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Abstract
The hydrodynamics of an internal-loop airlift reactor was numerically and experimentally characterized. The gas holdup, liquid
velocity, shear rate, flow pattern and volumetric oxygen transfer coefficient (kLa) were evaluated as a function of the air velocity
and medium rheology. Tap water and CMC solutions were used as Newtonian and non-Newtonian fluids, respectively. The
standard κ − ε model was employed for modeling turbulence, and unsteady three-dimensional simulations with the Euler-Euler
model were performed. Gas holdup, liquid velocity and kLa measurements were performed for validating simulations. An
increase in bubble coalescence and a decrease in kLa was observed with CMC solutions. The presence of recirculation loops
inside the riser for CMC solutions is reported, which was not observed with tap water. The higher the CMC concentration,
the larger the recirculation region seems to be. Results show that recirculation loops play a substantial role in the reactor’s
hydrodynamic performance, and it turns out that the gas holdup in the riser increases with increasing the CMC concentration.
Keywords: Internal-loop airlift reactor, Shear-thinning fluids; Computational Fluid Dynamics; kLa; Flow Pattern.

Resumen
La hidrodinámica de un reactor airlift de recirculación interna fue caracterizada numérica y experimentalmente. Se evaluó la
retención de gas, la velocidad del líquido, tasa de corte, el patrón de flujo y el coeficiente volumétrico de transferencia de oxígeno
(kLa) en función de la velocidad de entrada de aire y la reología del medio. Se utilizó agua como fluido newtoniano y soluciones
acuosas de CMC como fluidos no newtonianos. Se realizaron simulaciones tridimensionales en estado transitorio mediante
los modelos Euler-Euler and κ − ε estándar para capturar el flujo multifásico y la turbulencia, respectivamente. Los resultados
numéricos fueron validados con mediciones de retención de gas, velocidad del líquido y kLa. Se observó un aumento en la
coalescencia de las burbujas y una disminución en los valores de kLa con las soluciones acuosas de CMC. Lazos de recirculación
fueron observados en la zona de ascenso al utilizar soluciones acuosas de CMC, los cuales son mayores al incrementar la
concentración de CMC. Es importante mencionar que estos lazos no están presentes al utilizar agua como medio líquido. Los
resultados muestran un incremento en la retención de aire, al aumentar la concentración de CMC, debido a la formación de los
lazos de recirculación.
Palabras clave: Reactor de recirculación interna, Fluido adelgazante, Dinámica de Fluidos Computacional, kLa, Patrón de flujo.

* Corresponding author. E-mail: jrm@correo.azc.uam.mx
https://doi.org/10.24275/rmiq/Bio2694
ISSN:1665-2738, issn-e: 2395-8472
†In memoriam

Publicado por la Academia Mexicana de Investigación y Docencia en Ingeniería Química A.C. 1

https://doi.org/10.24275/rmiq/Bio2694


Guadarrama-Pérez et al./ Revista Mexicana de Ingeniería Química Vol. 21, No. 2(2022) Bio2694

1 Introduction

Airlift reactors (ALRs) are pneumatically agitated
vessels where the agitation is induced by a dispersed
gas phase in the form of bubbles, they usually have
a physical separation of upflowing and downflowing
streams, promoting a better flow circulation and
homogeneity inside the reactor (Doran, 2013; Kadic &
Heindel, 2014). There are two main groups of ALRs,
namely, external and internal loop. The external-loop
airlift reactor (EL-ALR) consists of two separated
columns interconnected at the top and the bottom
with pipe junctions (Cerri et al., 2008). The internal-
loop airlift reactor (IL-ALR) is a bubble column
divided into two parts by a draft tube inserted
along the longitudinal axis of the column, i.e., its
geometry consists only of a cylindrical column with
a concentric draft tube. Both EL-ALR and IL-ALR
configurations consist of two fluid regions: the riser
and the downcomer (Merchuk & Garcia Camacho,
2010). These fluid regions are interconnected and form
a closed loop, which allows a continuous circulation
of the liquid inside the reactor. The gas phase is
usually injected at the bottom of the riser so that
the circulation of the liquid phase is generated by
the existing pressure difference between riser and
downcomer (Luo & Al-Dahhan, 2008).

Due to the absence of mechanical moving parts,
both EL-ALRs and IL-ALRs are considered low-
shear mixing devices, and therefore, are widely
used as aerobic fermenters in many shear-sensitive
biochemical processes, e.g., the production of
enzymes, antibiotics, proteins, biomass, and other
biotechnology products (Chisti, 1989), and in other
treatment processes as degradation of hydrocarbons
(Lizardi-Jiménez & Gutiérrez-Rojas, 2011; Lizardi-
Jiménez et al., 2015; Sánchez-Vázquez et al., 2017;
Valdivia-Rivera et al., 2019; Medina-Moreno et al.,
2020; Sandoval-Herazo et al., 2020). However, one
of the main advantages of IL-ALRs with respect to
EL-ALRs is their simplicity in mechanical design and
geometry (Verlaan, 1987).

A detailed understanding of the hydrodynamics
induced by the reactor allows for a better mass
transfer rate, a good mixing, and for improving the
microbial morphology and metabolism, enhancing the
process yield and power consumption efficiency. It
has been reported that in microbial processes, the
rheological properties and physiological responses of
the microorganisms change throughout the culture

time (Lim et al., 2002). Airlift bioreactor shows high
mass transfer rates with lower power consumption
than agitated tanks, then, a good knowledge on
the hydrodynamics and transport phenomena under
different rheological medium properties is important
to define the optimal configuration and operational
conditions (Esperança et al., 2022). In this context,
mathematical modelling plays a key tool in the design
of new reactor configurations for a subsequently
improvement of reactor design and scale up. In this
study, the hydrodynamics of an IL-ALR is numerically
and experimentally addressed.

