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Abstract
The objective of this work was to propose a Convective Conformable Mass Transfer model (CCMT) to estimate mass transfer
coefficients (kLa) in bioreactors. The model employs a conformable derivative order operator (α), which is a function of the
electrode constant (kP), and this constant changes with the use of the electrode and the operating conditions of the bioreactor.
A complete mixed-level experimental design with two factors: agitation and the glycerol-buffer ratio was used to validate the
model. The results showed that when the viscosity increases and the agitation decreases, α increases, and vice versa. Alpha is a
parameter derived from the conformable calculus but could also have a physical meaning in the process. The CCMT model was
compared with two conventional models, the correlation matrix of the experimental data and the three models studied, and the F-
test (p>0.05) showed that the three models adequately describe the experimental data. Using the Akaike and Bayesian information
criteria, they were determined that of the three compared models the CCMT model fits the experimental data more adequately
according to the parameters of each model (72, 55, and 42%, respectively). This work proposes an additional alternative for the
determination of kLa in bioprocesses.
Keywords: fractional calculus; conformable derivative; mathematical model; volumetric oxygen transfer coefficient; Akaike and
Bayesian information criterion.

Resumen
El objetivo de este trabajo fue proponer un modelo de Transferencia de Masa Convectivo Conformal, (CCMT) para estimar
coeficientes de transferencia de masa (kLa) en biorreactores. El modelo emplea un operador de orden de derivación conformal (α),
que está en función de la constante del electrodo (kP), y este último cambia con el uso del electrodo y las condiciones de operación
del biorreactor. Se usó un diseño experimental completo de nivel mixto con dos factores: agitación y la relación glicerol-buffer
para validar el modelo. Los resultados mostraron que cuando la viscosidad aumenta y la agitación disminuye, α aumenta, y
viceversa. Alfa es un parámetro derivado del cálculo conformal pero también podría tener un significado físico en el proceso.
El modelo CCMT se comparó con dos modelos convencionales, la matriz de correlación de los datos experimentales y los tres
modelos estudiados y la F-test (p>0.05) demostraron que los tres modelos describen adecuadamente los datos experimentales.
Mediante los criterios de información de Akaike y Bayesiano se determinó que de los tres modelos comparados el modelo
CCMT describe más adecuadamente los datos experimentales en función de los parámetros de cada modelo (72, 55 y 42 %
respectivamente). Este trabajo plantea una alternativa adicional para la determinación de kLa en bioprocesos.
Palabras clave: cálculo fraccional, derivada conformal, modelo matemático; coeficiente de transferencia volumétrico de oxígeno,
criterio de información Akaike y Bayesiano.
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1 Introduction

Bioreactors are widely used for food and beverage
production, bioremediation, and pharmaceuticals in
industrial biotechnology. Aerated stirred tank reactors
are used in the laboratory and industry due to their
excellent operational flexibility and mixing capability
(López-Taborda et al., 2022; Nauman, 2008). Oxygen
is transferred from a gas to a liquid, and then
is absorbed into a biocatalyst and consumed. In
bioprocesses, controlling the dissolved oxygen (DO)
in a liquid medium is critical for cell growth. Oxygen
transfer is often considered a limiting factor in such
aerobic processes, due to the low solubility of oxygen
in the liquid medium (Suresh et al., 2009). The kLa
of oxygen is an essential parameter to determine the
efficiency of bioreactors and to obtain a successful
scale-up (García-Cabrera et al., 2021; Sohail et al.,
2008). It is important to mention when determining
the kLa and when using this as a scaling criterion,
it can have allowed error variations of up to 40%
in totally aerobic systems (Linek and Vacek, 1981).
However, there are processes where they cannot have
dissolved oxygen concentrations above 10% in the
bioreactor (Melgarejo-Torres et al., 2015a and 2015b)
or other studies where mixing can have harmful effects
on the biocatalyst causing cell rupture, therefore, the
agitations are very low and there are deficiencies
in the mass transfer (Palmerin-Carreño et al., 2016,
Castillo-Araiza et al., 2017). Therefore, in these type
of bioprocesses is imperative to accurately estimate
and control the volumetric transfer coefficient (García-
Ochoa et al., 2010).

In order to determine accurate and reliable
values of kLa, it is necessary to use a suitable
device. Commercially, there are various types of
electrodes to measure the DO in bioreactors. The most
common electrodes include electrochemical, optical,
film thickness, and ultrasonic sensors (Zuluaga et al.,
2018). Each device has advantages and disadvantages
of cost, lifetime, whether they are sterilizable or not,
and their range of applicability. In all of them, the time
response (tR) is an important parameter that directly
affects the determination of a reliable value of kLa. The
tR is the time when the electrode reaches 63.2% of an
initial value of 0 to 100% of the final DO reading, and
is unique for each electrode. This is due to the fact
that there are different types of electrodes with respect
to their performance and that the tR changes by the
continuous use of the probe. For example, the tR of an

optical sensor is 1-4 s, while the other sensors range
between 16 s and 100 s. The tR generally depends on
the characteristics of the membrane transport and the
electrolyte that is used for the electrochemical reaction
in the electrode’s anode. In the case of optical sensors,
another significant factor is the use of the electrode’s
light source. All electrodes increase their response-
time with use, therefore, the kLa values obtained might
not be accurate. Thus, it is necessary to consider the
response time for kLa determinations in a bioreactor.

There are two widely used methods to obtain kLa
values in bioprocesses: experimental determination
and estimation, or prediction by mathematical models.
The most commonly used methods for experimental
determinations of kLa are the dynamic method
(gassing out-gassing in) (García and Gómez, 2009),
biotic dynamic methods (Mendes and Badino, 2015),
and the sulfite method (Linek and Vacek, 1981). These
methods have variations of up to 10-40% of error. Of
these methods, the most commonly used is the gassing
out-gassing method. This method is accurate and very
simple to perform, while the sulfite method (Cooper’s
method) is a red-ox reaction in a slightly alkaline
medium (the Cooper method is not viable for alkaline
cultures) and the disadvantage is that the reaction
is very fast, so the possible values of kLa may be
oversized, in addition to the stoichiometric coefficients
of the reaction rate of sodium sulfite with oxygen must
be estimated (ASCE, 1991). Another approach uses
the experimental data coupled to mathematical models
to estimate a suitable kLa value (Fuchs et al., 1971;
Ascanio et al., 2004; Li et al., 2012; Chen et al.,
2013; Fang et al., 2017). Engineer’s challenge relies
on developing new dynamic mathematical models
to predict macroscale behavior from microscale
observations and measurements (Sun et al., 2018).
Nowadays, fractional calculus is emerging as a new
alternative to the mathematical modeling of various
processes. Fractional calculus generalizes ordinary
calculus, where derivatives and integrals of any
order are defined. These fractional operators can
model more efficiently certain real-world phenomena,
especially when the dynamics are affected by
constraints inherent to the system (Babakhani and
Daftardar, 2002).

More recently in (Khalil et al., 2014), the
first conformable calculus was introduced that is
an alternative to conformal calculus, but with
local operators, without memory. These conformable
operators can improve the performance of conformal
operators for example (see Meléndez-Vázquez et al.,
2021; Reyes-Luis et al., 2021; Meléndez-Vázquez
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et al., 2020), since these operators can introduce a
function that conformal operators cannot, regardless of
the non-integer order of these derivatives.

1.1 Conformal-order calculus and
conformable derivatives

Although fractional-order calculus (FOC) was
introduced more than 300 years ago, nowadays FOC
is an emerging field in mathematics, with applications
in all related fields. Presently, FOC has been expanded
to account for the complex dynamics of the real-
world and is tested with real data (Sun et al., 2018).
This application of FOC to the dynamics of complex
phenomena is due to FOC?s capacity to provide a
concise model to describe dynamic events that occur
in heat and mass transfer (Babakhani and Daftardar,
2002; Podlubny, 1998; Oldham and Spanier, 1974).
Many researchers have been trying to form new
definitions of fractional derivatives, most of which
include an integral form for fractional derivatives.
Details of fractional calculus fundamentals can be
found in several references (Khalil et al., 2014; Magin,
2010; Kilbas et al., 2006; Hilfer 2000; Gorenflo and
Mainardi, 1997; Diethelm, 1997). A description of
the fractional-order derivatives that have been most
relevant in fractional calculus is shown below.

