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Abstract
Anthracnose is the main disease causing postharvest losses in ’Hass’ avocado. The preharvest control of anthracnose
is carried out with synthetic fungicides, so its postharvest use is limited. Chitosan, a non-toxic biopolymer considered
GRAS, is an alternative to synthetic fungicide. The aims of the study were to determine in vitro the antifungal
effect of chitosan and evaluate the elicitor effect and shelf-life-extending of chitosan on postharvest ’Hass’ avocado
fruits. A commercial chitosan was used. Nine strains of C. siamense were treated with 0, 0.5, 1.0, and 1.5%
chitosan. Mycelial grown, sporulation, and germination were evaluated. Avocado fruits were also treated with
the same chitosan concentration and stored at room temperature until ripening, and phenylalanine ammonia-lyase
(PAL) activity was evaluated daily. Finally, avocado fruits were inoculated with three strains of C. siamense and
subsequently treated with the same chitosan concentrations. Weight loss, color, and firmness were evaluated. As a
result, all strains were sensitive to increasing chitosan concentration, reaching 100% inhibition of mycelial growth
at 1.5% chitosan. PAL activity was higher in the pulp than in the skin. Weight loss decreased rapidly with 0 and
0.5% chitosan, whereas 1.0 and 1.5% chitosan decreased firmness loss and color change.
Keywords: Persea americana Miller, mycelial growth, anthracnose, phenylalanine ammonia-lyase, postharvest

quality.

Resumen
La antracnosis es la principal enfermedad causante de las pérdidas postcosecha del aguacate ’Hass’. El uso de
fungicidas sintéticos en postcosecha es limitado. El quitosano (biopolímero no tóxico considerado GRAS) es una
alternativa. El objetivo fue determinar in vitro el efecto antifúngico del quitosano y evaluar el efecto inductor en
prolongar la vida de postcosecha y mantener la calidad del fruto de aguacate. Se trataron nueve cepas de C. siamense
con 0, 0.5, 1.0 y 1.5% de quitosano. Se evaluaron el crecimiento, la esporulación y la germinación de esporas.
Además, frutos de aguacates se trataron con las mismas concentraciones de quitosano y se evaluó la actividad
de PAL. Finalmente, se inocularon frutos de aguacate con tres cepas de C. siamense y luego se trataron con de
quitosano. Se evaluó la pérdida de peso, el color y la firmeza. Como resultado, todas las cepas fueron sensibles al
incrementar la concentración de quitosano, alcanzando el 100% de inhibición del micelio con 1.5% de quitosano.
La actividad PAL fue mayor en la pulpa que en la piel. 1.0 y 1.5% de quitosano disminuyen la pérdida de firmeza,
el color cambia y la perdida fisiológica de peso.
Palabras clave: Persea americana Miller, crecimiento micelial, antracnosis, fenilalanina amonio-liasa, calidad

postcosecha.
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1 Introduction

Anthracnose is the main disease causing postharvest
losses in ’Hass’ avocado. In 2020, Mexico produced
2.4 million tons, of which it exported one million
tons to the United States of America alone and
about 160 thousand tons to destinations such as
Asia, Europe, Central America, and Canada (SIAP-
Producción Agrícola, 2020). Diseases are the main
cause of postharvest losses, which are potentiated by
mechanical damage, inadequate storage temperatures,
and physiological disorders. Colletotrichum siamense,
the causal agent of postharvest anthracnose, has been
identified in the central Pacific region of Mexico.
The visible symptoms of anthracnose are circular,
light brown lesions that rapidly expand and change
color (Herrera-González et al., 2020). The control
of anthracnose in preharvest is carried out with
synthetic fungicides (eradication and exclusion of
the inoculum), but this causes pathogen resistance.
Moreover, due to their high residuality, such
fungicides have effects (neurotoxic and carcinogenic)
on the consumer that limit their postharvest use
(González-Estrada et al., 2021). For this reason, it is
necessary to seek alternatives to control with synthetic
(chemical) fungicides that are efficient in the control
of pathogens, of low cost, and carry a low risk to
health. In both cases (chemical or alternative control),
knowing the pathogen (genus and species) is essential
for pre- and postharvest control and knowing the mode
and site of action of the control agent (González-
Estrada et al., 2020). One of these alternatives to
chemical control is chitosan, a non-toxic biopolymer
considered GRAS (Berumen-Guerrero et al., 2020;
Herrera-González et al., 2021). Its functional
properties and acetyl group (hydrophobic interactions)
allow it to interact with cell wall proteins of the
pathogen, its protonated amino groups (polycationic
deacetylated glucosamine units) destabilize the cell
wall and membrane by electrostatic interactions with
phospholipid phosphates, and its non-protonated
amino groups have a high affinity for metals of the
pathogen cell cytoplasm. These characteristics make
chitosan an efficient bio-fungicide (Bautista-Baños et
al., 2016; Herrera-González et al., 2021).