Global and local gas holdup and liquid-circulation
velocities (in the riser and downcomer), as well as the
flow pattern and volumetric mass transfer coefficients,
are considered key hydrodynamic parameters for IL-
ALRs performance (Huang et al., 2010; S̆imc̆ík et al.,
2011; Chen et al., 2016). For instance, it has been
reported that the liquid circulation velocity and the
flow pattern influence the mixing and mass transfer
rates. On the other hand, the gas holdup is closely
related to the gas phase residence time (Lu et al.,
1995). Some relevant previous studies on IL-ALRs in
the context of this work are discussed below.

Hwang and Cheng (1997) experimentally studied
the hydrodynamics of an IL-ALR by using Newtonian
(water) and non-Newtonian (aqueous CMC solutions,
0.1-0.8%wt) fluids. They evaluated the effect of CMC
concentration on liquid velocity and gas holdup by
using tracer response and manometric techniques.
They reported that the liquid velocity and the gas
holdup generally decrease with an increase in CMC
concentration. These results are in agreement with
those reported by other authors for EL-ALRs (Popović
& Robinson, 1988; Gavrilescu & Tudose, 1997).

Deng et al. (2010) characterized the bubble
behavior in an IL-ALR as a function of superficial
gas velocity (2-12 cm·s−1) and aqueous solution CMC
concentrations (0-0.45%wt). Based on the different
conductivities of the gas-liquid phase, bubble sizes
and their distributions were measured with a dual-tip
electrical conductivity probe. These authors reported
that increasing both the superficial gas velocity and
CMC concentrations led to an increase in bubble
diameter and a wider bubble size distribution.

Luo and Al-Dahhan (2008) analyzed the flow
structure inside an IL-ALR as a function of superficial
gas velocity (0.076-5.0 cm·s−1) by using computer-
automated radioactive particle tracking. Water and
air were used as liquid and gas phases, respectively.
They found that although the flow pattern in the riser
and in the downcomer is close to plug flow, i.e., the
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velocity vector magnitudes are the same elsewhere,
there exist stagnation zones at the reactor bottom. Wu
and Merchuk (2003) studied the effect of two draft
tube diameters (12 and 16 cm) on the induced flow
structure in the downcomer region of a 22 cm-diameter
IL-ALR by using an optical trajectory tracking system.
Their experimental system was filled with water and a
superficial gas (air) velocity range of 1-2.5 cm·s−1 was
used. Their results indicated that there is no effect of
the draft tube diameter on flow pattern, and this is close
to plug flow under low superficial gas velocities (<2.5
cm·s−1).

van Baten et al. (2003) performed a 2-D and 3-
D CFD study in an IL-ALR operating with a water-
air system in the turbulence regime in a range of
superficial gas velocity of 1.0-12.0 cm·s−1. They used
the standard κ − ε model to simulate the turbulence
and the Euler-Euler scheme for modeling the gas-
liquid system, while the momentum exchange (drag)
between phases was calculated from the correlation
proposed by Clift et al. (1978) by using an average
bubble diameter of 5.0 mm. Their simulation results
were validated with experimental measurements of
liquid velocity and gas holdup. They reported that,
within their evaluated range of superficial gas velocity,
there is a good agreement of 2-D and 3-D results with
gas holdup and liquid velocity in riser and downcomer.

S̆imc̆ík et al. (2011) carried out an experimental
and 3-D CFD study of the hydrodynamics of a
two-phase (water-air) IL-ALR. They evaluated three
turbulence models (RNG κ − ε, realizable κ − ε,
and standard κ-ω) and two correlations for the drag
coefficients (Tomiyama and Schiller-Naumann) by
using an average bubble diameter of 5.0 mm. For
modeling the water-air multiphase flow, the mixture
model and the Euler-Euler model were used. Their
numerical results were validated by using their
experimental measurements of liquid velocity and gas
holdup. They reported the liquid velocity both in
riser and downcomer, as well as the gas holdup, as
a function of the gas superficial velocity within the
range 1.0-7.5 cm·s−1. Their obtained results with the
Mixture and Euler-Euler models are in good mutual
agreement.

S̆imc̆ík et al. (2011) reported that the largest
difference between the standard κ − ε model and
the other evaluated models was around 1.4% for the
liquid velocity, and 4.9% for the gas holdup, and both
were evaluated in the riser. Therefore, the choice of
the evaluated turbulence models had only a minor
influence on the numerical results. With regards to
the two evaluated correlations for the drag coefficient,

they reported that they do not exhibit a significant
effect on the liquid velocity. However, their obtained
holdup values in the riser were higher when the
Schiller-Naumann correlation was used, with a relative
difference of 13.5±2.3%, which decreased as the gas
flow rate increased.

Other relevant studies where a CFD approach
has been used to evaluate the hydrodynamics of
internal-loop airlift reactors with Newtonian fluids are
those carried out by Mohajerani et al. (2012) and
Nalband and Jalilnejad (2019). However, although
non-Newtonian rheology can have a significant effect
on the hydrodynamic performance of airlift reactors,
to the best of our knowledge, the number of previous
numerical studies dealing with these systems with
non-Newtonian shear-thinning fluids has been scarcely
addressed (Xu et al., 2015; Han et al., 2017).