The conformal-order derivative Dα ≡ dα/dtα can
be defined in different ways. Most of these definitions
include integral form for conformal order derivatives.
Two of the most popular definitions are (Kilbas et al.,
2006; Oldham and Spanier, 1974; Podlubny, 1998):

i) Riemann-Liouville definition:
If n is a positive integer and α ∈ [n − 1,n), α

derivative of f is given by

Dα
a ( f )(t) =

1
Γ(n− a)

dn

dtn

t∫
a

f (x)
(t− x)α−n+1 dx (1)

ii) Caputo definition:
If n is a positive integer and α ∈ [n − 1,n), α

derivative of f is given by

Dα
a ( f )(t) =

1
Γ(n− a)

t∫
a

f (n)(x)
(t− x)α−n+1 dx (2)

In this paper we use the conformable derivative
definition given by Khalil et al. (2014), where the
authors consider a function defined as f : [0,∞)→ R
and t > 0, whose αth order conformable conformal

derivative, is given by:

Tα(h)(t) = lim
ε→0

h(t + εt1−α)− h(t)
ε

(3)

for all t > 0, α ∈ (0,1), if h is α−differentiable in some
(0,a), a > 0, and limt→0+ Tαh(t) exists, then define
Tαh(0) = limt→0+ Tαh(t).

Almeida (2017) presents a definition of local
conformal derivative using kernels. The author shows
that some of the existent notions about local conformal
derivatives are very closely related to the usual
derivative function. In fact, the α-derivative of
a function is equal to the first-order derivative,
multiplied by a continuous function. The following
definition is a modified definition from Almeida
(2017).

Definition 1 (Almeida et al., 2016)
Let f : [a,b] → ˜ be a differentiable function and

t > a. Then, f is α− differentiable at t and Eq. (3).
Also, if dh/dt is continuous ∂αh(t)/∂tα =

f (t)1−αdh(t)/dt, at t = a, then

∂α

∂tα
h(a) = f (a)1−α d

dt
h(a) (4)

However, there exist α-differentiable functions which
are not differentiable in the usual sense.

This new definition 1 satisfies the properties given
in the following Theorem (Fernández-Anaya, 2021):

Theorem 2. Let α ∈ (0,1) and h, g be
α−differentiable at point t > 0, then:

a) ∂α

∂tα (ah + bg) = a ∂α

∂tα (h) + b ∂α

∂tα (g), for all a,b ∈ R.
b) ∂α

∂tα (tp) = f (t)1−αptp−1, for all p ∈ R.
c) ∂α

∂tα (λ) = 0, for all constant function h(t) = λ.
d) ∂α

∂tα (hg) = h ∂α

∂tα (g) + g ∂α

∂tα (h).

e) ∂α

∂tα
(

h
g

)
=

g ∂α

∂tα (h)−h ∂α

∂tα (g)
g2 .

The main objective of this work was to develop
a Convective Conformable Mass Transfer model
(CCMT) using conformal calculus; to determine
volumetric oxygen transfer coefficients (kLa’s)
in bioreactors and to analyze its performance
concerning two other conventional models reported
in the literature. The proposed model has a
parameter derived from the conformal calculation
(α). This parameter is a function of the electrode
coefficient kP. kP measures the performance of
the electrode depending on its use and bioreactor
operating conditions such as agitation and viscosity.
Performance of CCMT model was studied to different
bioreactor operating conditions for in all cases, CCMT
model adequately described the experimental data.
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 Figure 1. a) Applikon 3-Liter glass autoclavable
biorreactor. b) Bioreactor head plate.

2 Materials and methods

2.1 Chemicals

The continuous aqueous phase used in all experiments
was a potassium phosphate buffer solution 50 mM
at pH 7 supplemented with glycerol (99% of purity)
to different percentages according to the proposed
experimental design (full mixed-level experimental
design). The glycerol´s purpose was to validate the
fractional calculus mathematical model under different
homogenous conditions in the bioreactor and air was
used as the gaseous phase.

2.2 Stirred tank bioreactor

A glass 3-L stirred tank bioreactor Model in-Control
(Applikon, Delft, the Netherlands) was used for
all hydrodynamic and mass transfer studies. The
bioreactor had an internal diameter of 19 cm, and
the operating volume was 2.1 L (HL/DT = 1.83).
The bioreactor was equipped with a single six flat
blade Rushton turbine, Di = 6.53 cm (DT /Di = 1.22),
located at 4.53 cm from the vessel’s flat base. The
bioreactor was equipped with two central baffles of 1.0
cm to enhance liquid-liquid mixing (Figure 1).

2.3 Electrode response time determination

A dissolved oxygen electrode AppliSens Z010023525,
235 mm length, (Applikon, Delft, The Netherlands)
was used. The response time is related to the diffusion
of oxygen from the liquid phase (where it is dissolved)
to the anode electrode (where the measurement
occurs), crossing the electrode membrane and the
sensor electrolyte solution. Each step of this diffusion
path is associated with a resistance to the oxygen flux.
To determine the response time of the electrode, it
was previously calibrated to 0 and 100% of DO, and

it was submerged in distilled water without oxygen
using nitrogen gas. When the electrode had a 0%
measurement, it was put quickly in distilled water
saturated with oxygen using an airflow of 1 vvm.
Measurements were collected each 10 s until reaching
100% oxygen using the Lucullus Lite® software
(Applikon, Delft, The Netherlands). The response time
was defined when the electrode reached 63.2% of DO
(Hadjiev et al., 2006).

2.4 Full mixed-level experimental design

To determine the experimental kLa in different
operating conditions, a full mixed-level experimental
design was proposed. The experimental design had
two independent factors: the percentage ratio glycerol-
buffer and agitation. Glycerol had levels 0, 10, 20,
30, 40 and 50% and the agitation 300, 600, and
900 rpm. The design consisted of a total of 21 runs
(Montgomery D., 2013), and all runs were carried out
in triplicate at 30 °C. For the experimental design and
data analysis, the “Fusion Pro” D of E software was
used.

2.5 Oxygen mass transfer coefficient (kLa)
determination

A dissolved oxygen electrode AppliSens Z010023525,
235 mm length, (Applikon, Delft, The Netherlands)
was used for kLa determination. The oxygen
electrode was coupled to an ADI 1010 Bio controller
(Applikon, Delft, The Netherlands). Dissolved
oxygen concentrations during dynamic gassing out
experiments were measured every 5 seconds. The
mass transfer coefficient was calculated according to
Koizumi and Aiba method (Koizumi and Aiba, 1984;
Aiba et al., 1973).

2.6 Viscosity measurement

The viscosities as a function of the percentage ratio
between the glycerol and the medium for the 21
runs of the experimental design were measured using
a Physica MCR 300 (Physica Messtechnic GmbH,
Stuttgart, Germany) modular compact rheometer. The
objective of measuring glycerol-medium viscosity was
to obtain an average viscosity between the different
percentages of glycerol and aqueous phase, and to
study the parameter α in the mathematical model
proposed in this work at different viscosities. The
temperature was controlled with a Peltier (TEK 150
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PC, USA), and all measurements were carried out in
triplicate at 30 °C.

2.7 Densities determination

The densities of glycerol-medium were measured
on an Anton Paar 500 vibrating tube densimeter.
The densimeter was calibrated with deionized water
(Millipore SuperQ) and dry air. The measurements
were carried in triplicate for all 21 runs of the
experimental design at 30 °C.

