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Abstract
Alkyl esters of hydroxycinnamic acids and vanillin derivatives were used as model compounds in the oxidative coupling

reactions catalyzed by a crude enzymatic extract of Raphanus sativus var sativus (red radish). Six products were isolated and
characterized: three alkyl esters of hydroxycinnamic acids dimers and three vanilloids dimers. Herein, we report the enzymatic
extract of Raphanus sativus var. sativus showed peroxidase activity catalyzing the oxidative coupling of phenols. Vanilloid dimers
were coupled in an ortho-ortho way as expected, while alkyl ester dimers were formed through 5-8 and 8-8 bonds via a radical
mechanism prior to cyclization.
Keywords: new enzyme sources, radish peroxidase, enzymatic oxidative coupling, phenolic dimers.

Resumen
Alquilésteres derivados de ácidos hidroxicinámicos y derivados de la vainillina fueron empleados como compuestos de referencia
en reacciones de acoplamiento oxidativo. Las reacciones fueron catalizadas con extractos crudos de Raphanus sativus var
sativus (rábano rojo). Seis productos de dimerización fueron aislados y caracterizados: tres de alquilésteres derivados de ácidos
hidroxicinámicos y tres dímeros de vainilloides. En este documento se reporta que el extracto enzimático de Raphanus sativus
var sativus presenta actividad peroxidasa ya que cataliza el acoplamiento oxidativo de distintos derivados fenólicos. Los dímeros
de vainilloides se acoplaron de manera orto-orto, como era esperado, mientras que los dímeros de los ésteres se formaron a través
de formación de enlaces 5-8 y 8-8 vía mecanismos radicalarios antes de la ciclización.
Palabras clave: nuevas fuentes de enzimas, peroxidasa de rábano, acoplamiento oxidativo enzimático, dímeros fenólicos.
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1 Introduction

Phenolic acids are secondary plant metabolites
found mainly in terrestrial species. These phenolic
compounds are comprised of the cinnamic C6-
C3 family, the hydroxycinnamic acids, and their
derivatives (Figure 1) with well-known bioactivity
as antioxidants, free radical scavengers, anti-
inflammatory and anti-microbial agents (Figueroa-
Espinoza et al., 2005; Kundu, 2017). Their biological
activity can be improved through dimerization of
the phenolic monomers. Vanillin dimers have been
reported to present increased antioxidant activity when
compared to their monomers (de Vasconcelos et al.,
2019). For instance, phenolic dimers are an integral
part of human diet, mainly as antioxidants (Silva et
al., 2000; Antoniotti et al., 2004; Moussouni et al.,
2011; Saliu et al., 2011; Grúz et al., 2015).

Peroxidases catalyzed chemo and regioselective
redox reactions over either carbon atoms or atoms with
free pair electrons (Flohé, L, 2020). These enzymes
could be considered as supramolecular units, and
particularly the active site of peroxidases presents
an iron atom that is coordinated to the porphyrin
ring through four nitrogen atoms. As a result, these
enzymes offer an easy way to dimerize phenolic
units using H2O2 or peracids as an oxidative agent
under mild conditions (Guo et al., 1997; Hamid &
Khalil-ur-Rheman, 2009; Lopes et al., 2014; Quideau
et al., 2014; Palade et al., 2019). Additionally,
the use of peroxidases can lead to precipitation of
phenolic compounds which facilitates their removal
from aqueous solutions (Yu et al., 1994).

In a recent study it has been reported that
the application of crude peroxidase from Brassica
oleracea var. alboglabra catalyzes the oxidative
coupling of guaiacol (Anita et al., 2014). In other
work, crude peroxidase from Brassica oleracea var.
maraton was investigated in the dimerization reactions
of phenols (Duarte-Vázquez et al., 2007). In addition,
peroxidase isolated from the Momordica charantia
fruit was used to oxidize sinapic acid, affording dimers
and tetramers as the main products (Liu et al., 2007).
The four main hydroxycinnamic acids were evaluated
as model substrates for the anionic potato peroxidase

(Arrieta-Báez & Stark, 2006).

 
 
 
Figure 1. Hydroxycinnamic acids and vanillin structures. 

  

Figure 1. Hydroxycinnamic acids and vanillin
structures.