In the present work, this issue is brought up.
The liquid recirculation velocity, gas holdup, and
flow patterns of an internal-loop airlift reactor were
analyzed in detail by using Newtonian and non-
Newtonian (shear-thinning) fluids. Experiments and
numerical simulations were carried out to evaluate the
effect of both, the rheology of the medium, and the air
superficial velocity on global and local hydrodynamics
parameters, i.e., liquid circulation velocity, gas holdup,
flow patterns and the volumetric oxygen transfer
coefficient.

2 Methodology

2.1 Experimental

2.1.1 Setup experimental

The experimental arrangement employed is shown
in Fig. 1. The IL-ALR was housed in a glass tube
with an internal diameter of 7.2 cm. It consisted of
two main parts: an L-shaped gas diffuser, and a draft
tube. The L-shaped diffuser gas outlet consisted of
five collinear 0.1 cm internal diameter holes and was
located 12 cm above the reactor bottom. The draft
tube dimensions were: 4.2, 4.5, and 20 cm for inner
diameter, outer diameter, and height, respectively.
The liquid height was set at 26.0 cm, for a total
liquid volume of 1 L. Tap water and two aqueous
solutions of carboxymethyl cellulose (CMC) at 0.25
and 0.50%wt/v, were used as working fluids, while
air from a mechanical compressor was used as the
gas phase; the temperature was kept constant at 23ºC.

www.rmiq.org 3
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Fig. 1. Experimental arrangement. (1) square
aquarium of water, (2) IL-ALR, (3) air-flow control,
(4) pressure damper column, (5) wet filter, and (6) air
compressor.

Table 1. Liquid phase properties.

CMC
concentration
[%wt/v]

Density
[kg m−3]

k
[Pa·sn]

n [-]

0 (water) 997.0 0.001 1.0
0.25 1001.5 0.2477 0.7488
0.50 1004.0 1.1532 0.4981

The apparent viscosity (µL) of the CMC solutions
was measured employing an Anton-Paar MCR 502
rheometer by using a concentric cylinder geometry.
The data obtained was then fitted within the shear
rate (γ̇) range 0.01 ≤ γ̇ ≤ 1000 to a power-law model
(Gavrilescu & Tudose, 1997):

µL(γ̇) = k(γ̇)n−1 (1)

where k and n are the consistency index and the flow
index, respectively. The values obtained for k, n, and
the working fluid density (i.e., liquid phase) are shown
in Table 1. The correlation coefficients (R2) of the
above model with the two testing fluids in the range of
validity were 0.9974 (CMC at 0.25 %wt/v) and 0.9992
(CMC at 0.25 and 0.50%wt/v).

2.1.2 Gas holdup and liquid velocity measurements

Both the gas holdup (αG) and liquid phase velocity
(UL) were evaluated at five air superficial velocities:
US = 0.20, 0.31, 0.41, 0.51 and 0.61 cm·s−1. αG was
calculated from the difference between aerated and
non-aerated operating conditions, as shown in Eq. 2
(Gavrilescu & Tudose, 1997):

αG =
Ha −Hna

Ha
(2)

where Ha and Hna are the aerated and non-
aerated working liquid heights, respectively. UL was
determined by using a chronometer and measuring the
displacement time of sodium polyacrylate spheres in
the riser (∆x = 18 cm) and the downcomer (∆y = 12
cm). Bubble diameters were measured by in situ image
capturing. The images were processed by using the
WebPlotDigitizer software (Rohatgi, 2017).

2.1.3 Determination of the volumetric oxygen
transfer coefficient

This kLa was estimated by employing the dynamic
method (Bandyopadhyay et al., 1967), in which
the dissolved oxygen concentration in the fluid was
measured by using a YSI® Pro20 electrode. The
sensor was located in the riser region of the airlift
bioreactor and was calibrated under O2 saturation
conditions. First, the dissolved oxygen in the system
was removed by bubbling N2, then, air was supplied
(at superficial velocities defined in section 2.1.2)
into the bioreactor with simultaneous and continuous
measurements of dissolved oxygen concentration
registered by the electrode, until saturation condition
was reached.

2.2 Numerical

2.2.1 Geometry and mesh

The model geometry (Fig. 2a) was built using
the Ansys-DesignModeler® software, and the
computational mesh was generated using the Ansys-
Meshing® software. In order to extract average
values in regions of interest within the reactor, five
volumes were created in the computational mesh
(Fig. 2b), namely, air, head, riser, downcomer and
bottom. The boundary between the contact regions
was conformal (i.e., the grid nodes coincide at the
boundaries). The optimal number of elements in
the mesh was defined through a mesh independence
analysis, which is described in detail in Section 3.2.

4 www.rmiq.org
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Fig. 2. Airlift bioreactor: a) geometry of the bioreactor,
b) computational mesh.