2.8 Mathematical model proposed

There are two conventional models that can be used to
estimate kLa values from experimental data. The first
model estimates by means of a mass balance Eq. (5)
and subsequently resolving and re-arranged Eq (6):

dC(t)
dt

= kLa[C∗ −C(t)] (5)

ln
(

C∗ −Co
C∗ −C(t)

)
= kLat (6)

where C(t) is the concentration of DO at any time,
C∗ is the concentration of DO in the saturation in the
medium, Co is the initial concentration of DO (0%),
and the slope of the Eq. (6) is the kLa value. This
model could be used only when the response time of
the electrode is less than 10 s (Fuchs et al., 1971).

The other model also commonly used was
proposed by Fuchs et al., (1971). This model is more
robust and considers the constant of the electrode (kP)
where it is defined as:

kp =
1
tR

(7)

The authors modified the equation for oxygen transfer
and superposing in function of the electrode response,
expressed in two dimensionless equations. Equation 8
and 9 are dissolved oxygen in the bioreactor and for
the oxygen detected by the electrode, respectively:

dYM

dt
= −kLaYM (8)

dYp

dt
= kp(YM −Yp) (9)

where YM and Yp are dimensionless concentrations
of dissolved oxygen in the bioreactor and in the

electrode, respectively and are defined as:

YM =
C∗M −CM

C∗M −CMo
(10a)

YP =
C∗P −CP

C∗P −CPo
(10b)

Where C∗M is the saturation concentration in the liquid,
CM is the DO concentration at any time, and CMo is the
DO concentration at t = 0, in the same way for C∗P, CP
and CPo but at the electrode membrane.

Simultaneously solving the equations 8 and 9:

YM =
kp exp(−kLat)− kLaexp(−kpt)

kp − kLa
(11)

Now, this work proposes that the temporal derivative
in the Eq. (5) to be replaced by the fractional order
derivative to obtain the (CCMT) equation:

dαC(t)
dtα

= kLa[C∗ −C(t)] (12)

where α is the anomalous convective coefficient. This
model allows estimate the volumetric oxygen transfer
coefficients from the experimental data.

The conformal derivative definitions, used in
above equation, are non-local time memory conditions
in nature, that is, that take into account a long-
time interval to perform the calculation of the
conformal order derivative, and physically considers
the effects that occur in that time interval. For this
reason, its main characteristic is that to perform the
calculation it consumes many computational resources
(Khalil et al., 2014), while the conformable derivative
is an instantaneous calculation. Considering this,
the definition of local conformal order derivatives
proposed by Definition 1 is used in this paper to obtain
the (CCMT) model, Eq (13):

dC(t)
dt

=
kLa[C∗ −C(t)]

f (t)1−α (13)

The Eq (14) kept the properties of ordinary derivatives.
This CCMT equation considers that there exists an α
differentiable function to be able to obtain its solution.
In this work, the function f (t) is defined as:

f (t) = kpt (14)

This function involves the electrode constant at any
time when the DO is measured. Inserting Eq (14) into
Eq (13) result in Eq (15)

dC(t)
dt

=
kLa[C∗ −C(t)]

(kpt)1−α (15)
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This equation allows us to investigate the electrode
constant effect over the calculated value of the
volumetric oxygen transfer coefficient using CCMT
equation based on derivatives of fractional order with
the help of conformable derivative definition.

The proposed model has some important
considerations that should be mentioned:

a) Glycerol and buffer behave as a completely
homogeneous phase.

b) Mass transfer from gas to liquid phase. ensures
saturation concentration in the liquid

c) The model is based solely on a two-phase gas-
liquid system.

d) The model is for an abiotic system.

2.9 Analysis of the mathematical model

The proposed mathematical model was solved by
integrating a set of differential equations (ODEs) with
the Runge Kutta Fehlberg method. The model contains
two parameters (kLa and α), which were estimated
by the weighted least-squares of the residuals (RSS)
between the calculated and experimental dissolved
oxygen concentrations according to the following
minimized weighted objective function (OF), Eq.
(16):

OF(b) =

nexp∑
j

nresp∑
l

W jl(ỹi j − yi j)(ỹil − yil)b1,b2 →min

(16)

The responses used in the regression are the
concentration of dissolved oxygen through time.
In Eq. (16), ỹi j denotes the calculated value and
yi j denotes the observed oxygen concentration in
experiment j; b j is the parameter vector (kLa and α)
to be estimated; nexp is the number of independent
experiments; nresp is the number of the model
response variables; and Wi j is the weighting factor that
can be used to give greater importance to some portion
of the response variable (DO). The parameters kLa and
α were estimated by a software program (ODRPACK
2.01, FORCE Ver. 2.0 USA) using multi-response
non-linear regression and the Levenberg-Marquardt
method with a 95% confidence interval.

2.10 Statistical analysis

To determine the statistical significance of the
parameters, the t-test was used, while the F- test
was used to obtain the regression significance. The
covariance matrix was used to obtain the correlation

matrix between the experimental data and the three
proposed models. An analysis of variance was used to
determine if there was a significant difference between
the experimental data and the mathematical models
studied.

2.11 Akaike and Bayesian information
criterion

The Akaike and Bayesian information criteria were
used for the selection and comparison of the three
models studied. These criteria are widely used for
model selection in health, biological and bioprocess
research. Some researchers and fields of study
routinely use one or the other, often without clear
justification. Others attempt to compare models
using multiple criteria, but encounter the ambiguity
that different criteria lead to substantially different
answers, leading to the question of which criterion
is best. In this work, both criteria were employed
with the aim of comparing the information criteria
obtained and determine which model adequately fits
the experimental data (Diziak et al., 2020). The
Akaike Information Criterion (AIC) was developed by
Akaike in 1973 and is widely used in modeling of
biological systems to decide between different models
(Akaike, 1973). For models with the same number of
adjustable parameters, it selects the model with the
best least-squares fit. Models with more parameters
typically fit better, but the addition of more parameters
may not be statistically justifiable (Ingdal et al.,
2019). For this reason, the three models studied were
analyzed by means of AIC. According to this type of
analysis:

AIC = −2ln(L) + 2k (17)

where AIC is the Akaike information criterion, L is
the likelihood estimator which for normally distributed
errors is maximized when the residual sum of squares
is minimized, and can be considered as L = σ2

where σ2 is the variance between the model regression
and the experimental data and k is the number of
parameters to estimate plus the error term (k = q +

1). However, for AIC analyses where the number of
observations is small (nobs/k < 40) a correction of Eq.
(17) can be made, giving more precise information
about the fit of the models as a function of sample size.

AICc = −2ln(L) + 2k +
2k2 + 2k

nobs − k− 1
(18)

To determine the probability of which model best fits
the experimental data, the term of Akaike weights is
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used for each of the models studied and is defined as
follows:

wAIC =
exp

(
− 1

2∆AICc
)

∑k
k=1 exp

(
− 1

2∆AICc
) (19)

where ∆AIC is defined as the difference between the
minimum AICc value obtained minus each of the
AICc of the models studied. ∆AIC = AICcmin−AICci

Bayesian Information Criterion (BIC) is based on
the log likelihood function (L̂) and is closely related
to the Akaike information criterion. As in AIC, BIC
introduces a penalty term for the number of parameters
in the model (Kass and Raftery, 1995).

In general, BIC is defined as:

BIC = 2k + 2ln(L̂) (20)

L̂ =

∑
RS S
n

=

∑
(yi − ŷi)2

n
(21)

Rearranging Eq. (20)

BIC = k log(n) + n log
(∑

RS S
n

)
(22)

Where k is the number of model parameters, n is
the number of experimental observations and

∑
RS S

is the residual sum of squares between the model
prediction (ŷi) and the experimental data (yi).

2.12 Parametric sensitivity analysis

Parametric sensitivity analysis can be defined as the
change in an output variable as a function of a
change in one or more input variables or factors of
a mathematical model describing a process (Pianosi
et al., 2014 Melgarejo et al., 2015b). Parametric
sensitivity analysis can be applied to analyze how
model performance changes when it departs from
some optimal or reference parameter, to support
model calibration, verification, diagnostic evaluation
or simplification, to analyze the dominant controls
of a system, to support important decision making
in a specific process (Anderson et al., 2014; Butler
et al., 2014). For this work the electrode constant
kP, is a relevant input parameter that modifies the
output variable (kLa) of the proposed model, which
was modified with values of 15, 17, 20, and 25 s−1.