Chitosan application at 1.5-2.0% has been shown
to reduce mycelial growth and spore concentration
and inhibit spore germination of C. gloeosporioides
(Rodríguez-López et al., 2009; Correa-Pacheco et al.,
2017; Ramos-Guerrero et al., 2020). It also reduces

the incidence and severity of anthracnose in avocado
fruits inoculated with C. gloeosporioides, decreases
fruit weight loss, and maintains the quality of the fruit
until ripening. Finally, it induces defense mechanisms
in the fruit, which are precursors of salicylic acid
related to the systemic response, by increasing the
enzymatic activity of PAL (Kaleda-Marino et al.,
2018; Obianom et al., 2019; Rajestary et al., 2020).
The aims of this work were 1) to determine in vitro the
antifungal effect of chitosan on the cellular viability
of C. siamense, 2) to evaluate the elicitor effect
of chitosan on the enzymatic activity in postharvest
’Hass’ avocado fruits, and 3) to identify the best
chitosan concentration to maintain the postharvest
quality of avocado fruit.

2 Methodology

A commercial chitosan (Zhejiang Golden-Shell
Pharmaceutical Co., Ltd., Zhejiang, China) of high
density, low molecular weight (45,700 Mv, g·mol),
chemical identity with reagent grade chitosan,
acetylation grade of 10.28 ± 0.27%, and an intrinsic
viscosity (η) of 264.62 mL/g was used. It was
dissolved in water acidified with vinegar at 5%
titratable acidity (sugar cane vinegar commercial).
Potato dextrose agar (PDA; DIBICO, Mexico) was
used as the growth medium.

2.1 Pathogen

Nine C. siamense strains, which were isolated from
fruits with postharvest anthracnose symptoms, were
provided by the LIIA Biotechnology Laboratory, of
the TecNM-Technological Institute of Tepic. The C.
siamense strains (municipality, state) were identified
as 1. Up Cg M4 (Uruapan, Michoacán), 2. Tin
Cg M13 (Tingambato, Michoacán), 4. Zira Cg M21
(Ziracuaretiro, Michoacán), 5. Tan Cg M40 (Tancítaro,
Michoacán), 6. LRe Cg M46 (Los Reyes, Michoacán),
7. LRe Cg M48 (Los Reyes, Michoacán), 8. Tpc Cg
N8 (Tepic, Nayarit), 9. Xal Cg N22 (Xalisco, Nayarit),
and 10. CdG Cg J22 (Zapotlan el Grande, Jalisco). All
strains were activated in PDA medium and incubated
at 27 °C ± 2 °C for 7 d.

2.2 Chitosan preparation

Chitosan (Chi) concentrations were prepared at 0,
0.5, 1.0 and 1.5%, dissolved in water acidified with
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10% vinegar. The mixture of each concentration was
dissolved with magnetic stirring, at a temperature of
40-50 °C. After solubilization, it was homogenized
at 13,000 rpm for 10 min (Ultra-Turrax, T18, IKA,
Staufen, Germany).