2.2.2 Transport equations

The transient gas-liquid flow was modeled by using
the Eulerian-Eulerian model, in which the mass
transport Eq. (3) and momentum transport Eq. (4) are
solved for each phase q, where q = G (gas phase) and
L (liquid phase) (Du et al., 2006):

∂αqρq

∂t
+∇ ·

(
αqρq~vq

)
=

n∑
p=1

(
ṁpq − ṁqp

)
, (3)

∂αqρq~vq

∂t
+∇ ·

(
αqρq~vq~vq

)
= ∇ · τq −αq∇P +αqρq~g

+

n∑
p=1

(
~Rpq + ṁpq~vpq − ṁqp~vqp

)
+ ~Fq + ~FL,q + ~FV,q,

(4)

where for phase q, αq is the volume fraction, ρq
the density, ~vq the velocity vector, ṁpq is the mass
transport from the pth to qth phase, and ṁqp is the rate
mass transport from phase q to phase p. In addition,
P is the pressure, ~g is the gravity constant, ~Rpq is
the interaction force between the two phases, ~Fq is
an external body force (e.g., the Coriolis and the
centrifugal force), ~FL,q is a lift force, ~FV,q is a virtual
mass force, τq is the qth phase stress-strain tensor. This
latter can be expressed as follows (Bowen, 1976):

τq = αqµq,e f f D, (5)

where µq,e f f is the effective viscosity of the phase
q, which consists of a molecular viscosity (µq) and a
turbulent viscosity (µq,T ), i.e.,

µq,e f f = µq + µq,T . (6)

D is the deformation rate tensor, which can be written
as:

D =
[
∇~vq + (∇~vq)T

]
. (7)

The generalized molecular viscosity [µq(γ̇)] is a
function of the magnitude of the deformation rate
tensor (γ̇), defined as

γ̇ =

√
1
2

D : D. (8)

On the other hand, the mathematical relations for the
turbulent viscosity are presented in Section 2.2.4.

In this work, it is assumed that the only external
volume force that contributes to the flow is the gravity,
i.e., ~Fq = 0. It is considered that the lift force is
insignificant compared to the drag force, thus ~FL,q = 0,
and the virtual mass force was considered constant,
~FV,q = 0.5. The interfacial force was computed by
(Roco, 1993):

n∑
p=1

~Rpq =

n∑
p=1

Kpq(~vp −~vq), (9)

where Kpq is the interface momentum exchange
coefficient, which, in turn, was calculated as follows
(Roco, 1993):

Kpq =
3
4
ρqαqαp

CD

db

∣∣∣~vp −~vq
∣∣∣ . (10)

Here, CD is the steady drag coefficient.

2.2.3 Drag model

The drag coefficient was computed by using the Grace
model (Schiller, 1933; Grace & TH, 1976; Clift et al.,
1978), which can be expressed as

CD = max
[
min(CDellipse ,CDcap ),CDsphere

]
. (11)

In Eq. (11), CDellipse , CDcap and CDsphere are defined as
follows:

CDsphere =
4
3

gdb

U2
t

(ρq − ρp)
ρq

, (12)

CDcap =
8
3

(13)

and

CDsphere =

 24
Re , Re < 0.01
24
Re (1 + 0.15Re0.687), Re ≥ 0.01

(14)

www.rmiq.org 5



Guadarrama-Pérez et al./ Revista Mexicana de Ingeniería Química Vol. 21, No. 2(2022) Bio2694

where

Ut =
µq

ρqdb
Mo−0.149(J − 0.857); (15)

Mo is the Morton number, given by

Mo =
µ4

qg

σ3

ρq − ρp

ρ2
q

; (16)

σ is the surface tension, and J is given by a piecewise
function;

J =

0.94H0.757, 2 < H ≤ 59.3
3.42H0.441, H > 59.3

, (17)

where

H =
4
3

EoMo−0.149
(
µq

µre f

)−0.14

, (18)

where Eo is the Eötvös number, given by

Eo =
g(ρq − ρp)d2

b

σ
, (19)

and µre f = 0.0009 Pa · s, Re is the bubble Reynolds
number, and it is given by

Re =
ρq

∣∣∣~vp −~vq
∣∣∣db

µq
, (20)

where db is the bubble diameter. Experimental bubble
sizes used in simulations for the different flow rates
evaluated in this work are show in Table 2. In Eq. (20),∣∣∣~vp −~vq

∣∣∣ is the velocity between phases.

2.2.4 Turbulence model

The turbulence inside the reactor was simulated with
the standard κ− ε model. In this model, the turbulence
viscosity for the liquid phase can be computed by
using (S̆imc̆ík et al., 2011)

µT,L = ρLCµ

κ2
L

εL
. (21)

The turbulence kinetic energy (κL) and turbulence
dissipation rate (εL) are given by

∂αLρLκL

∂t
+∇ · (αLρL~vLκL) = ∇ ·

[
αL

(
µL +

µT,L

σκ

)
(∇κL)

]
+αLGL,κ −αLρLεL, (22)

∂αLρLεL

∂t
+∇ · (αLρL~vLεL) = ∇ ·

[
αL

(
µL +

µT,L

σε

)
(∇εL)

]
+
αLεL

κL

(
C1εGL,κ −C2ερLεL

)
, (23)

where GL,κ is defined as

GL,κ = µT,L
[
∇~vL + (∇~vL)T

]
: ∇~vL. (24)

Standard turbulent model constants were used in
simulations: Cµ=0.09, σκ = 1.0, σε = 1.3, C1ε = 1.44
and C2ε = 1.92. The turbulence viscosity for the gas
phase was computed as

µT,G =
ρG

ρL

µT,L

ω
, (25)

where ω = 1.0.