3 Results and discussions

3.1 Electrode response time

The response time was determined when the DO
reached 63.2% from 0 to 100% (Hadjiev et al.,
2006). The response time is related to the diffusion
of oxygen from the liquid phase (where it is
dissolved) to the probe anode (where the measurement
occurs), crossing the probe membrane and the
sensor electrolyte solution. This liquid thickness is
determined by the liquid viscosity and the operating
conditions. Higher viscosity and operating conditions
at low rpm result in increased thickness of the
stagnant liquid film (Cerri et al., 2016). It is clear
that the electrode had good stability in ratio to the
measurement of oxygen dissolved. This is due to the
electrode being new and having little previous use.
According to the manufacturer, this type of electrode
has a response time of 15 seconds when they are
new. Response time was measured in triplicate. Figure
2a) shows the dissolved oxygen profiles with respect
to time at different percentage ratios of glycerol and
buffer solution. (0, 10, 20, 30, 40 and 50 % glycerol).
It can be seen that as the percentage of glycerol
increases, the viscosity of the medium increases,
therefore the transfer of oxygen from the liquid phase
in the reactor to the electrode membrane present a
higher resistance, thus increasing the response time of
the electrode. Figure 2b) shows the linear zone of the
DO profiles where 63.2 % is reached for all conditions
studied in Figure 2a). The colored arrows on the
abscissa axis indicate how the response time increased
at different fluid viscosities as a function of the
percentage of glycerol. An analysis of variance and the
Student-Newman-Keuls (SNK) test were performed,
which showed that there is no significant difference
between the response times for 10, 20 and 30 %
glycerol (16.2, 16.6 and 16.8 s, respectively), while
for 0, 40 and 50 % there is a statistically significant
difference between these times (15.2, 19.3 and 27.1 s,
respectively).

3.2 Volumetric oxygen transfer coefficient
(kLa) experimental determination

The present study used the statistical analysis of the
proposed experimental design (Fusion Pro D of E Ver.
6.7 program) to compare the similarity of the kLa
values obtained with the three models as a function
of the factors and levels of the experimental design
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Figure 2. a) Concentration of DO profile of the electrode. b) linear section of the DO measurement by the electrode
when it was reached at 63.2% to different percentage ratios of glycerol - buffer solution.

(300, 600, 900 rpm, and 0, 10, 20, 30, 40 and 50%
glycerol). Glycerol was added to demonstrate that
the CCMT model proposed was accurate in a wide
range of culture media, depending on their density,
and the viscosity of the culture media. The glycerol
had a viscosity of 1.5 N.s.m−2 which means it is 1500
times more viscous than water (1 × 10−3 N.s.m−2),
and the densities were 1261 Kg.m−3 and 999 Kg.m−3,
respectively. With this culture medium as a model,
it was possible to study the behavior of kLa with
the two classical models and the CCMT model. To
obtain the response surfaces in Figure 3, the DO
in the bioreactor was experimentally quantified to
the different operating conditions proposed by the
experimental design (21 runs) and with this dynamic
data the kLa values were estimated for each of the
three mathematical models studied, to subsequently
generate the response surfaces and the statistical
analysis using Fusion Pro Ver. 6.7 program. Figure 3
shows that the three models have a similar trend. The
linear model obtained kLa values of 37 to 142 h−1.
This model did not consider the response time of the
electrode (Figure 3a). The model of Fuchs et al., 1971
has kLa values of 41.55 to 119.81 h−1. Fuchs? model
presented a better linear fit compared to the other two
models (Figure 3b), while the CCMT model had kLa
values of 37.29 to 131.35 h−1 (Figure 3c), similar to
kLa values obtained by the first model (Figure 3a). The
last two models considered the response time of the
DO electrode. In all three cases, the more influential
independent variable affecting kLa values was the
agitation. For the glycerol-buffer ratio, it is observed in
the three cases that the kLa decreases as the percentage

of glycerol increases. This makes sense because the
viscosity of the medium increases and therefore mass
transfer decreases. Analyzing the Pareto chart (figure
not shown) in the statistical analysis of the response
surfaces it was obtained that agitation has a positive
effect, while the increase of glycerol has a negative
effect on the kLa. Of these two factors, agitation
has a major influence on kLa while glycerol has a
minor influence on kLa. The kLa values of Fuchs
et al., 1971 and CCMT models were below those
of the linear model (117 and 131 h−1 respectively);
While the linear model estimated maximum kLa
values of 143 h−1. The standard deviation of the
estimated kLa values among the three models was 13
h−1 equivalent to a variation of ±10 %. This 10 %
variation can be considered acceptable. It is important
to mention that the electrode used is relatively new
and its measurement is accurate according to the
manufacturer (AppliSens Z010023525, 235, Delft,
The Netherlands). In section (3.8.) a parametric
sensitivity analysis study was carried out to simulate
what happens when the electrode begins to lose
sensitivity due to wear and tear from continuous use.

3.3 Analysis of mathematical models

For the analysis of the three models studied, nonlinear
regressions were performed and the kLa values for
each model with their respective parameters were
fitted to the experimental data. Figure 4 shows the
operating conditions where the medium is more
viscous at low agitation and vice versa. Figure a1)
shows the experimental data vs. the three models
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Figure 3. Experimental kLa values analyzed with the
three mathematical models; a) mass balance model,
b) model proposed by Fuchs et al. (1)971, c) CCMT
model.

studied (300 rpm and 50% glycerol), while Figure a2)
shows the conditions at 300 rpm and 0 % glycerol.
Figure b1) shows data at 600 rpm and 50% glycerol.
The data shown in Fig b2) is for 600 rpm and
0% glycerol. And the fit of the three models vs.
experimental data at high agitation. Figure c1) shows
data at 900 rpm and 50% glycerol. Similarly, the data
in Figure c2) are for 900 rpm and 0% glycerol (there
are culture media where only minimal amounts of

glycerol are required, Melgarejo et al., 2015). For
the three cases in the operating conditions shown
with Figures a), b) and c) the CCMT model (solid
red line) was the best fit to the experimental data.
It is worth mentioning that for all cases the non-
linear regression of the three models were statistically
significant, similar to the experimental data (p>0.05).
However, the CCMT model had the highest correlation
index with the experimental data R2 > 0.98, while the
other two models were between the interval of 0.98<

R2 <0.99. According to t-tests, the parameters (kLa
and α) showed statistical significance within the 95%
confidence interval when using the CCMT model. In
other words, the parameter α has two functions: on
the one hand it has a mathematical memory that takes
into account the last data to restart the estimation
of kLa and the fit to the experimental data (Fang
et al., 2017), and on the other hand it takes into
account the functional state of the electrode. This
parameter α could explain a real phenomenon of this
convective mass transfer mechanism as a function of
the functional state of the probe (kP). The results
obtained show that the proposed CCMT model has
the ability to fit well a wide range of different
operating conditions to experimental data and a better
estimation of mass transfer coefficients than the other
conventional models.

3.4 Statistical analysis

The covariance matrix was used to obtain the
correlation matrix between the experimental data
and the three models studied. The reactor operating
conditions were 300, 600 and 900 rpm to 50%
glycerol, respectively. The correlation matrix
shows that in the operating conditions studied the
three models fit the experimental data accurately
(correlation coefficients r above 0.98). Analysis of
variance for the three case studies showed that there
are no significant differences between the three
models with respect to the experimental data (p >

0.05), therefore no post hoc tests were performed.
Table 1 shows the F-test values for each case
studied. The analysis of covariance and the F-test
show that statistically the three models studied fit
the experimental data adequately to the conditions
studied. However, these results may be partial. Indeed,
the criteria in the following section 3.6. allowed to
discern which of the three models may be better from
the number of parameters that each model has.
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 45 

Figure 4 a1) Fit of the mathematical models studied with the experimental data by nonlinear regression at 300 rpm
and 50 % of glycerol. a2) at 300 rpm and 0% of glycerol. The same form is for b1) 600 rpm and 50% of glycerol.
b2) 600 rpm and 0% of glycerol. c1) by operating conditions to 900 rpm and 50% of glycerol and c2) 900 rpm and
0% of glycerol.
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Table 1. Correlation matrix and F-test of the three models studied and experimental data to different operating
conditions.