Interestingly, searching for new peroxidase
sources remains one of the leading research topics in
the area in the last decade. Moussouni et al. (2011)
used onion wastes showing peroxidase activity to
dimerize methyl p-coumarate, caffeate and ferulate.
Coconut water has also been proposed as a source of
peroxidases to oxidize model phenolic compounds
(Rodrigues et al., 2017). Sánchez-Carvajal et al.
(2018) obtained dimers of ferulic acid using enzymatic
extracts from Opuntia ficus-indica wastes. More
recently, methyl esters of different hydroxycinnamic
acids (6, 8, 10, 12, Scheme 1) have been tested as
substrates in the synthesis of lignin-molecules using
an enzymatic crude extract from onion (Palade et al.,
2019).

The main objective of the present work is to show
that Raphanus sativus var sativus was used as an
accessible source of peroxidases with catalytic activity
towards oxidative coupling of phenolic compounds
to yield lignans in the form of dimeric precipitates.
Such products were easy to isolate and thus did not
require further purification steps. Methyl coumarate
(6), ethyl coumarate (7), methyl caffeate (8), ethyl
caffeate (9), methyl ferulate (10), ethyl ferulate
(11), methyl sinapate (12), and ethyl sinapate (13)
(Scheme 1); together with vanillin derivatives: vanillin
alcohol (14), vanillic acid (15), ethylvanillin (16) and
compound 17 were oxidized with a crude enzymatic
extract (Scheme 2). Five major products were isolated
after oxidative coupling in the form of dimeric
precipitates and were fully characterized by 1H and
13C nuclear magnetic resonance (NMR). Moreover,
one dimer was isolated after several purification steps.
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Scheme 1. Synthetic pathway to obtain hydroxycinnamate esters through Fischer’s reaction 
conditions. a. HCl, methanol (MeOH), or ethanol (EtOH), reflux, 24 h; b. Aspergillus niger, 
incubated 24 h  

Scheme 1. Synthetic pathway to obtain hydroxycinnamate esters through Fischer’s reaction conditions. a. HCl,
methanol (MeOH), or ethanol (EtOH), reflux, 24 h; b. Aspergillus niger, incubated 24 h.

 
Scheme 2. Synthetic strategies for the preparation of the vanillin derivatives subjected to 
oxidative coupling with radish peroxidase. a. NaBH4/NaOH, 20 min; b. Acetone/EtOH, NaOH, 1 
h 

  

Scheme 2. Synthetic strategies for the preparation of the vanillin derivatives subjected to oxidative coupling with
radish peroxidase. a. NaBH4/NaOH, 20 min; b. Acetone/EtOH, NaOH, 1 h

www.rmiq.org 3



Navarro et al./ Revista Mexicana de Ingeniería Química Vol. 21, No. 2(2022) Bio2747

2 Materials and methods

2.1 Materials

Reagents were purchased from Sigma-Aldrich
and used without further purification. Compounds
synthesized before oxidative coupling were obtained
as described here.

NMR spectra were recorded on an Agilent 600
DD2 (600 MHz) spectrometer in acetone-d6, CDCl3,
or DMSO-d6. HPLC analysis was carried out using
a Hypersil Gold column (250 x 4.6 mm) using a
Waters HPLC (pump: Waters 1525; UV/vis detector:
Waters 2478). Gradient elution was applied (0-30 min
100% A, 30-40 min 48% A, 52% B, 40-50 min
100% B) with the mobile phase consisting of A: 4 %
(w/w) acetic acid (AcOH) and B: AcOH/acetonitrile
(AcN)/methanol (MeOH) (1:5:94) at a flow rate of 1
mL/min. Spectrophotometric assays were carried out
using a GBC-Cintra 101 spectrophotometer at 380 nm.

2.2 General procedure. Synthesis of methyl
and ethyl esters (6-13)

The esters 6-13 were synthesized through
Fischer esterification of compounds 1-4 with the
corresponding alcohol. The hydroxycinnamic acids
(1 g) were added to methanol or ethanol (50 mL)
and stirred until complete solubilization. Next, 5 mL
of concentrated H2SO4 was added dropwise, and the
reaction mixture was refluxed for 24 h with magnetic
stirring. Upon reaction completion, the mixture was
cooled to room temperature and neutralized to a pH
of 7 with 0.1 M NaOH. Following the extraction with
ethyl acetate (EtOAc, 3 x 20 mL), the organic layers
were dried over anhydrous Na2SO4 and concentrated
under reduced pressure. Compounds 6, 8-9 and 13
were recrystallized from an acetone/H2O mixture.
Compounds 7, 10-12 were purified using silica gel
chromatographic column (Hexanes/EtOAc, 80:20).
All compounds 6-13 were identified by 1H NMR and
13C NMR and the data compared to that previously
reported (Moussouni et al., 2011; Sánchez-Carvajal
et al., 2018); for compounds 10-13 the corresponding
shifts for the ethyl moiety were also determined. After
isolation, the afforded yields were in the range of 50-
90% (Table 1).