2.2.5 Numerical estimation of kLa

The mass transfer resistance (kL), multiplied with
the specific surface area of the gas phase (a),
yields the volumetric oxygen transfer coefficient
(kLa). The kL was calculated by using Higbie’s
penetration theory (Higbie, 1935) [eq. (26)], which
considers one-dimensional time-dependent diffusion
of the transferred component from the interface to the
bulk concentration. This calculation approach for the
kL has been widely used in various studies (Huang et
al., 2010; Wang et al., 2011; Chen et al., 2016; Teli
& Mathpati, 2021) showing adequate experimental
predictions.

kL = 2
(

DO2

π

)1/2 (
ρLε

µL

)1/4

. (26)

In Eq. (26), an oxygen diffusion coefficient in water
(DO2 ) of 2× 10−9m2·s−1 (Bach et al., 2017) was used.
By assuming spherical bubbles, the specific surface
area of the air is given by

a =
6αg

db
. (27)

From Eqs. (26) and (27), the following equation can
be obtained:

kLa = 12
(

DO2

π

)1/2 (
ρLε

µL

)1/4 (
αg

db

)
. (28)

2.2.6 Numerical solution

The unsteady numerical solution was implemented
in ANSYS Fluent® Version 17.1 using the finite
volume method (FVM). Non-slip boundary conditions
were applied to all solid surfaces. Atmospheric
pressure condition was set at the free surface of
the liquid column. Coupled pressure-velocity was
calculated by using the phase-coupled simple scheme.
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Spatial discretization was achieved employing the
second order upwind scheme. Momentum and volume
fractions were approximated by the QUICK scheme.
Turbulence parameters and time discretization were
obtained employing the first order upwind scheme. A
time step of 10−3 s was considered, which produced a
maximum Courant number of 0.1 and 0.05 in the riser
and in the downcomer, respectively.

3 Results and discussion

3.1 Bubble diameter

Table 2 shows experimental average bubble diameters
(db) in the riser region as a function of US and fluid
rheology. Measured bubble size ranges from 4.56 mm
±0.51 mm (tap water, US =0.2 cm·s−1) up to 13.10
mm ±0.28 mm (CMC 0.50%wt/v, US =0.61 cm·s−1).
It is important to point out that the experimental
equipment used in this study has been previously
addressed in publications from our group (Sánchez-
Vázquez et al., 2015, 2017 and 2018), involving
several multiphasic mixtures, including organic liquid
phases and/or suspended solid particles containing
immobilized microorganisms. These mixtures allowed
to conclude that the used experimental setup in this
study avoid stagnant zones in the draft tube region.

It can be seen that by increasing US or the
CMC concentration, bubble diameter increases as
well. It is important to emphasize that bubble breakup
was not observed within the range of experimental
conditions evaluated in this work. However, bubble
coalescence increases with CMC concentration or
US . This behavior is characteristic of small diameter
columns, where viscous forces predominate and the
system exhibits a tendency to coalesce (Godbole et

al., 1982). These results are in agreement with those
reported by Deng et al. (2010), who attribute this effect
to the fact that increasing the liquid viscosity leads to
a decrease in the turbulence intensity.

On the other hand, it was observed that increasing
US or the CMC concentration causes the initial
distance between contiguous bubbles after their
formation in the diffuser to be smaller. So, the
mechanisms that cause bubbles to approach each other
in the bubble train due to well-known viscous wake
attraction effects are stronger (Katz & Meneveau,
1996; Ramírez-Muñoz et al., 2011), and the bubble
collision and subsequent coalescence rate of bubbles,
as well as the average bubble diameters, increase.

Table 2. Experimental average bubble diameters
(expressed in mm).

US Water CMC CMC
[cm·s−1] 0.25%wt/v 0.50%wt/v

0.2 4.56±0.51 5.87±0.30 6.12±0.62
0.31 6.35±0.47 7.35±0.38 8.48±0.42
0.41 8.10±0.52 8.80±0.77 10.80±0.56
0.51 9.45±0.51 10.04±0.54 11.95±0.51
0.61 10.8±0.62 11.27±0.63 13.10±0.28

3.2 Mesh independence analysis

To estimate the influence of the number of
grid elements on the simulation results, a mesh
independence analysis was performed. To this end, six
structured hexagonal meshes were generated, where
the number of elements was progressively increased
in each of the regions defined in Fig. 1b (air, head,
riser, downcomer and bottom), as shown in Table 3.
It was ensured that, for each increment in the mesh
resolution, the number of elements in each defined
region increases around twice.

Table 3. Number of elements for each region defined for the mesh independence analysis.

Mesh #1 #2 #3 #4 #5 #6

Regions Number of elements

Air 3144 8000 18060 33200 62424 130260
Head 1572 4000 10320 16600 36414 86840

Downcomer 4800 9600 40320 71440 175500 488000
Riser 4480 12000 41040 68400 135135 282800

Bottom 11308 21409 44169 61624 116122 267710
Whole domain 25304 55009 153909 251264 525595 1255610
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Fig. 3. Results of mesh independence analysis: US =

0.61 cm·s−1, ρ = 997 kg·m−3 and µ = 10−3 Pa·s.