Operating conditions

300 rpm and 50% glycerol 600 rpm and 50% glycerol 900 rpm and 50% glycerol

ED Mass Fuchs CCMT ED Mass Fuchs CCMT ED Mass Fuchs CCMT
ED

Mass
Fuchs
CCMT


1.00 0.986 0.997 0.996

0.986 1.00 0.994 0.988
0.997 0.994 1.00 0.995
0.997 0.998 0.995 1.00


ED

Mass
Fuchs
CCMT


1.00 0.984 0.998 0.998
0.984 1.00 0.984 0.988
0.998 0.984 1.00 0.997
0.998 0.988 0.997 1.00


ED

Mass
Fuchs
CCMT


1.00 0.972 0.990 0.997

0.972 1.00 0.992 0.980
0.990 0.971 1.00 0.993
0.997 0.980 0.993 1.00


F- test = 0.0305 F- test = 0.108 F- test = 0.371

F0.05,20,20 = 2.12 for 1−α = 0.95 F0.05,19,19 = 2.16 for 1−α = 0.95 F0.05,18,18 = 2.27 for 1−α = 0.95

ED: Experimental data
Mass: Mass transfer model
Fuchs: Fuchs et al., 1971 model
CCMT: Conformable Convective Mass Transfer Model

Table 2 Bayesian information criterion for the three models studied to 300, 600 and 900 rpm and 50 % glycerol
respectively.

Operating conditions

Model 300 rpm 600 rpm 900 rpm

Mass balance 41.8 40.88 44.68
Fuchs et al., 1971 27.07 22.16 36.07

CCMT 25.54 16.6 20.91
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Figure 5. Analysis of the Akaike information criterion
represented in a Pareto chart of the three models
studied.

3.5 Akaike and Bayesian information
criterion analysis

From the data required for the analysis of the Akaike
information criterion (Ingdal et al., 2019; Akaike H,
1973), the Pareto chart was obtained, it shows how
from the wAIC the CCMT model obtained the highest
percentage fraction (close to 70 %) to describe the

experimental data (300, 600 and 900 rpm and 50%
glycerol respectively), while the Fuchs et al. model,
1971 described about 50 % and the mass balance
model was the least descriptive of the experimental
data with approximate percentage fractions of 30
to 40 % (Figure 5). With these results the Akaike
information criterion indicates that the model that best
fits the experimental data is the one proposed in this
work (CCMT model).

There are several reports that use AIC and BIC
as criteria for the selection of a mathematical model
(Diziak et al., 2020). In this work, both criteria were
used to analyze which of the three models studied
described the experimental data more adequately.
Table 2 shows the values obtained for the Bayesian
information criterion at the same reactor operating
conditions used for the AIC analysis. It is observed
that the BIC values obtained for the CCMT model are
the lowest compared to the mass balance models and
Fuchs et al., 1971, for the three operating conditions
studied. The criterion applied to determine the most
adequate model to describe the experimental data
is the lowest BIC value obtained among all the
models analyzed (Burnham and Anderson, 2004). It
is observed that the CCMT has the lowest value of
BIC than the other two models, therefore the BIC
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analysis also showed that the CCMT model is the
one that best describes the experimental data. The
AIC and BIC analyses are based for the selection of
the appropriate model on the number of parameters
it has to describe the experimental data. The CCMT
model has three parameters (kLa, kP and α) while the
model of Fuchs et al., 1971 has two parameters (kLa
and kP) and the mass balance model has only one
(kLa). The additional parameter α of the CCMT model
comes from the definition of the fractional calculation,
α allows more flexibility in the description of the
experimental data, compared to the other two models.
However, it is pertinent to mention that the statistical
analysis (p>0.05) showed that the three models are
statistically equal to the experimental data.

3.6 Alpha parameter analysis

The CCMT model has an additional parameter α,
estimated according to Eq. (14). This parameter is a
function of the constant of the electrode kP. It was
studied that factors modify the value of the α to
give a physical interpretation to this parameter. The
indirect association of this parameter is associated
with the different viscosities and turbulence of the
flow in the bioreactor medium through the kP.
The association with the different characteristics of
the medium was demonstrated through a statistical
analysis using the Pareto chart (Figure 6a). The Pareto

chart shows that the main independent variables that
influenced the parameter α were the agitation and
percentage of glycerol as first and second influence,
respectively. The third effect was the agitation square,
that is to say that α parameter behaves parabolically
as a function of agitation squared. The last effect
was the interaction of glycerol-buffer - agitation.
Figure 6b analyzes the behavior of parameter α as
a function of the operating conditions studied. The
values obtained for α were 0.21 (for high agitation and
low viscosity) and a maximum value of 1 (for high
viscosity and low agitation). It is observed that the
parameter α increases with increasing fluid viscosity
(% glycerol) and decreasing agitation, this suggests
that α is not only an additional parameter of the
mathematical model but also suggests that it may be
intrinsically related to the system studied, as a function
of fluid properties such as viscosity and bioreactor
operations (agitation). Alpha also takes into account
oxygen probe membrane wear, i.e. as the probe loses
sensitivity due to continuous use, due to α parameter
which is also a function of kP. Therefore, the CCMT
model allows a more adequate estimation of kLa in
the reactor. The authors propose future studies to
obtain a correlation through dimensional analysis of
the kP value and the mechanisms of mass transfer
and hydrodynamics, as well as the validation of this
correlation with experimental data.
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Figure 6. a) Pareto chart showing the factors and the interactions between them that affect the α parameter; b)
Behavior of the α parameter as a function of the bioreactor operating conditions (percentage of glycerol and
agitation).
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Figure 7. Parametric sensitivity analysis of dissolved oxygen concentration at different electrode response times a)
CCMT model and b) Fuchs model.

Table 3 Constants and their electrode response times with the kLa predicted in the sensitivity analysis using the
mass balance, Fuchs et al., 1971, and CCMT models.

Electrode
constant, Response time, tR (s) Mass balance model

Fuchs et al. model CCMT model

kp (s−1) kLa (h−1) kLa (h−1)

0.066 15 62 63 64
0.059 17 58 61 62
0.05 20 52 58 58
0.04 55 50 56 57

3.7 Parametric sensitivity analysis

The electrode constant kP is defined as the inverse
of the response time (Eq. 7). kP changes according
to the daily use of the electrode and also due to
the effect of the viscosity of the medium. In order
to analyze how the electrode response would be,
given the loss of sensitivity due to its use in the
DO measurement a parametric sensitivity analysis was
performed with the Fuchs et al., 1971 and CCMT
models by varying only the kP as parameter. Figure
7a shows the parametric sensitivity analysis of the
CCMT model vs. experimental data. For this analysis,
only a viscosity was considered and the sensitivity
analysis consisted of several simulations varying the
change of the electrode constant due to the use of the
electrode. The operating and experimental conditions
are a) 300 rpm, 1 vvm and 10% glycerol and Figure
7b shows the parametric sensitivity analysis for the
Fuchs et al., 1971 model at the same conditions. For
both parametric sensitivity analyses, the response time
was varied starting from the experimentally calculated

(15 s) up to 25 s: the response time increased up to
66 %, and it can be observed that the increase of the
electrode constant does not cause a loss of sensitivity
in both models. When estimating the values of kLa for
both models with respect to different kP only vary a
percentage for the Fuchs et al., 1971 model of 13 %
while for the CCMT it was 11 %.