Table 1 The obtained yields of alkyl hydroxycinnamic
esters.

Compound Name Yield (%)

6 Methyl
coumarate

94

7 Ethyl
coumarate

71

8 Methyl
caffeate

60

9 Ethyl
caffeate

58

10 Methyl
ferulate

79

11 Ethyl
ferulate

94

12 Methyl
sinapate

79

13 Ethyl
sinapate

93

2.3 Synthesis of vanillyl alcohol (14)

Vanillin (5 g, 32.9 mmol) was solubilized in the
minimum amount of ethanol and transferred to a 50
mL round bottom flask. The resulting solution was
cooled (0 °C) in an ice bath prior to gradual addition
of a NaBH4 solution (10 mL, 6.5 M) in NaOH (1M).
The mixture was stirred for 20 min. After reaction
completion, concentrated HCl was added until an
acidic pH was obtained, and as no bubbling was
noticed it was assumed that H2 was not formed.
The formed precipitate was filtered, washed with
small portions of ice water and dried under vacuum,
affording 14 (4.5 g, 29.2 mmol) as a white solid.
Spectroscopic data was consistent with literature (Lai
et al., 1985; Zhou et al., 2008).

2.4 Biosynthesis of vanillic acid (15)

Ferulic acid (1 g, 5.1 mmol) was incubated with
Aspergillus niger mycelium as described previously
(Lira Parada, 2014). A fermentation system was
implemented using eight reactors which were
inoculated with the necessary volume to achieve 108

spores per flask at 30 °C. After a 24 h incubation,
the resulting biomass was filtered off and extracted
according to the procedure of Andreoni et al. (1995).
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2.5 Synthesis of compound (17)

Vanillin (1 g, 6.6 mmol) was solubilized in ethanol
(9 mL) and acetone (1.9 mL, 26.3 mmol) was added.
The resulting mixture was stirred vigorously. After
complete homogenization, 8 mL of 8% NaOH (w/v)
were added. Reaction progress was followed by TLC
for 2 h. Following that time, 4 mL of 8% NaOH (w/v)
were added along with acetone (1 eq., 6.6 mmol),
and the mixture was left for another 1 h until a
brownish solid appeared. The precipitate was isolated
by vacuum filtration and rinsed with MeOH. Methanol
layers were concentrated until dryness, affording 17
(0.7 g, 3.6 mmol). 1H NMR (600 MHz, CDCl3-d): ?
2.35 (s, 3H), 3.85 (s, 3H), 6.51 (d, 1H, J= 16 Hz), 6.80
(d, 1H, J=7.7 Hz), 7.02 (d, 2H, J= 7.9 Hz), 7.45 (d,
1H, J= 16 Hz). Yield: 55%.

2.6 Preparation of crude red radish
peroxidase (RRP) extract

Vegetable material was acquired from a local market
(Mexico City, Mexico). The radish was washed and
peeled before being used. Taproots (60 g) were
crushed and mixed with acetate buffer (pH 4) at 1:1
ratio. The resulting mixture was filtered through gauze
at 4 ºC. Polyvinylpyrrolidone (3 g) was added to the
mixture and stirred for 5 min. The extract was filtered
through Celite bed (2 cm thick, previously washed
with distilled acidic water (pH 4) and stored on ice
before use. Protein parameters of RP extract were
measured. Enzyme activity and specific activity were
determined spectrophotometrically using catechol as
the peroxidase substrate, as it oxidizes to quinone.
Briefly, 20 µL of the extract were mixed with 3 mL
of phosphate buffer (0.1 M, pH 5) and 1 mL of 1%
catechol solution (v/v). Absorbance of the quinone
existing in the solution was measured every 10 s for
3 min at 293 nm.

Total protein content was determined by the
Bradford assay using bovine serum albumin as the
standard and a Bradford reagent kit (Bio-Rad, USA).
Briefly, 20 µL of the extract were mixed with 780
µL of phosphate buffer (0.1 M, pH 6) and 200 µL of
Bradford reagent. Absorbance was measured at 595
nm. The results of total protein content, enzymatic
activity, and specific activity are shown in Table 2.
Enzymatic activity units (U) were defined as the
amount of substrate oxidized per minute in standard
conditions.