As evaluation criteria, average liquid velocities in
the riser (ULR) and downcomer (ULD), as well as gas
holdup values (αG) were used. Fig. 2 shows these
results for each defined mesh, which were normalized
with respect to their corresponding densest mesh
(mesh #6) values, i.e., U∗LR = 13.5 cm·s−1, U∗LD =

7.49 cm·s−1 and α∗G = 0.05. The maximum examined
air superficial velocity (US = 0.61 cm·s−1) and
Newtonian fluid properties (ρ =997 kg·m−3 and µ =

10−4 Pa·s) were used for these determinations. Results
suggest that ULR, ULD and αG are independent of
the mesh elements from Mesh #4 onwards. Therefore,
this mesh ensures numerical accuracy while at the
same time keeps computing time as low as possible.
Therefore, the remaining simulations in this study
were carried out by using this mesh of 251,264
elements.

3.3 Global hydrodynamics parameters

3.3.1 Liquid phase velocity

Fig. 4 shows numerical simulations of the effect
of US and CMC concentration on global liquid
phase velocities. To validate the numerical results,
global experimental measurements of liquid phase
velocities are also included in this Figure. The
maximum relative difference between experimental
and numerical values were 7.7% and 8.4%, in riser and
downcomer, respectively, which are corresponding to
CMC solution at 0.25%wt/v and US = 0.51 cm·s−1.
According to Fig. 4a, the liquid velocity in the riser
(ULR) increases with increasing US and decreases

⸀

⸀

⸀

Fig. 4. Effect of US and CMC concentration on global
liquid velocities: a) liquid velocity in riser (ULR), and
b) liquid velocity in downcomer (ULD).

as CMC concentration increases. This is similar to
what is observed in Fig. 4b for the liquid velocity
in the downcomer (ULD). Results from this work are
in agreement with those reported by some authors,
who analyzed the liquid circulation velocity in airlift
bioreactors by experimentation (Verlaan et al., 1986;
Choi & Lee, 1993; Lu et al., 1995) and numerical
simulation (van Baten et al., 2003; Wang et al., 2006).

3.3.2 Liquid flow pattern

Fig. 5 shows the effect of the fluid rheology and US
on the existing flow pattern in a particular plane inside
the reactor, located at 0 ≤ X ≤ 3.6 cm and 0 ≤ and
≤ 14.7 cm. From this, a flow pattern characteristic of
ALRs, similar to what is reported by some authors
(Sokolichin et al., 2004; Luo & Al-Dahhan, 2008;
Luo & Al-Dahhan, 2008) can be seen, when water as
a liquid medium is used, i.e., a fully developed up-
and downflow in riser and downcomer, respectively.
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Fig. 5. Effect of CMC concentration and US on the
numerical flow pattern.

However, at the bottom of the ALR, stagnation zones
are formed, which turn out to be independent of the
gas inlet velocities examined in this work. On the other
hand, the formation of a recirculation loop region in
the riser is evident when CMC aqueous solutions are
used; this has not been reported previously, according
to our literature review. This fact could be associated
with the small inner diameter of the riser column used
in the present study (i.e., 4.2 cm), which, together
with the predominance of viscous forces, causes a
significant drag effect in the riser wall surface, which
induces the formation of recirculation loops.

The formation of recirculation loops causes a
reduction in the riser and downcomer liquid velocity,
which is more pronounced as the fluid viscosity
increases, as shown in Fig. 5. By increasing US ,
the recirculation loops tend to decrease in size for
the relatively low fluid viscosity (i.e., 0.25%wt/v
CMC solution). The presence of stagnation zones and
recirculation loops reduce the mixing efficiency in
the reactor, and, according to our literature review,
these phenomena have not been reported elsewhere.
These results suggest that the effect of the ratio of the
medium viscosity and US on the recirculation loop
size warrant further investigation to improve airlift
reactor mixing. However, this is beyond the scope
of this work. Our results also highlight the practical
application of our findings and open a new line of
research addressed to improve the understanding and
the performance of these systems.

Fig. 6. Mean numerical values of shear rate and its
respective coefficient of variation in different regions
inside the airlift bioreactor at US = 0.61 cm·s−1.

3.3.3 Average shear rate

Fig. 6a exhibits numerical average shear rate values
at US = 0.61 cm·s−1 computed in the different
regions previously defined in the computational mesh
(i.e., bottom, riser, head and downcomer) for the
three evaluated testing fluids. In addition, shear rate
coefficient of variation (CoV) is included in Fig. 6b.
CoV computed for each region represents the ratio of
the shear rate standard deviation (σ) to the average
shear rate value (x) i.e., CoV= σ/x, and it is included
for comparing the degree of shear rate variation over
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the different regions of the reactor.

According to Fig. 6a, highest average values of
shear rate are in the riser region and decreases for each
region as CMC concentration increases. On the other
hand, it can be seen in Fig. 6b that the bottom region
exhibits highest values of CoV, which are around one
order of magnitude higher that those obtained in the
remaining evaluated regions. This suggests that there
exist higher shear rate values in the region close to
the diffuser, which is in agreement with experimental
measurements reported by Luo and Al-Dahhan (2008).

Recirculation loops located in the reactor´s bottom
region with the Newtonian fluid (see the flow patterns
shown in Fig. 5) could expose the microorganisms to
high values of shear rate (or shear stress) by prolonged
periods of time in this region thus causing damages
in the microbial cell structure. These results highlight
the practical application of our findings and suggests
that a CFD approach can be used to establish safe
operating conditions in airlift bioreactors in order to
avoid adverse effects related to cell damages.