2.3 Inhibition in vitro of C. siamense

2.3.1 Inhibition of mycelial growth, sporulation,
conidia germination and spore viability

Every strain of C. siamense was subjected to
treatments with chitosan. For this, PDA medium with
chitosan at concentrations of 0, 0.5, 1.0, and 1.5% was
prepared. Discs (7 mm) of mycelium and spores were
taken from each of the strains and incubated at 27
± 1 °C for 7 days. Mycelial diameter was measured
every 24 h with a digital caliper, and the results were
expressed as the percentage inhibition of mycelial
growth. To determine the spore concentration, on day
7 of incubation, 10 mL of water with Tween 80
(0.05%) was added, scraped, and left to rest for 5
min. The water was filtered, the spore concentration
was measured in a Neubauer chamber, and the results
were expressed as spores/mL. The length (µm) and
width (µm) of 200 spores were measured. For spore
germination, discs (10 mm in diameter) of PDA
medium with chitosan (0, 0.5, 1.0, and 1.5%) were
prepared, and 30 µL of the spore suspension of
each strain were added in the center of the disc
and incubated at 27 °C ± 2 °C for 12 and 24 h.
Germination was stopped with the application of a
drop of lactophenol blue. Two hundred spores were
considered per germination period, and in each hour
of sampling, the percentage of germinated spores was
calculated. A spore was considered germinated when
the germinative was twice the length of the spore.
This was observed in a microscope (Motic, Panthera
Classic) with a 40× objective. For spore viability,
incubated discs were taken for spore germination and
were seeded in petri dishes with PDA medium and
incubated at 27 °C ± 2 °C for 48 h, observing the
development or inhibition of mycelium.

2.3.2 Scanning electron microscopy

Mycelium and spore discs 7 d old and 8 mm in
diameter were immersed in 3% glutaraldehyde for
72 h at 4 °C, and then the samples were washed
with a graded ethanol series (20%, 40%, 70%, 90%,
and 100%). Afterwards, the samples were dried in
refrigeration for 12 h. The samples were observed in a

scanning electron microscope (SEC CO., LTD., SNE-
3200M, CA, USA) operated at 20 kV.

2.4 Phenylalanine ammonia-lyase activity

The avocado fruits were collected in an export packing
house in Xalisco, Nayarit. The fruits were washed with
soap and immersed in 2% chlorine for 10 min, and
then they were washed with distilled water and dried
at room temperature (23 °C ± 2 °C). The chitosan
treatments (0, 0.5, 1.0, and 1.5%) were carried out by
immersion (30 s) and subsequent drying. The fruits
were stored at room temperature (22 °C ± 2 °C) and
relative humidity of 85% ± 10% until eating ripeness
(7-10 d). Every 24 h, exocarp and mesocarp samples
were taken. The enzymatic activity of phenylalanine
ammonia-lyase was determined according to Obianom
and Sivakumar (2018b), with slight modifications.
Samples (2.5 g; exocarp or mesocarp) were placed
in 30 mL of frozen acetone and homogenized at
10,000 rpm for 10 min and allowed to rest for 5
min, and the supernatant was decanted. This process
was repeated until a colorless residue was obtained,
which was then allowed to dry. For PAL activity
determination, 0.2 g of acetone powder was weighed
and mixed with 10 mL of borate buffer (0.1 M, pH
8.8) (sodium borate, 5 mmol β-metharcaptoethanol, 2
mmol EDTA, 1% polyvinyl-polypyrrolidone PVPP),
which was homogenized at 15,000 rpm for 30 s.
Then, the mixture was centrifuged at 6,000 rpm for
1 h at 4 °C. The supernatant was filtered on a 0.45-
µm membrane. Then, 0.5 mL of L-phenylalanine (30
mmol) were added, mixed and incubated for 2 h at 25
°C. The reaction was terminated with 6 µL of HCl (6
M). The production of cinnamic acid was measured
at 290 nm (Thermo scientific, Genesys 10S UV-Vis,
Wisconsin, U.S.A.). The results were expressed in
nmol of cinnamic acid h−1·mg of protein−1.

2.5 Postharvest quality

Avocado fruits were collected in an export
packinghouse in Xalisco, Nayarit. The fruits were
washed with soap, immersed in 2% chlorine for
10 min, washed with distilled water, and dried at
room temperature (23 °C ± 2 °C). The fruits were
inoculated as a curative treatment (inoculation and
after application of treatments) with three strains (1.
Up Cg M4, 7. LRe Cg M48 and 8. Tpc Cg N8),
which represent the agroclimatic regions (climate and
soil) that predominate in the Central Pacific Region
of Mexico where avocado is produced. The fruits
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were wounded with an awl (4 × 0.13 mm). Three
longitudinal wounds were made (top, middle, and
bottom) on two equidistant sides of fruit and 10 µL
of the spore suspension of C. siamense (1. Up Cg M4,
7. LRe Cg M48 and 8. Tpc Cg N8) at 106 spores/mL.
After 12 h of inoculation, the chitosan treatments (0,
0.5, 1.0, and 1.5%) were carried out by immersion
(30 s) and subsequent drying. The fruits were stored
at room temperature (22 °C ± 2 °C) and 85% ±

10% relative humidity until ripening (7-10 d). The
color of the fruit skin was measured daily at three
equidistant points on 10 fruits by treatment with a
reflectance colorimeter (High-Quality Colorimeter,
Focus on color, Shanghai, China), and the data were
expressed as changes in luminosity, chromaticity, and
hue angle. The firmness of the fruit was measured
with a penetrometer (Stable Micro Systems, Ta XT
Plus, Vienna Court, United Kingdom) with a 3-mm-
diameter test tube, and 10 mm were penetrated at three
points in the equatorial region of the fruit. The results
were reported in Newtons, as averages of the force
required to penetrate the pulp of the fruit.