Table 2. Protein parameters of RP extract. U =

oxidized substrate in µmol/min.
Total protein Enzymatic activity Specific activity

(g) (U) (U/g)

9.4 839.1 89.4

2.7 Oxidative coupling (OC) of alkyl
hydroxycinnamates and vanilloids.
General procedure

To a stirring solution of radish extract (60 mL)
in 100 mL Erlenmeyer flask the corresponding
alkyl hydroxycinnamate or vanilloid was transferred.
When needed, acetone was added as co-solvent
to help solubilize the substrate. After complete
homogenization, a 3% H2O2 solution (v/v) was added
dropwise. The resulting mixture was stirred until a
precipitate appeared or left for 30 min to react. Finally,
a concentrated HCl solution was added until a pH of 3
was reached. The precipitate was separated by vacuum
filtration, washed with acetate buffer (pH 4) and dried.

Compound 18. According to general procedure
of oxidative coupling, compound 18 (6.4 mg, 0.02
mmol, oil, isolated yield: 11%) was obtained from 6
(302 mg, 1.7 mmol) after extraction with EtOAc (3 x
20 mL) and purification of the residue (53.7 mg) by
preparative TLC. 1H NMR (600 MHz, DMSO, d6) δ
3.79 (s, 3H), 3.82 (s, 3H), 4.26 (d, 1H, J= 7.5 Hz), 6.08
(d, J= 7.5 Hz), 6.31 (d, 1H, J= 16 Hz), 6.82 (d, 2H, J=
8.7 Hz), 6.87 (d, 1H, J= 8.4 Hz), 7.25 (m, 2H), 7.41
(dd, 1H, J= 8.3 Hz), 7.56 (m, 1H), 7.65 (d, 1H, J= 15.9
Hz). 13C NMR (150 MHz, DMSO, d6) δ 54.3, 55.5,
57.7, 89.0, 113.0, 117.9, 118.3, 127.6, 130.1, 130.4,
132.5, 133.4, 147.3, 158.6, 163.8, 170.5, 173.5.

Compound 19. According to general procedure of
OC, compound 19 (78.2 mg, 0.176 mmol, brown solid,
isolated yield: 13%) was obtained from 12 (308 mg,
1.4 mmol). 1H NMR (600 MHz, DMSO, d6) δ 1.25
(m, 6H), 3.76 (s, 3H), 3.84 (s, 3H), 4.18 (m, 4H), 4.51
(d, 1H, J= 8.0 Hz), 5.91 (d, 1H, J= 8 Hz), 6.55 (d, 1H,
J= 15.9 Hz), 6.77 (d, 1H, J= 8.0 Hz), 6.81 (dd, J= 8.1
Hz), 7.00 (s, 1H), 7.26 (s, 1H), 7.39 (s, 1H), 7.62 (d,
1H, J= 15.7 Hz). 13C NMR (150 MHz, DMSO, d6)
δ 14.0, 14.2, 54.2, 55.6, 55.9, 59.8, 61.3, 87.2, 110.8,
112.4, 115.3, 115.7, 118.2, 119.3, 126.2, 128.1, 129.8,
144.3, 144.5, 147.1, 147.7, 149.4, 166.4, 170.2.

Compound 20. According to general procedure of
OC, compound 20 (53.5 mg, 0.11 mmol, brown solid,
isolated yield: 11%) was obtained from 13 (245 mg,
0.97 mmol). 1H NMR (600 MHz, DMSO, d6) δ 1.09
(t, 3H, J=7.1 Hz), 1.21 (t, 3H, J= 7.1 Hz), 3.60 (s, 3H),
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3.75 (m, 6H), 3.83 (s, 3H), 4.01 (m, 4H), 4.13 (m, 1H),
4.81 (s, 1H), 6.20 (s, 2H), 7.05 (s, 1H), 7.63 (s, 1H).
13C NMR (150 MHz, DMSO, d6) δ 13.9, 14.1, 31.3,
46.1, 56.0, 56.0, 59.7, 60.1, 60.6, 105.0, 108.7, 121.8,
122.1, 123.1, 132.6, 134.5, 137.3, 141.8, 145.4, 147.7,
166.0, 171.3.

