPG was varied from 0.1 mM to 10 mM and glucose
was added at concentrations from 0 mM to 100 mM.

2.3 β-glucosidase immobilization

10 g of the corresponding support (MANAE or
MANAE-glutaraldehyde) was added to 100 mL of β-
glucosidase commercial extract solution (containing
1 mg/mL) in 25 mM sodium acetate at pH 5, 25
mM sodium phosphate at pH 7, 25 mM carbonate-
bicarbonate at pH 9, and 25ºC. As a reference, an
identical suspension was prepared using inert agarose,
as a support. Periodically, samples of the supernatant

and suspension were taken. After immobilization, the
biocatalyst was washed with an excess of distilled
water. Immobilization was also carried out in 200
mM sodium phosphate buffer at pH 7 on supports
pre-activated with glutaraldehyde. All immobilized
enzymes were washed with distilled water and stored
at 4 ° C.

2.4 Thermal stability of the different
immobilized β-glucosidase

The thermal stability was carried out using free
at 52°C and immobilized enzyme at 55°C and
a concentration of 1 mg/mL in 25 mM sodium
phosphate buffer pH 7 and in 25 mM sodium acetate
buffer pH 5. Samples were taken at certain times
to measure activity enzymatic using p-NPG as a
substrate.

2.5 Effect of pH on immobilized β-
glucosidase activity

Activity was determined at pH 3-9, using 50 mM
acetate at pH 3-6 or phosphate at pH 6-8. The
immobilized enzyme (50 µl) was added to 1.25 mL
of the corresponding 100 mM buffer and stirred for
10 minutes to ensure that the internal and external pH
were the same, due to the characteristics of the support
such as the density of amino groups. Finally, 1.25 mL
of 10 mM pNPG was added to initialize the reaction.
Enzyme activity was determined at each pH value.

2.6 Desorption of the immobilized enzyme
from the support

The immobilized enzymes were incubated in
increasing concentrations of NaCl at pH 7 and 25
°C, for 30 minutes. Enzymatic activity of supernatant
and suspension were determined. A suspension with
free enzyme was used as a reference under the same
conditions.

3 Results

3.1 Effect of pH and enzyme concentration
in enzyme activity

The Figure 1 shows the stabilities of 1 and 0.1
mg/mL β-glucosidase solutions at pH 5, 6 and 7
and 52° C. The major stability was presented at
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Tables and figures 

 

Figure 1. Effect of the concentration on the stability of free β-glucosidase at different pH 

values at 52°C. Concentrated enzyme solution had 1 mg protein/mL; diluted enzymes 

solutions had 0.5 mg protein/mL 

 

Table 1. Immobilization of β-glucosidase on aminated supports at pH 5 and 7 and 25°C 

  Relative activity (%)* 

pH 5 pH 7 
Time 

(hours) Suspension Supernatant Suspension Supernatant 

0 100.00 100.00 100.00 100.00 
0.5 147.07±4.342 6.18±0.274 87.68±3.142 10.26±2.313 
1 137.23±2.456 7.13±1.854 85.65±4.564 9.48±1.756 
2 135.64±5.435 4.32±0.546 117.67±5.435 12.92±3.012 
24 129.53±2.945 3.24±1.023 90.22±4.122 8.01±1.465 
48 125.95±3.761 1.19±0.734 85.8±2.452 7.62±0.985 
52 97.31±3.975 0.89±0.012 81.49±1.386 6.32±0.657 
72 70.37±1.245 0.56±0.091 80.91±2.760 5.12±0.734 

* Average values ± standard deviation of test performed in duplicate. 

 

 

Figure 1. Effect of the concentration on the stability
of free β-glucosidase at different pH values at 52°C.
Concentrated enzyme solution had 1 mg protein/mL;
diluted enzymes solutions had 0.5 mg protein/mL.

pH 5, decreasing whereas pH increased; it was also
observed that the diluted enzyme was less stable than
the concentrated one. The inactivation of the diluted
enzyme was faster at pH 7; however, all the diluted
enzymes were less stable than the concentrated ones.
The latter was observed, because the subunits of the
enzyme dissociate during the inactivation, generates a
dependence with the protein concentration.