2.6 Statistical analysis

A unifactorial experimental design was used, chitosan
being the factor of variation in the in vitro test
and in postharvest quality. For enzymatic activity, a
completely randomized experimental factorial design
was used with chitosan and tissue type as factor of
variation. The normality of the data was verified.
Analysis of variance was performed for the variables
evaluated, and mean comparisons were applied

using Fisher’s LSD test (P ≤ 0.05). The analysis
was performed with Statistica 64 software ver. 12
(StatSoft, 2014).

3 Results and discussion

3.1 Inhibition in vitro of C. siamense

The results of the mycelial inhibition of the nine
evaluated strains of C. siamense are shown in Table
1. All strains of C. siamense showed sensitivity to
increasing chitosan concentration (p < 0.05). With
chitosan at 0.5%, inhibition of mycelium was around
50%; at 1.0%, close to 80% in most cases; and at a
concentration of 1.5%, close to or equal to 100% in
most cases. In the 5. Tan Cg M40 strain, inhibition
did not reach 80%. In most chitosan treatments,
the appearance of the mycelium was sparse, less
dense, distorted, abnormal disorganized, reduced, and
dehydrated. The acervulli and spore masses were not
visible (Figure 1).

Similar results were reported by Marques et al.
(2016), Kaleda-Marino et al. (2018), and Xoca-
Orozco et al. (2018), who achieved greater than 90%
inhibition with a reagent grade low-molecular-weight
chitosan (75%-85% deacetylation). However, Correa-
Pacheco et al. (2017), and Chávez-Magdaleno et al
(2018a, 2019) achieved close to 30% inhibition with
reagent grade medium-molecular-weight chitosan and
found it necessary to combine it with other compounds
to achieve more effective inhibition.

Table 1. Effect of chitosan concentration on the inhibition of mycelial growth of nine C. siamense strains incubated
at 27 °C for 7 days.

Strains Inhibition of mycelial growth
C. siamense Control Chitosan 0.5% Chitosan 1.0% Chitosan 1.5%

1. Up Cg M4 0 ± 0d 50 ± 7.5c 78.3 ± 4.5b 94.9 ± 7.4a

2. Tin Cg M13 0 ± 0d 48 ± 6.1c 71.5 ± 29.4b 85.6 ± 15a

4. Zira Cg M21 0 ± 0d 58.8 ± 4c 78.9 ± 5.8b 100 ± 0a

5. Tan Cg M40 0 ± 0d 47.6 ± 6.1c 70.6 ± 1.3b 76.0 ± 4.3a

6. LRe Cg M46 0 ± 0d 50 ± 5.3c 78.3 ± 2.5b 94.9 ± 1.7a

7. LRe Cg M48 0 ± 0d 49.9 ± 0.9c 77.5 ± 1.8b 92.9 ± 1.8a

8. Tpc Cg N8 0 ± 0d 72 ± 0.7c 81.5 ± 3.2b 96.8 ± 1.2a

9. Xal Cg N22 0 ± 0d 52.4 ± 0.9c 79.7 ± 3.5b 100 ± 0a

10. CdG Cg J22 0 ± 0c 49.7 ± 1.3b 100 ± 0a 100 ± 0a

Superscript letters indicate that values with the same letter in the row are not significantly different;
Fisher’s LSD test (p ≤ 0.05) (n = 6).
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Table 2. Effect of chitosan concentration on the sporulation of nine C. siamense strains incubated at 27 °C for 7
days.