Table 3 shows the kP values used for this
sensitivity analysis with their respective electrode
response times and the kLa values predicted by Mass
Balance, Fuchs et al., 1971 and CCMT models and it
is pertinent to mention that the Mass Balance model
does not have the kP parameter, yet it was studied
to compare what happens with the determination of
the kLa for this model. The parametric sensitivity
analysis (Figure 7) and the data in Table 3 shows
that regardless of the increase of kP up to 66 % the
estimation calculated kLa in both models can have
a measurement accuracy of up to 87 % and 89 %
for the Fuchs et al., 1971 and the CCMT models
respectively and the mass balance model without the
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kP term varies in the estimation of kLa by up to 79
%. That is why it is imperative to consider the use
of electrodes in the measurement of kLa’s in order
to have the optimal performance of the bioprocess. It
is known that there are several bioprocesses where,
when there are 5 to 10 % of DO in the bioreactor,
the biocatalyst can suffer oxidative stress or, on the
contrary, that the deficiency of oxygen with those
same percentages can make the biocatalyst not have
adequate performance (Palmerín-Carreño et al., 2016;
Melgarejo-Torres et al., 2014). The CCMT model, by
its mathematical properties and the operator α which
allows to fit the model adequately to the experimental
data also is a function of the electrode kP. The CCMT
permits the predictions and accurate calculation of
kLa values under different operating conditions of
the bioreactor, and also takes into consideration the
functional condition of the electrode.

Conclusions

A Convective Conformable Convective Mass Transfer
mathematical model (CCMT) was proposed as an
alternative to estimate volumetric oxygen transfer
coefficients (kLa) in bioreactors. The CCMT model
is simple and is a function of the electrode constant,
therefore the CCMT model estimates kLa’s based
on electrode performance. The operator α of the
CCMT model opens the possibility to studies that this
operator is a physical interpretation of the process
and is not just a mathematical operator coming from
the conformable derivative order. The CCMT model
fits the experimental data adequately as well as two
conventional models reported, however, the Bayesian
and Akaike information criteria showed that due to the
α parameter it allows a much better fit than the other
two models. It is proposed to do more studies on the
parameter α, to determine if it can have a physical
meaning in the process. Although the conformable
calculus has already been studied in mass and heat
transfer problems, there are few reports of its use in
bioprocesses. This work proposes to continue using
the conformable calculus in mathematical models to
open new doubts, ideas, studies, applications and to
have other alternatives to the conventional ones to
study and describe a wide range of mechanisms that
occur in biological processes.
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Nomenclature

C oxygen concentration at any time in the
bioreactor (%)

C∗ oxygen saturation concentration in the
bioreactor (%)

C f final oxygen concentration in the bioreactor
(%)

Co initial oxygen concentration in the bioreactor
(%)

Cp oxygen concentration at any time in the
electrode (%)

C∗p oxygen saturation concentration in the
electrode (%)

Cpo initial oxygen concentration in the bioreactor
(%)

Di impeller diameter (m)
DT tank diameter (m)
DO dissolved oxygen (%)
HL height of the liquid in the bioreactor (m)
kLa overall mass transfer coefficient of oxygen

(s−1 or h−1)
kP electrode constant (s−1)
N tip speed of impeller (s−1)
NRe Reynolds number in the bioreactor

(dimensionless)
rpm revolution per minute (min−1)
t measurement time of dissolved oxygen in the

bioreactor (s)
tr response time of the electrode (s)
x fraction of the glycerol or buffer in the

bioreactor (dimensionless)
YM dimensionless concentration in the bioreactor

of the model proposed by Fuchs et al. [6]
YP dimensionless concentration in the electrode

of the model proposed by Fuchs et al. [6]
Greek letters
α parameter that corresponds to the

mathematical model of fractional order
(dimensionless)
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ρ density of the glycerol or buffer or apparent
phase of the system (Kg m−3)

µ viscosity of aqueous or apparent phase of the
system (N s m−2)

References

Aiba, S., Humphrey, A. E., Millis, N. F. (1973).
Biochemical Engineering. In: American
Institute of Chemical Engineers, (Randolph
T. Hatch, eds.), Pp. 831. University of Tokyo
Press, Tokyo. https://doi.org/10.1002/
aic.690200435

Akaike, H. (1973). Information theory and
an extension of the maximum likelihood
principle. In: B.N. Petrov, F. Csaki (Eds.),
Pp. 199-213. Second International Symposium
on Information Theory, Akademiai Kiado,
Budapest. https://doi:10.1007/978-1-
4612-1694-0_15

Almeida, R. (2017). A Caputo fractional derivative
of a function with respect to another function.
Communications in Nonlinear Science and
Numerical Simulation 44, 460-481. https://
doi:10.1016/j.cnsns.2016.09.006

Anderson, B., Borgonovo, E., Galeotti, M., Roson,
R. (2014). Uncertainty in climate change
modeling: can global sensitivity analysis be of
help? Risk Analysis 34, 271-293. https://
doi:10.1111/risa.12117

Ascanio, G., Castro, B., Galindo E. (2004).
Measurement of power consumption in stirred
vessels: a review. Trans IChemE, Part A:
Chemical Engineers Research and Design 82,
1282-1290. https://doi:10.1205/cerd.
82.9.1282.44164

ASCE (1991). Measurement of Oxygen Transfer in
Clean Water. Second Edition, Nueva York, 1-41.
https://doi:10.1061/9780872628854

Babakhani, A., Daftardar-Gejji, V. (2002). On
calculus of local fractional derivatives. Journal
of Mathematical Analysis and Applications
270, 66-79. https://doi:10.1016/s0022-
247x(02)00048-3

Burnham, K. P., Anderson, D. R. (2004). Multimodel
inference: understanding AIC and BIC in

Model Selection. Sociological Methods &

Research 33, 261-304. https://doi:10.
1177/0049124104268644

Butler, M. P., Reed, P. M., Fisher-Vanden, K.,
Keller, K., Wagener, T. (2014). Identifying
parametric controls and dependencies in
integrated assessment models using global
sensitivity analysis. Environmental Modelling &

Software 59, 10-29. https://doi:10.1016/
j.envsoft.2014.05.001

Castillo-Araiza, C.O., Palmerín-Carreño, D., Prado-
Barragán A., Huerta-Ochoa, S. (2017). On the
conceptual design of a partitioning technology
for the bioconversion of (+)-valencene to (+)-
nootkatone on whole cells: Experimentation
and modelling. Chemical Engineering and
Processing: Process Intensification 122, 493-
507. https://:doi:10.1016/j.cep.2017.
05.008

Cerri, M., Esperança M., Badino A., Perencin
de Arruda R. (2016). A new approach for
kLa determination by gassing-out method in
pneumatic bioreactors. Journal of Chemical
Technology Biotechnology 91, 3061-3069.
https://doi.org/10.1002/jctb.4937

Chen, Z., Liu, H., Zhang, H., Ying, W., Fang, D.
(2012). Oxygen mass transfer coefficient in
bubble column slurry reactor with ultrafine
suspended particles and neural network
prediction. The Canadian Journal of Chemical
Engineering 91, 532-541. https://doi:10.
1002/cjce.21663

Diethelm, K. (1997). An algorithm for numerical
solution of differential equations of fractional
order. Electronic Transactions on Numerical
Analysis 5, 1-6. https://:doi:10.1.1.48.
55.09

Dziak, J. J., Coffman, D. L., Lanza S. T., Li,
R., Jermiin, L. S. (2020). Sensitivity and
specificity of information criteria. Briefings in
Bioinformatics 21, 553-565. https://doi.
org/10.1093/bib/bbz016