3.2 Immobilization of β-glucosidase on
aminated supports

Ion exchange immobilization of β-glucosidase was
carried out on amino-agarose beads. Table 1 shows
the immobilization courses at pH 5 and 7 the
supernatant sample was taken after centrifugation and
the suspension sample was taken under agitation,
that is, the β-glucosidase bound to the support. As
observed, immobilization was successful at both pH,
however, immobilization was faster at pH 5, no loss of
its enzymatic activity was observed. The used support
presents two ionizable groups, with pK values of 6.8
and 10 corresponding to the primary and secondary
amino groups respectively (Fernandez-Lafuente et al.,
1993). This faster immobilization at pH 5 is related to
the ionizable groups of the enzyme which has more
cationic groups at pH 5 than at pH 7, because its
isoelectric point is 8.7. An important result was the
increase in enzymatic activity after immobilization,
at pH 5 reaching up to 147%, while in the one
immobilized at pH 7 up to 117%. This increase in
the activity of the immobilized enzyme at pH 5 may
be due to a change in the assembly of both subunits

 

Figure 2. Effect of the enzyme concentration and immobilization pH value in the  

stability of β-glucosidase at pH 7 and 55°C.  

 

 

Figure 3. Desorption of the β-glucosidase from the MANAE agarose beads at pH 7 and 25 

°C in different NaCl concentrations. Experiments were performed as described in Methods 

section. 

 

Figure 2. Effect of the enzyme concentration and
immobilization pH value in the stability of β-
glucosidase at pH 7 and 55°C.

 

Figure 2. Effect of the enzyme concentration and immobilization pH value in the  

stability of β-glucosidase at pH 7 and 55°C.  

 

 

Figure 3. Desorption of the β-glucosidase from the MANAE agarose beads at pH 7 and 25 

°C in different NaCl concentrations. Experiments were performed as described in Methods 

section. 

 

Figure 3. Desorption of the β-glucosidase from the
MANAE agarose beads at pH 7 and 25 °C in different
NaCl concentrations. Experiments were performed as
described in Methods section.

of the protein, thus, a structure with higher enzymatic
activity is conformed. However the environment also
presented a positive effect, due to enzyme-support
interactions (Rodrigues et al., 2013).

The β-glucosidase immobilized for adsorption
was incubated at 55° C. Figure 2 shows the
thermal stability of the immobilized enzyme by ionic
adsorption. As observed, an effect of concentration
on stability can be noticed, which suggests that the
enzyme could bind only by some of its subunits,
Otherwise, the enzyme immobilized at pH 7 showed
greater stability than that immobilized at pH 5, the
concentration effect is more significant in the enzyme
which was immobilized at pH 5.
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Table 1. Immobilization of β-glucosidase on aminated supports at pH 5 and 7 and 25°C.

Relative activity (%)*

pH 5 pH 7

Time (hours) Suspension Supernatant Suspension Supernatant

0 100.00 100.00 100.00 100.00
0.5 147.07±4.342 6.18±0.274 87.68±3.142 10.26±2.313
1 137.23±2.456 7.13±1.854 85.65±4.564 9.48±1.756
2 135.64±5.435 4.32±0.546 117.67±5.435 12.92±3.012

24 129.53±2.945 3.24±1.023 90.22±4.122 8.01±1.465
48 125.95±3.761 1.19±0.734 85.8±2.452 7.62±0.985
52 97.31±3.975 0.89±0.012 81.49±1.386 6.32±0.657
72 70.37±1.245 0.56±0.091 80.91±2.760 5.12±0.734

* Average values ± standard deviation of test performed in duplicate.