Strains Sporulation (1× 106 spores/mL)
C. siamense Control Chitosan 0.5% Chitosan 1.0% Chitosan 1.5%

1. Up Cg M4 4.98 ± 0.24a 1.54 ± 0.17b 0.55 ± 0.6d 1.07 ± 0.15c

2. Tin Cg M13 - - - -
4. Zira Cg M21 4.05 ± 0.206a 1.67 ± 0.107b 0.805 ± 0.0083c 0 ± 0d

5. Tan Cg M40 0.22 ± 0.1c 3.24 ± 2.47ab 2.55 ± 0.98b 4.0 ± 1.21a

6. LRe Cg M46 6.82 ± 0.22a 2.38 ± 0.13c 0.63 ± 0.06d 2.96 ± 0.11b

7. LRe Cg M48 1.5 ± 0.12a 1.05 ± 0.07b 0.2 ± 0.2d 0.57 ± 0.9c

8. Tpc Cg N8 3.54 ± 0.14a 1.41 ± 0.09b 1.09 ± 0.3b 0 ± 0bc

9. Xal Cg N22 3.41 ± 1.89a 0.302 ± 0.04b 0.27 ± 0.07bc 0 ± 0c

10. CdG Cg J22 0.33 ± 0.01a 0.02 ± 0.002b 0.02 ± 0.008b 0 ± 0c

Superscript letters indicate that values with the same letter in the row are not significantly different;
Fisher’s LSD test (p ≤ 0.05) (n = 6).

 
Figure 1. Effect of chitosan concentration on the inhibition of mycelial growth of nine C. 
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Figure 2. Effect of chitosan on spore length and width. A) Control; B) strain 4. Zira Cg M21 
(chitosan 1.0%) scarcity and heterogeneous; C) Strain 5. Tan (chitosan 1.5%) deformations; 
and strain 6. LRe (chitosan 1.5%) deformation. Motic Microscope, 40×. 
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deformation. Motic Microscope, 40×.

Spore production in the presence of different
chitosan concentrations differed between strains (p
< 0.05) at 7 days of incubation. The concentrations
1.0% and 1.5% were those that most decreased the
production of spores of the pathogen (Table 2). The
length and width of the spore produced by each
strain was statistically different between the different
concentrations of chitosan (p < 0.05). Depending on
the origin of the strain, the length or width of the spore
was greater or less than that of the control (Table 3 and
4; Figure 2).

Sporulation is part of the life cycle of the fungus,
although it is stimulated by different environmental
factors, including a lack of nutrients (Yuan-Ying et al.,
2012).
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Table 3. Effect of chitosan concentration on spore length in nine C. siamense strains incubated at 27 °C for 7 days.

Strains Conidia length (µm)
C. siamense Control Chitosan 0.5% Chitosan 1.0% Chitosan 1.5%

1. Up Cg M4 47.2 ± 4.6a 45.1 ± 4.3b 46.4 ± 3.7a 44.3 ± 4b

2. Tin Cg M13 - - - -
4. Zira Cg M21 41.1 ± 4.5c 42.7 ± 4.9b 45.6 ± 5.5a -
5. Tan Cg M40 45.4 ± 4bc 44 ± 7.1c 47.9 ± 4.7a 46.8 ± 4.3b

6. LRe Cg M46 42.8 ± 0.2b 42.4 ± 0.2b 44.7 ± 0.3a 41.7 ± 0.3c

7. LRe Cg M48 41.2 ± 0.4b 45.7 ± 0.3a 44.4 ± 0.5a 45.2 ± 0.5a

8. Tpc Cg N8 40.6 ± 0.3a 38.5 ± 0.4b 39.7 ± 0.3ab -
9. Xal Cg N22 38.5 ± 0.2c 43.6 ± 0.5b 46.4 ± 0.7a -

10. CdG Cg J22 - - - -
Superscript letters indicate that values with the same letter in the row are not significantly different;
Fisher’s LSD test (p ≤ 0.05) (n = 200).

Table 4. Effect of chitosan concentration on spore width of nine C. siamense strains incubated at 27 ° C for 7 days.

Strains Conidia width (µm)
C. siamense Control Chitosan 0.5% Chitosan 1.0% Chitosan 1.5%

1. Up Cg M4 16.3 ± 2a 13.4 ± 1.8b 14.6 ± 1.5d 12.3 ± 1.5c

2. Tin Cg M13 - - - -
4. Zira Cg M21 11.3 ± 1.6c 12.7 ± 1.8b 13.2 ± 1.7a -
5. Tan Cg M40 12.8 ± 1.7b 13.3 ± 2a 12.7 ± 1.8b 13.4 ± 2.1a

6. LRe Cg M46 14.5 ± 0.1a 13.6 ± 0.1b 14.4 ± 0.2a 12.4 ± 0.1c

7. LRe Cg M48 13.3 ± 0.1b 13.8 ± 0.2a 13.9 ± 0.2a 12.4 ± 0.2c

8. Tpc Cg N8 12.3 ± 0.1c 12.9 ± 0.1b 13.3 ± 0.1a -
9. Xal Cg N22 12.7 ± 0.1b 12.4 ± 0.2b 14.5 ± 0.2a -

10. CdG Cg J22 - - - -
Superscript letters indicate that values with the same letter in the row are not significantly different;
Fisher’s LSD test (p ≤ 0.05) (n = 200).