3.3.4 Global gas holdup

Fig. 7 shows experimental and numerical results of
the effect of US and CMC concentration on the global
gas holdup throughout the reactor, and in the different
volumes previously defined in the computational
mesh. Results for water are shown in Fig. 7a, and
for CMC solutions at 0.25%wt/v and 0.50%wt/v
are shown in Figs. 7b and 7c, respectively. The
maximum relative difference between experimental
and numerical values is 8.3%, which corresponds to
0.25%wt/v solution of CMC at US = 0.61 cm·s−1

(Fig. 7a). As expected, the highest values of gas
holdup are obtained in the riser region, and their values
increase with increasing CMC concentration or US .
On the other hand, it has been reported, for similar
experimental systems, that gas holdup decreases when
CMC concentration increases (Gavrilescu & Tudose,
1997; Hwang & Cheng, 1997; Wei et al., 2000;
Deng, Wang et al., 2010; Mendes & Badino, 2016;
de Jesus et al., 2017). This effect has been attributed
to the formation of large bubbles in highly viscous
media with the absence of bubble breakup and
presence of bubble coalescence, and consequently, the
residence time becomes shorter and the gas holdup
decreases. To gain fundamental insight on the origin
of the discrepancy with the results from this work, a
discussion is provided below.

⸀
Fig. 7. Effect of US ) and CMC concentrations on
gas holdup (αG): experimental and numerical data. a)
Water, b) CMC 0.25%wt/v and c) CMC, 0.50%wt/v.

3.3.5 Gas phase velocity

Fig. 8 shows numerical results of the gas phase
velocity in the riser region (UGR) as a function of
US and liquid viscosity. It can be seen that there
exists a significant increase in the gas phase velocity
as US increases. However, it is important to note
that as the concentration of CMC (i.e., the medium
viscosity) increases, the velocity of the gas phase
decreases significantly. This effect can be attributed
to two factors: (1) as the viscosity of the medium
increases, the interfacial gas-liquid drag also increases,
decreasing the velocity of the rising bubbles. (2)
According to the numerical flow pattern shown in
Fig. 5, air bubbles are retained for longer times in
the recirculation loops formed in the riser region,
and these recirculation loops are larger as the liquid
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⸀

⸀
Fig. 8. Air velocity in the riser region from the
numerical simulations.

viscosity increases. Therefore, both effects cause a
decrease in the gas phase velocity in the riser region,
i.e., an increase in the resident times of bubbles, and in
the gas holdup.

3.3.6 Volumetric oxygen transfer coefficient

Fig. 9 shows numerical and experimental kLa values
as a function of US and CMC concentrations. It
can be seen that kLa increases when US also
increases regardless of the fluid under consideration.
However, the highest kLa value for each US evaluated
is obtained with tap water, and it decreases with
CMC concentration. This effect can be attributed
to the fact that when the viscosity of the medium
increases, the mass transfer resistance reduces [see
eq. (26)]. In addition, an increase in bubble size
(see Table 2) induces low values of the specific
surface area [see Eq. (27)], and therefore, lower kLa
values are obtained. These results are in agreement
with experimental kLa values reported by Jiménez-
González et al. (2015). Results from this work
are in better approximation than those reported
by Bach et al. (2017), who used an iterative
method to calculate kLa, which increases the number
of simulations, and consequently, the computation
time. The maximum relative difference between the
experimental and numerical kLa value is 8.9%, which
corresponds to the CMC solution at 0.25%wt/v.

⸀
Fig. 9. kLa versus gas outlet velocity (US ) for different
CMC concentrations.

3.4 Local hydrodynamics parameters

3.4.1 Liquid phase velocity profiles

Fig. 10 shows the numerical radial profile of the liquid
phase velocity in the riser and the downcomer as a
function of CMC concentration at US = 0.61 cm·s−1.
The radius was normalized with respect to the internal
column radius, i.e., Rit = 3.6 cm. The radial liquid
phase velocity was extracted at three positions: the top
(Y = 20.7 cm), the middle (Y = 12.7 cm), and the
bottom (Y = 4.7 cm), as is depicted in Figs. 10a-c,
respectively. Results show that the local liquid velocity
decreases when CMC concentration is increased, both
in riser and in downcomer. Furthermore, in the riser,
the liquid velocity exhibits a parabolic decay in
the axial analyzed region (4.7 cm ≤ and ≤ 20.7
cm) for the Newtonian and non-Newtonian fluids;
however, for water, the velocity profiles at the three
positions are higher. A slightly different tendency
is evident for water in the bottom (Y = 4.7 cm),
which can be attributed to this fluid having a low
viscosity value. Therefore, at this position close to
the diffuser, the viscous forces are not enough for
damping chaotic movement induced by the diffuser.
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Fig. 10. Effect of CMC concentration on the numerical
liquid velocity radial profile in different sections of the
riser and downcomer. a) and = 20.7 cm, b) and = 12.7
cm and c) and = 4.7 cm.

On the other hand, in the downcomer, the liquid
velocity for each examined fluid exhibits a fully
developed parabolic profile in the analyzed region,
which is characteristic of laminar flow. The profiles
obtained in this work are in agreement with previous
studies carried out in airlift bioreactors operating with
water (Young et al., 1991; Jianping & Shonglin, 1998;
Utiger et al., 1999; Jia et al., 2007). The region of the
downcomer is critical in the oxygen mass transport,
and it is well-known that there exists a poor radial
mixing in the laminar regime. Therefore, the use of
disturbing flow elements to induce chaotic motion
of fluid particles in this region, e.g., helical flow
promoters (Gluz & Merchuk, 1996; Schlötelburg et
al., 1999; Särkelä et al., 2019), could be necessary.