 

  

Figure 4. Immobilization courses of β-glucosidase on MANAE-glutaraldehyde pre-activated 

agarose beads under different conditions. A: Immobilization in 25mM sodium acetate at pH 

5 and after 1 h, washed and incubated in 25mM sodium phosphate at pH 7; B: immobilization 

in 25mM sodium phosphate at pH 7, C: immobilization in 25mM sodium phosphate at pH 9. 

Other specifications are described in Methods section. 

 

 

Figure 5. Immobilization in 200 mM sodium phosphate at pH 7. 

 

Figure 4. Immobilization courses of β-glucosidase on MANAE-glutaraldehyde pre-activated agarose beads under
different conditions. A: Immobilization in 25mM sodium acetate at pH 5 and after 1 h, washed and incubated in
25mM sodium phosphate at pH 7; B: immobilization in 25mM sodium phosphate at pH 7, C: immobilization in
25mM sodium phosphate at pH 9. Other specifications are described in Methods section.

Researchers explain that the enzyme may present
different orientations with the support, depending on
the immobilization pH (De Albuquerque et al., 2016).
It is important to notice that all the immobilized
enzymes were more stable than the free enzyme.
All the immobilized enzymes were incubated in
increasing concentrations of NaCl at pH 7 (Figure 3)
to check the binding of the enzyme with the support.
It can be observed that approximately 60% of the
enzyme molecules are released at a concentration of
75 mM. Nevertheless, 24% of the enzymes remained
immobilized at 300 mM NaCl. This corroborates that
some enzyme molecules were binded by only one
subunit, while others were binded by both subunits,
due the contact surface with the support was greater
(Fernandez-Lafuente, 2009; Lopes et al., 2021).

3.3 Immobilization of β-glucosidase
on pre-activated supports with
glutaraldehyde

Immobilization by ion exchange allowed to obtain
enzymes with good activity; even though some
stabilization was achieved, it was decided to
immobilize β-glucosidase using the versatility of
glutaraldehyde. Thus, a reduction in the risk of
desorption of the enzyme from the support and
dissociation of its subunits may be presented.
β-glucosidase was immobilized on MANAE-
glutaraldehyde agarose beads at pH 5 (Figure 4A),
7 (Figure 4B) and 9 (Figure 4C), and at pH 7 using
200 mM sodium phosphate to form a covalent bond
from the beginning of immobilization (Figure 6)
(Barbosa et al., 2012). Figures 4B, C and 5 show
that the immobilization rate was similar at pH 7,
9 and at high ionic strength (pH 7). The latter may
be explained because more than 90% of the enzyme
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Figure 5. Immobilization in 200 mM sodium phosphate at pH 7. 

 

Figure 5. Immobilization in 200 mM sodium
phosphate at pH 7.

 

 

Figure 6. Inactivations courses at pH 5 (A) or pH 7 (B) and 55 °C of different preparations 

of β-glucosidase immobilized on MANAE-glutaraldehyde pre-activated agarose beads. 

 

Figure 6. Inactivations courses at pH 5 (A) or pH
7 (B) and 55 °C of different preparations of β-
glucosidase immobilized on MANAE-glutaraldehyde
pre-activated agarose beads.

was immobilized from the first measurement, while
at pH 5 the immobilization rate was slower (Fig
4A). This result may indicate that an ionic exchange

of the enzyme occurred in the support pre-activated
with glutaraldehyde as the first immobilization step
(Andrades et al., 2019). In all cases, a decrease in
enzyme activity was observed after immobilization.
This effect may be generated by steric hindrances
(Morellon-Sterling et al., 2021) and it can also be
related to a distortion of the enzyme caused by the
immobilization process or due to diffusion limitation
of the substrate (Boudrant et al., 2019). Nevertheless,
the immobilized enzyme at pH 5 maintains up to 80%
of its initial activity, during 24 h. The immobilized
enzyme was incubated in NaCl (600mM) pH 7, and
no significant amount of the enzyme was released to
the supernatant, confirming covalent binding with the
support.