 
Figure 3. Scanning electron micrographs of C. siamense of different origins treated with 1.0% 
chitosan. A) Strain. 1. Up Cg M4 with overproduction of disorderly mycelia; B) Strain. 4. 
Zira Cg M21 with collapsed mycelia; C) Strain. 6. LRe Cg M46 with excessive spore 
production; D) Strain. 8. Tpc Cg N8 spores and collapsed mycelia. 
 
 
 
 
 

 
Figure 4. Spore viability after 12 and 24 hours of exposure to chitosan A) 9. Xal Cg N22 (12 
h); B) 5. Tan Cg M40 (24 h); C) 1. Up Cg M4 (24 h). 
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However, the observed low sporulation rate was
due to high mycelial inhibition and mycelial damage
that cause the low assimilation of nutrients in the
presence of chitosan. In addition, chitosan alters
processes in the production of spores (duplication of
genetic material). Sporulation is a characteristic of the
aggressiveness of the pathogen: as it is diminished,
its pathogenicity decreases (Oliveira-Junior, 2016).
Similarly, to the inhibition of mycelium, germination
was affected by the concentration of chitosan.
This can be explained by the deposition effect of
chitosan in the spore (formation of a dense film) that
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limits metabolic processes and interaction with the
environment (excretion of metabolites, availability of
nutrients, or change in pH) (Chávez-Magdaleno et al.,
2018b; Herrera-González et al., 2021).

Figure 3 shows the micrographs of C. siamense
with 1.0% chitosan treatment. The 1. Up Cg M4
strain showed overproduction of disorganized mycelia
with reduced hyphal diameters (Figure 3A). The 4.
Zira Cg M21 strain showed distorted and collapsed
hyphae (Figure 3B). The 6. Lre Cg M46 strain
showed excessive spore production of irregular shapes
without hyphae (Figure 3C). The 8. Tpc Cg N8
strain has few spores and few mycelia arranged in
a disorganized way. Table 5 shows the inhibition of
spore germination of C. siamense of different origins
treated with chitosan. The chitosan concentration
affected germination at 12 and 24 h of exposure.
This inhibition depended on the strain, as some were
more sensitive than others. However, although some
strains presented germ tubes, the majority were not
viable to produce hyphae, presenting antifungal effect.
Only strain 9. Xal Cg N22 (12 h) from Nayarit was
able to produce mycelia at chitosan concentrations of
0.5 and 1.0%, presenting a fungistatic effect at these
concentrations, but at 1.5% chitosan, the effect was
fungicidal (Figure 4).

3.2 Phenylalanine ammonia-lyase (PAL)
activity

There was a difference in PAL production between the
peel and the pulp, the activity being greater in the peel
than in the pulp (p < 0.5) (Figure 5A). The activity of
the PAL enzyme differed between chitosan treatments
(p ≤ 0.05). The treatment that presented the highest
PAL enzymatic activity was 1.5% chitosan (Figure
5B). The activation of the enzyme was faster in the
fruits treated with chitosan than in the control (Chi
0%). The maximum activation of PAL occurred after
2 days of storage in all treatments (with and without
chitosan); from day 3 to day 5, all showed a decrease
in enzymatic activity, with the control and chitosan at
1.0% being the ones with the lowest activity. On day
six, PAL activity increased again to values between 2
and 6 nmol (Figure 5).

Similar studies have reported that chitosan
at different concentrations increases PAL activity,
considering it as an elicitor of defense mechanisms
in avocado fruit (Xoca-Orozco et al., 2017; Obianom
& Sivakumar, 2018a, 2018b; and Obianom et al.,
2019). The importance of PAL is that it can fluctuate
significantly in short periods of time in response
to biotic or abiotic stimuli. PAL is the precursor
of cinnamon acid, the precursor of a great variety
of secondary metabolites, such as the metabolites
of phenyl propanoids (phenolic compounds such as
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anthocyanins and flavonoids) (Zhao, 2016; Ding and
Ding, 2020; Kumar Patel et al., 2020;).