Fang, S., Todd, P.W., Hanley, T.R. (2017). Enhanced
oxygen delivery to a continuous multiphase
bioreactor. Chemical Engineering Science 170,
597-605. https://doi.org/10.1016/j.
ces.2017.03.019

www.rmiq.org 15

https://doi.org/10.1002/aic.690200435
https://doi.org/10.1002/aic.690200435
https://doi:10.1007/978-1-4612-1694-0_15
https://doi:10.1007/978-1-4612-1694-0_15
https://doi:10.1016/j.cnsns.2016.09.006
https://doi:10.1016/j.cnsns.2016.09.006
https://doi:10.1111/risa.12117
https://doi:10.1111/risa.12117
https://doi:10.1205/cerd.82.9.1282.44164
https://doi:10.1205/cerd.82.9.1282.44164
https://doi:10.1061/9780872628854
https://doi:10.1016/s0022-247x(02)00048-3
https://doi:10.1016/s0022-247x(02)00048-3
https://doi:10.1177/0049124104268644
https://doi:10.1177/0049124104268644
https://doi:10.1016/j.envsoft.2014.05.001
https://doi:10.1016/j.envsoft.2014.05.001
https://:doi:10.1016/j.cep.2017.05.008
https://:doi:10.1016/j.cep.2017.05.008
https://doi.org/10.1002/jctb.4937
https://doi:10.1002/cjce.21663
https://doi:10.1002/cjce.21663
https://:doi:10.1.1.48.55.09
https://:doi:10.1.1.48.55.09
https://doi.org/10.1093/bib/bbz016
https://doi.org/10.1093/bib/bbz016
https://doi.org/10.1016/j.ces.2017.03.019
https://doi.org/10.1016/j.ces.2017.03.019


Melgarejo-Torres et al./ Revista Mexicana de Ingeniería Química Vol. 21, No. 2(2022) Bio2701

Fernández-Anaya, G., Quezada-García, S., Polo-
Labarrios, M.A., Quezada-Téllez L.A. (2021).
Novel solution to the fractional neutron point
kinetic equation using conformable derivatives.
Annals of Nuclear Energy 160, 108407.
https://doi.org/10.1016/j.anucene.
2021.108407

Fuchs, D. Dewey, A. Humphrey. (1971). Effect
of surface aeration on scale-up procedures
for fermentation processes. Industrial &

Engineering Chemistry Process Design
Development 10, 190-196. https://doi.org/
10.1021/i260038a009

García-Cabrera, R. I., Valdez-Cruz, N. A., Daniel-
Vázquez, A., Blancas-Cabrera, A., & Trujillo-
Roldán, M. A. (2021). Roles of culture media
and oxygen transfer in the scale-up from
shake flasks to pneumatic bioreactor of the
plant growth-promoting bacterium Rhizobium
phaseoli. Revista Mexicana de Ingeniería
Química 20, 1091-1109. https://doi.org/
10.24275/rmiq/Bio2297

García-Ochoa, F., Gómez, E., Santos, V.E.,
Merchuk, J.C. (2010). Oxygen uptake rate in
microbial processes: An overview. Biochemical
Engineering Journal 49, 289-307. https:
//doi:10.1016/j.bej.2010.01.011

García-Ochoa, G. and Gómez, E. (2009). Bioreactor
scale-up and oxygen transfer rate in microbial
processes: an overview. Biotechnology
Advances 27, 153-176. https://doi.org/
10.1016/j.biotechadv.2008.10.006

Gorenflo, R., Mainardi, F. (1997). Fractional
calculus: integral and differential equations of
fractional order, in: A. Carpinteri, F. Mainardi
(Eds.), Fractals and Fractional Calculus in
Continuum Mechanics. Springer, Berlin. Pp
223-276. https://doi:10.1007/978-3-
7091-2664-6_5

Hadjiev, D., Sabiri, E., Zanati, A. (2006). Mixing
time in bioreactors under aerated conditions.
Biochemical Engineering Journal 27, 323-
330. https://doi:10.1016/j.bej.2005.
08.009

Hilfer, R. (2000). Applications of Fractional
Calculus in Physics. World Scientific Publishing
Company, Singapore. Pp. 87-130. https:
//doi.org/10.1142/9789812817747_0002

Ingdal, M., Johnsen, R., Harrington, D. (2019).
The Akaike information criterion in weighted
regression of immittance data. Electrochimica
Acta 317, 648-653. https://doi.org/10.
1016/j.electacta.2019.06.030

Kass R. K., & Raftery, A. E., (1995). Bayes
factors. Journal of the American Statistical
Association 90, 773-795. https://doi:10.
1080/01621459.1995.10476572

Khalil, R., Al Horani M., Yousef, A., Sababheh,
M. (2014). A new definition of fractional
derivative. Journal of Computational and
Applied Mathematics 264, 65-70. https://
doi.org/10.1016/j.cam.2014.01.002

Kilbas, A., Srivastava, H., Trujillo, J., (2006). Theory
and Applications of Fractional Differential
Equations. 1st Edition. In: (North-Holland
Mathematics Studies). Elsevier, Amsterdam.
https://doi:10.1016/S0304-0208(06)
80001-0

Koizumi, J., Aiba, S. (1984). Reassessment of
the dynamic kLa method. Biotechnology and
Bioengineering 26, 1131-1133. https://doi:
10.1002/BIT.260260919

Li, S., Zhu, C. T., Fu, Y. M. (2012). Study on the
mass transfer of bubble swarms in three different
rheological fluids. International Journal of Heat
Mass Transfer 55, 6010-6016. https://doi.
org/10.1016/j.ijheatmasstransfer.
2012.06.011

Linek, V. and Vacek, V. (1981). Chemical
engineering use of catalyzed sulfute oxidation
kinetics for the determination of mass
transfer characteristics of gas-liquid contactors.
Chemical Engineering Science 36, 1747-
1768. https://doi.org/10.1016/0009-
2509(81)80124-8

López-Taborda, J.D., Vargas-Zapata, A., Ramírez-
Vargas, J.F., Valdez-Cruz, N.A., Trujillo-
Roldán, M.A., Orozco-Sánchez, F. (2022).
Development and characterization of an
alternative control system to study separately
oxygen and momentum transfer effects in
stirred tank bioreactors. Revista Mexicana de
Ingeniería Química 21, Proc2607. https:
//doi.org/10.24275/rmiq/Proc2607

16 www.rmiq.org

https://doi.org/10.1016/j.anucene.2021.108407
https://doi.org/10.1016/j.anucene.2021.108407
https://doi.org/10.1021/i260038a009
https://doi.org/10.1021/i260038a009
https://doi.org/10.24275/rmiq/Bio2297
https://doi.org/10.24275/rmiq/Bio2297
https://doi:10.1016/j.bej.2010.01.011
https://doi:10.1016/j.bej.2010.01.011
https://doi.org/10.1016/j.biotechadv.2008.10.006
https://doi.org/10.1016/j.biotechadv.2008.10.006
https://doi:10.1007/978-3-7091-2664-6_5
https://doi:10.1007/978-3-7091-2664-6_5
https://doi:10.1016/j.bej.2005.08.009
https://doi:10.1016/j.bej.2005.08.009
https://doi.org/10.1142/9789812817747_0002
https://doi.org/10.1142/9789812817747_0002
https://doi.org/10.1016/j.electacta.2019.06.030
https://doi.org/10.1016/j.electacta.2019.06.030
https://doi:10.1080/01621459.1995.10476572
https://doi:10.1080/01621459.1995.10476572
https://doi.org/10.1016/j.cam.2014.01.002
https://doi.org/10.1016/j.cam.2014.01.002
https://doi:10.1016/S0304-0208(06)80001-0
https://doi:10.1016/S0304-0208(06)80001-0
https://doi:10.1002/BIT.260260919
https://doi:10.1002/BIT.260260919
https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.011
https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.011
https://doi.org/10.1016/j.ijheatmasstransfer.2012.06.011
https://doi.org/10.1016/0009-2509(81)80124-8
https://doi.org/10.1016/0009-2509(81)80124-8
https://doi.org/10.24275/rmiq/Proc2607
https://doi.org/10.24275/rmiq/Proc2607