3.4 Thermal stability

The thermal stability of the biocatalysts was verified
at pH 5 and 7 and 55° C (Figures 6A y B) where
in all cases the immobilized enzyme in pre-activated
supports was more stable than that immobilized by
ion exchange, and this was already more stable than
the free enzyme. During the inactivation at pH 5 and
after 2h, the immobilized enzymes at pH 5, 7 and
at high ionic strength (pH 7), maintained 49, 44 and
37% of its initial activity, respectively. However, the
stability at pH 7 did not show a good behavior. These
results are comparable with the β-glucosidase from
Malbranchea pulchella immobilized on MANAE-
agarose supports, which maintained 60% of its activity
at 50° C and retained only 23% at 60° C (Maria et
al., 2019). The treatment with glutaraldehyde of the
enzymes previously immobilized on amino supports
only via ion exchange represents an alternative to
improve the stability of immobilized enzymes is
(López-Gallego et al., 2005), stability can be further
increased, by achieving some inter or intramolecular
protein crosslinking bonds (Rodrigues et al., 2021).
This has been previously verified by immobilizing β-
glucosidase from Aspergillus niger in different amino-
agarose beads with glutaraldehyde, obtaining greater
stability in the immobilized enzyme and treated with
glutaraldehyde, than in the immobilized one on pre-
activated supports. (Vazquez-Ortega et al., 2018).
The enzyme concentration did not show a significant
difference in the stability of the enzyme, confirming
that both subunits were bound to the support. It is
important to notice that the immobilization process
also improves the stability of enzymes at low
temperatures (Nawaz et al., 2021), these researchers
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Table 2. Kinetic parameters of different β- glucosidase biocatalyst at pH 7 and 25 °C.
Sample Km (mM) Vmax (µmol/min/mg protein) Ki (mM) Ki/Km

Free enzyme 12.53±2.481 9.01±0.619 54.19±6.121 4
Pre-activated support - β-glucosidase - pH 5 1.42±0.054 7.46±0.077 46.00±7.527 32
Pre-activated support - β-glucosidase - pH 7 1.20±0.033 17.22±0.012 33.82±23.193 28
Pre-activated support - β-glucosidase - pH 9 10.36±1.817 4.38±0.0329 66.93±12.781 6

Pre-activated support-β-glucosidase - 200 mM/pH 7 5.33±0.861 6.61±0.011 38.09±19.742 7

 
Figure 7. Effect of pH on the activity versus p-NPG of the different β- glucosidase 
immobilized by ion exchange and covalent bonding. Further details are described in Methods 
section. Activity is given in μmols/mg/min. 

 

Table 2. Kinetic parameters of different β- glucosidase biocatalyst at pH 7 and 25 °C. 

Sample Km (mM) 
Vmax 

(μmol/min/mg 
protein) 

Ki (mM) Ki/Km 

Free enzyme 12.53±2.481 9.01±0.619 54.19±6.121 4 

Pre-activated support - β-
glucosidase - pH 5 1.42±0.054 7.46±0.077 46.00±7.527 32 

Pre-activated support - β-
glucosidase - pH 7 1.20±0.033 17.22±0.012 33.82±23.193 28 

Pre-activated support - β-
glucosidase - pH 9 10.36±1.817 4.38±0.0329 66.93±12.781 6 

Pre-activated support-β-
glucosidase - 200 mM/pH 7 5.33±0.861 6.61±0.011 38.09±19.742 7 

 

 

Figure 7. Effect of pH on the activity versus p-NPG
of the different β- glucosidase immobilized by ion
exchange and covalent bonding. Further details are
described in Methods section. Activity is given in
µmols/mg/min.

concluded that the immobilized enzyme was more
stable than the free one at temperatures of -20 °C,
4 °C and 25 °C; the effect is due to the protective
microenvironment provided by the support.