3.4.2 Gas holdup profiles

In Fig. 11, numerical radial profiles of gas holdup in
the riser as a function of CMC concentration at US
= 283 cm·s−1 are presented. The radial distance was
normalized with respect to the internal radius of the
draft tube, i.e., Rid = 2.1 cm. Three cross-sections
at different heights of the riser region are analyzed,
namely, the top (Y = 20.7 cm), the middle (Y = 12.7
cm) and the bottom (Y = 4.7 cm), which are included
in Fig. 10 a), b) and c), respectively.
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Fig. 11. Numerical results of the effect of CMC
concentration on the radial profile of gas holdup in
different sections of the riser. a) and = 20.7 cm, b) and
= 12.7 cm and c) and = 4.7 cm.

The profiles obtained show that the gas holdup
is higher in the riser center, and it decreases as the
radius approaches the concentric tube wall. These
results are qualitatively in agreement with previous
studies (Fischer et al., 1994; Jianping & Shonglin,
1998; Schweitzer et al., 2001; Deng, Wang et al.,
2010). However, as in the global gas holdup behavior,
in the present study, the local gas holdup also increases
with the CMC concentration. The existing higher gas
holdup in top regions of the riser could be associated
with experimental systems where the wake-induced
attraction effect of preceding bubbles induces a high
concentration of bubbles in the column top region,
which has been reported previously for an air-water
system [see Fig. 2 from Katz and Meneveau (1996)].

Conclusions

Experiments and unsteady three-dimensional
simulations were carried out to describe in detail the
hydrodynamics of an internal-loop airlift reactor by
using Newtonian and non-Newtonian (shear-thinning)
fluids. A good agreement between global experimental
and numerical values of holdup and liquid velocity
was obtained. The maximum relative difference for the
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holdup and volumetric oxygen transfer coefficient was
8.3% and 8.9%, respectively, and for liquid velocity
was 7.7% in the riser and 8.5% in the downcomer.

An increase in the CMC concentration induces
the coalescence of bubbles in the riser region and
the diameter of the bubble increases. According to
the numerical results, the oxygen transfer resistance
decreases as the CMC concentration increases. On
the other hand, the increase in the bubble diameter
induces low specific surface area, and therefore, the
volumetric oxygen transfer coefficient decreases when
the medium viscosity increases.

Results show that viscous forces predominate in
the riser region with a coalescing tendency. This fact,
together with the small inner diameter of the column
employed in this work, induces a significant drag
effect in the riser wall surface that favors the formation
of recirculation loops for the two tested shear-thinning
fluids. The recirculation loop size increases with the
CMC concentration.

The presence of recirculation loops inside the
riser was not observed with tap water. Recirculation
loops in the bottom region together with the existing
high shear rate values in this zone could induce cell
damage by shear stress in bioprocesses carried out
in airlift reactors. Recirculation loops in the riser
region drastically reduce the overall liquid velocity
in the reactor and the gas phase velocity in the riser.
Therefore, bubble retention times and the holdup
increase with CMC concentration. The downcomer
region exhibits a nearly fully-developed laminar flow,
which might be associated with a poor radial mixing
in this region.

Results from this work show that CFD tools are
key in gaining a fundamental understanding of local
phenomena at a relatively low cost. These results are
otherwise difficult to explain using experimental tools
only.
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Nomenclature

CD Drag coefficient [-]
db Bubble diameter [cm]
Eo Eötvös number [-]

~F Body force [N·m−3]
~FL Lift force [N·m−3]
~FV Virtual mass force [N·m−3]
Ha Aerated working liquid height [cm]
Hna Non-aerated working liquid height [cm]
k Consistency index [Pa·sn]
K Interphase momentum exchange coefficient

[kg·m−3·s−1]
kLa volumetric oxygen transfer coefficient [s−1]
ṁ Rate mass transport [kg·m−3·s−1]
Mo Morton number [-]
n Flow index [-]
~R Interaction force between phases [N·m−3]
Re Reynolds number [-]
Ric Internal column radius [cm]
UL Liquid-phase velocity [cm·s−1]
ULR Liquid-phase velocity in riser [cm·s−1]
ULD Liquid-phase velocity in downcomer [cm·s−1]
US Gas-phase intel velocity [cm·s−1]
~v Velocity vector [cm·s−1]
X Radial distance [m]
Y Axial distance from the bottom [m]
Greek letters
αG Gas holdup [-]
ε Turbulence dissipation rate [m2·s‘−3]
γ̇ Shear-rate [s−1]
κ Turbulence kinetic energy [m2·s−2]
µ Molecular viscosity [Pa·s]
µa Apparent viscosity [Pa·s]
µe f f Effective viscosity [Pa·s]
µT Turbulent viscosity [Pa·s]
ρ Density [kg·m−3]
σ Surface tension coefficient [N·m−1]
τ Shear-stress [Pa]
τ Stress-strain tensor [Pa]
∆x Displacement in riser [cm]
∆y Displacement in Downcomer [cm]
Abbreviations
ALR Airlift Reactor
CFD Computational Fluids Dynamics
CMC Carboxy-Methyl-Cellulose
CoV Coefficient of Variation
EL-ALR External-loop Airlift Reactor
FVM Finite Volume Method
IL-ALR Internal-loop Airlift Reactor
QUICK Quadratic Upstream Interpolation for

Convective Kinematics
RNG Re-Normalization Group
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