Melgarejo-Torres et al./ Revista Mexicana de Ingeniería Química Vol. 21, No. 2(2022) Bio2701

Magin, R. (2010). Fractional calculus models
of complex dynamics in biological tissues.
Computers & Mathematics with Applications
59, 1586-1593. https://doi.org/10.1016/
j.camwa.2009.08.039

Meléndez-Vázquez, F., Fernández-Anaya, G. &
Hernández-Martínez, E. G. (2020). General
conformable estimators with finite-time
stability. Advances in Difference Equations 551,
1-29. https://doi.org/10.1186/s13662-
020-03003-2

Meléndez-Vázquez, F., Fernández-Anaya, G.,
Muñoz-Vázquez, A. J. and Hernández-
Martínez, E. G. (2021). Generalized
conformable operators: Application to
the design of nonlinear observers. AIMS
Mathematics 6, 12952-12975. https://doi:
10.3934/math.2021749

Melgarejo-Torres, R., Castillo-Araiza, C., López-
Ordaz, P., Torres Martínez, D., Gutiérrez-
Rojas, M., Lye, G.J., Huerta-Ochoa, S.
(2014). Kinetic mathematical model for ketone
bioconversion using Escherichia coli TOP10
pQR239. Chemical Engineering Journal 240,
1-9. https://doi.org/10.1016/j.cej.
2013.11.047

Melgarejo-Torres, R., Castillo-Araiza, C.O., Dutta,
A., Guido Bény, Torres-Martínez, D. Gutiérrez-
Rojas, M., Lye, G. and Huerta-Ochoa, S.
(2015a). Mathematical model of a three phase
partitioning bioreactor for conversion of ketones
using whole cells. Chemical Engineering
Journal 260, 765-775. https://doi:10.
1016/j.cej.2014.08.097

Melgarejo-Torres, R., Castillo-Araiza, C.O., López-
Ordaz, P., Calleja-Castañeda, V., Cano-Velasco,
J.L., Camacho-Ruíz, R.M., Lye, G.J., Huerta-
Ochoa, S. (2015b). Evaluation of ionic liquids
as dispersed phase during the production of
lactones with E. coli in a three phase partitioning
bioreactor. Chemical Engineering Journal 279,
379-386. https://doi:10.1016/j.cej.
2015.04.127

Mendes, C.E and Badino, A.C. (2015). Oxygen
transfer in different pneumatic bioreactors
containing viscous Newtonian fluids. Chemical
Engineering Research and Design 94, 456-
465. https://doi.org/10.1016/j.cherd.
2014.09.002

Montgomery, D. (2013). Design and Analysis of
Experiments. Eighth Edition. John Wiley &
Sons Inc.

Nauman, E. B, (2008). Chemical Reactor Design,
Optimization, and Scale-Up, New York. John
Wiley & Sons.

Oldham, K. B., Spanier, J. (1974). The
fractional calculus theory and applications
of differentiation and integration to arbitrary
order. Academic Press, New York and London.

Palmerín-Carreño, D., Castillo-Araiza, C., Rutiaga-
Quiñones, O., Verde-Calvo, J., Huerta-Ochoa.
S. (2016). Kinetic, oxygen mass transfer
and hydrodynamic studies in a three-phase
stirred tank bioreactor for the bioconversion
of (+)-valencene on Yarrowia lipolytica 2.2ab.
Biochemical Engineering Journal 113, 37-46.
https://doi.org/10.1016/j.bej.2016.
05.008

Pianosi, F., Beven K., Freer J., Hall J. W.,
Rougier J., Stephenson D. B., Wagener T.
(2016). Sensitivity analysis of environmental
models: A systematic review with practical
workflow. Environmental Modelling & Software
79, 214-232. https://doi.org/10.1016/
j.envsoft.2016.02.008 Podlubny, I.
(1998). Fractional differential equations: an
introduction to fractional derivatives, fractional
differential equations, to methods of their
solution and some of their applications.
Academic Press, New York.

Reyes-Luis, E., Fernández-Anaya, G., Chávez-
Carlos, J., Diago-Cisneros, L. and R. Munoz-
Vega. (2021). A two-index generalization
of conformable operators with potential
applications in engineering and physics. Revista
Mexicana de Física 67, 429-442. https:
//doi.org/10.31349/RevMexFis.67.429

Sohail, R. L., Vimar, K., Seay, J.R., Englert, D.L.,
Hwang, H.T. (2008). Evaluation of volumetric
mass transfer coefficient in a stirred tank
bioreactor using response surface methodology.
Environmental Progress & Sustainable Energy
38, 387-401. https://doi.org/10.1002/
ep.12973

Sun, H.G., Zhan, Y., Baleanu, D., Chen, W., Chen,
Y.O. (2018). A new collection of real World
applications of fractional calculus in science

www.rmiq.org 17

https://doi.org/10.1016/j.camwa.2009.08.039
https://doi.org/10.1016/j.camwa.2009.08.039
https://doi.org/10.1186/s13662-020-03003-2
https://doi.org/10.1186/s13662-020-03003-2
https://doi:10.3934/math.2021749
https://doi:10.3934/math.2021749
https://doi.org/10.1016/j.cej.2013.11.047
https://doi.org/10.1016/j.cej.2013.11.047
https://doi:10.1016/j.cej.2014.08.097
https://doi:10.1016/j.cej.2014.08.097
https://doi: 10.1016/j.cej.2015.04.127
https://doi: 10.1016/j.cej.2015.04.127
https://doi.org/10.1016/j.cherd.2014.09.002
https://doi.org/10.1016/j.cherd.2014.09.002
https://doi.org/10.1016/j.bej.2016.05.008
https://doi.org/10.1016/j.bej.2016.05.008
https://doi.org/10.1016/j.envsoft.2016.02.008
https://doi.org/10.1016/j.envsoft.2016.02.008
https://doi.org/10.31349/RevMexFis.67.429
https://doi.org/10.31349/RevMexFis.67.429
https://doi.org/10.1002/ep.12973
https://doi.org/10.1002/ep.12973


Melgarejo-Torres et al./ Revista Mexicana de Ingeniería Química Vol. 21, No. 2(2022) Bio2701

and engineering. Communications in Nonlinear
Science and Numerical Simulation 64, 213-
231. https://doi.org/10.1016/j.cnsns.
2018.04.019

Suresh, S., Srivastava, V.C., Mishra, I. M. (2009).
Techniques for oxygen transfer measurement
in bioreactors: a review. Journal Chemical
Technology and Biotechnology 84, 1091-1103.
https://doi.org/10.1002/jctb.2154

Zuluaga-Bedoya, M., Ruíz-Botero, M., Ospina-
Alarcón, M., García-Tirado, J. (2018). A
dynamical model of an aeration plant for
wastewater treatment using a phenomenological
based semi-physical modeling methodology.
Computers & Chemical Engineering 117,
420-432. https://doi.org/10.1016/j.
compchemeng.2018.07.008

18 www.rmiq.org

https://doi.org/10.1016/j.cnsns.2018.04.019
https://doi.org/10.1016/j.cnsns.2018.04.019
https://doi.org/10.1002/jctb.2154
https://doi.org/10.1016/j.compchemeng.2018.07.008
https://doi.org/10.1016/j.compchemeng.2018.07.008

	 Introduction
	Conformal-order calculus and conformable derivatives

	Materials and methods
	Chemicals
	Stirred tank bioreactor
	Electrode response time determination
	Full mixed-level experimental design
	Oxygen mass transfer coefficient (kLa) determination
	Viscosity measurement
	Densities determination
	Mathematical model proposed
	Analysis of the mathematical model
	Statistical analysis 
	Akaike and Bayesian information criterion
	Parametric sensitivity analysis

	Results and discussions
	Electrode response time
	Volumetric oxygen transfer coefficient (kLa) experimental determination
	Analysis of mathematical models
	Statistical analysis
	Akaike and Bayesian information criterion analysis
	Alpha parameter analysis
	Parametric sensitivity analysis 