3.5 Effect of pH on the activity immobilized
β-glucosidases

The effect of pH in determining the activity
of immobilized β-glucosidase under the different
conditions was determined (Figure 7). The behavior
was similar for all immobilized enzymes; the
maximum activity was observed at pH 4 and the
activity decreased when the pH moved away from this
value. At pH 3, all the immobilized enzymes were
more active than the free enzyme. At pH 5, 6 and 7,
all immobilized enzymes were 2 - 3-fold more active
than the free enzyme, this results contrast with those
obtained for other cellulases (Junqueira et al., 2019),
where greater activity was presented at pH 5 and 6,
depending on the type of support used to immobilize.
Therefore, immobilization had a positive effect on

enzyme activity, depending on the pH at which the
activity is measured and the immobilization pH.

3.6 Kinetic parameters of immobilized β-
glucosidases at pH 7

Table 2 shows the kinetic parameters of the
immobilized enzymes on pre-activated supports. The
immobilized enzymes have a lower value of Km,
compared with the free enzyme, even obtaining values
approximately 10 times lower as in the case of the
enzyme immobilized at pH 7. These results showed
that the substrate had better accessibility to the
immobilized enzyme than the free enzyme. Otherwise,
the highest Km value of the immobilized enzymes
was given for the immobilized at pH 9, in general it
is due to ionic strength, steric effects and diffusion
limitations (Da Silva et al., 2014). On the other
hand, Vmax showed higher values for immobilized
β-glucosidases at pH 7. The latter suggests that it
was the most active when compared to the others.
Previous research affirmed that β-glucosidase is an
enzyme which presents some issues for its use,
since it suffers a competitive inhibition by glucose
(Kuusk and Väljamäe, 2017). Due to this, all the
immobilized enzymes on pre-activated supports and
the free enzyme were incubated with p-NPG and
glucose concentrations, to determine the degree of
glucose inhibition. Regarding to this, analogously the
inhibition constant (Ki) shows had a similar behavior
to Km, except for the enzyme immobilized at pH 9; the
latter showed greater tolerance to glucose, with a Ki of
66.93 mM (Table 2). Moreover, this value presented a
lower tolerance when compared to the β-glucosidase
obtained from Aspergillus fumigatus (Ki=543 mM)
(Ratuchne and Knob, 2021). However, this enzyme
its very tolerant of glucose because it is an unusual
enzyme. Ki/Km ratio maintained a similar range for
the enzyme immobilized at pH 9 and at pH 7 at high
ionic strength (200 mM) when compared to the free
enzyme, however the ratio was better with a higher
value for the enzyme immobilized at pH 5 and 7.
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Considering the enzymatic activity, the stability and
the kinetic parameters Km, Vmax and the Km/Ki
ratio, the β-glucosidase immobilized on supports pre-
activated with glutaraldehyde at pH 5 and 7 are the
best option to use β-glucosidase from almonds.

Conclusions

The present study demonstrated the effective
immobilization of β-glucosidase from almond by
different methods, as ion exchange and covalent
immobilization using the versatility of glutaraldehyde;
in all cases it was observed that the enzyme was
rapidly immobilized to the support. The pH influenced
the activity of the immobilized β-glucosidase in
supports pre-activated with glutaraldehyde, while
in the ionic exchanged it was not so relevant; its
activity was maintained above the at pH 5 and 7.
Both immobilizations by ion exchange and covalent
attachment showed greater stability than the presented
by the free enzyme. On the other hand, the role
of the inactivation pH was critical to maintain
the activity/stability of the immobilized enzymes.
Immobilization produces a positive effect on the
activity at different values of pH. In addition, the
enzyme immobilized on supports pre-activated with
glutaraldehyde were more active than the free enzyme.
Otherwise, all the enzymes immobilized at the
different pH conditions presented lower values of
Km and Ki when compared to the free. Thus, the
immobilization of β-glucosidase from almonds at pH
5 or 7 in supports pre-activated with glutaraldehyde
presents the best results based on the activity, stability
and kinetic parameters.
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