3.3 Postharvest quality

3.3.1 Skin color

The changes in color parameters in avocado fruits
inoculated with C. siamense strains differed between
chitosan treatments (p < 0.05). The Chi 0% and
Chi 0.5% treatments were the ones that rapidly
decreased the lightness, chromatic, and hue angle
values, compared with the Chi 1.0% and Chi 1.5%
treatments, which took time to decrease these color
parameters in the three strains inoculated in the fruits.
The low final values of lightness (loss of white color),
chromatic (loss of green color), and hue angle (dark
colors, red/purple) indicate eating ripeness, which all

the fruits reached in different periods of time and
depended on the treatment and on the inoculated
strain (Figure 6). Thus, a slow change in these color
parameters indicates slow maturation.

The color results indicate that all treatments
produced regular color changes in the fruit skins,
but the rates of change differed. Lightness (from
24 to 12), chromatic (from 15 to 3), and hue
angle (from 100 to 220) values were within the
normal parameters to reach eating ripeness (Herrera-
González et al., 2017). These values are due to
the decrease in chlorophyll (responsible for the
green color) and carotenoids (β-carotene, neoxanthin,
violaxanthin, Lutein, R-carotene, zeaxanthin, and
antheraxanthin, responsible for the orange and yellow
color) during ripening, in addition to the accumulation
of anthocyanins (cyanidin 3-O-glucoside mainly),

 
Figure 6. Color parameter changes during ambient storage until ripening of avocado fruit 
(skin) treated with different concentrations of chitosan and inoculated with C. siamense (1. 
Up Cg M4 Michoacán, 7. LRe Cg M48 Michoacán, and 8. Tpc Cg N8, Nayarit). A) lightness, 
B) chromatic, and C) hue angle. Data are presented as means ± Std. Err (n = 30). 
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which are responsible for dark colors (red-purple)
and are synthesized via phenylpropanoids under
the influence of temperature, time, and water loss
(McGuire, 1992; Cox et al., 2004; Ashton et al., 2006)

3.3.2 Weight loss and firmness

The effect of chitosan on weight loss in the inoculated
fruit was different (p < 0.05). The fruit inoculated
without chitosan (Chi 0%) was the one that lost the
most weight when it reached eating ripeness. The
rest of the treatments had a longer shelf life, so the
weight loss was greater in the fruits treated with
chitosan (Figure 7A). These results coincide with that
reported by Chávez-Magdaleno et al. (2018b) and
Xoca-Orozco et al. (2018), since they report similar
loss percentages when they applied 1% chitosan. This
may be due to the fact that chitosan forms a semi-
permeable film that reduces the loss of water vapor due
to the exchange between the fruit and the environment.

The decrease in the firmness of fruits treated with
chitosan was different (p < 0.05). The fruits treated
with Chi 0% and Chi 0.5% lost more than half of their
initial firmness in the first 5 d, reaching eating ripeness
at 8 and 9 days, respectively, while those treated with
Chi 1.0% and Chi 1.5% reduced the initial firmness
by half until days 7 and 9, respectively, and reached
a firmness level corresponding to eating ripeness until
days 13-14, depending on the inoculated strain (Figure

7B).

The results coincide with those reported by various
authors, who establish that the fruit reaches eating
ripeness at between 5 and 10N and that chitosan
lengthens the postharvest life of the fruit (Correa-
Pacheco et al., 2017; Cho et al., 2020). This is
mainly due to the fact that chitosan reduces the rapid
ultrastructural changes of the components of the cell
wall, due to a low enzymatic activity of cellulase
and polygalacturonase that degrades pectin, avoiding
cellular disorder (Bill et al., 2014a, 2014b).

Conclusions

Chitosan had a fungicidal effect on the mycelial
growth and spore germination of nine C. siamense
strains at concentrations of 1.0% and 1.5% in in vitro
application. Moreover, chitosan induced the synthesis
of phenylalanine ammonia lyase in the peel of the fruit
at all concentrations. Moreover, chitosan at 1.0% and
1.5% was able to delay the color change (from green to
black), loss of weight, and firmness for a longer time
in avocado fruits inoculated with C. siamense.
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