Compound 21. According to general procedure of
OC, compound 21 (53 mg, 0.16 mmol, brown solid,
isolated yield: 5%) was obtained from 16 (570 mg, 3.4
mmol). 1H NMR (600 MHz, DMSO, d6) δ 1.11 (s,
6H), 4.31 (m, 4H), 6.70 (br s, 2H), 6.72 (br s, 2H),
8.72 (s, 2H). 13C NMR (150 MHz, DMSO, d6) δ 14.5,
64.3, 110.3, 124.6, 127.8, 127.9, 147.2, 150.5, 191.2.

Compound 22. According to general procedure of
OC, compound 22 (160 mg, 0.47 mmol, brown-red
solid, isolated yield: 15%) was obtained from 15 (500
mg, 3.0 mmol). 1H NMR (600 MHz, DMSO, d6) δ
3.34 (s, 6H), 7.17 (m, 4H), 12.85 (s, 2H). 13C NMR
(150 MHz, DMSO, d6) δ 55.7, 113.5, 122.8, 122.8,
123.4, 148.1, 150.1, 166.7.

Compound 23. According to general procedure of
OC, compound 23 (247.3 mg, 0.81 mmol, brown-red
solid, isolated yield: 25.6 %) was obtained from 14
(0.50 g, 3.2 mmol) 1H NMR (600 MHz, DMSO, d6) δ
3.79 (m, 6H), 7.35 (m, 4H), 9.82 (m, 2H). 13C NMR
(150 MHz, DMSO, d6) δ 56.0, 109.1, 124.6, 127.7,
128.1, 148.1, 150.4, 191.3.

3 Results and discussions

Although dimerization of the phenolic compounds
with HRP has been already demonstrated and widely
applied, to the best of our knowledge, no previous
work has been published about the use of RRP
as a biocatalyst in the oxidative coupling reaction.
The corresponding hydroxycinnamic acid derivatives,
i.e. alkyl hydroxycinnamates (6-13), and vanillin
derivatives, i.e. vanilloids (14-17), were tested as
model compounds in the oxidative coupling reaction
to obtain lignan-type dimers that easily precipitate in
a single isolation step. It should be noted that even
though these are free radical-mediated reactions, the
data obtained and presented in the manuscript did not
show or suggest the formation of polymeric structures.

Treating 6-9 with the crude enzyme extract
provided their respective dimers as the main
products (Figure 2). Dimers of ethyl ferulate (19)
and ethyl sinapate (20) were easily recovered
as both precipitated to provide 12% and 11%

 

Figure 2. Chemical structures of the dimers isolated after enzymatic oxidation of alkyl 
hydroxycinnamates with crude RRP. 

  

Figure 2. Chemical structures of the dimers isolated
after enzymatic oxidation of alkyl hydroxycinnamates
with crude RRP.

yield, respectively. Meanwhile, the main product
of dimerization of methyl coumarate (18) was
isolated by preparative thin layer chromatography
in 11% yield after a 30 min reaction with no
precipitate observed. Compounds were identified by
1H and 13C NMR and compared with the literature.
The corresponding dimers of 18 and 19 were
compared with dehydrobenzofuran skeleton and the
E enantiomer described by Moussouni et al. (2011),
and dimerization product of 20 was compared with
dehydronaphtalene skeleton reported by Setälä et
al. (1994). It resulted very interesting that 18 and
19 presented the same stereochemistry, as showed
when spectroscopic data was compared with previous
reports (Moussouni et al., 2011).

The reaction of methyl coumarate (6) and
methyl ferulate (8) resulted in the production of
dehydrobenzofuran. Moussoni et al. (2011) proposed
a reaction mechanism in which two different radicals
are initially formed: a C-8 centered semiquinone and
a C-5 centered quinone methide. The latter produces
a new C-C bond which undergoes regioselective
cyclization. The final product of this nucleophilic
attack is the resulting dehydrobenzofuran structure.
Likewise, the formation of dehydronaphtalene begins
with the coupling of two C-8 semiquinone radicals
that form a bisquinone methide intermediate. Then,
intramolecular nucleophilic attack of C-2 to C-7’ of
the bisquinone methide triggers cyclization which
affords dehydronaphtalene structure (Andreoni et al.,
1995).

The optimum conditions for the oxidative coupling
of hydroxycinnamates has long been known to
strongly depend on the reaction pH and the use of co-
solvents. In this study, the corresponding dimers of
compounds 10 and 12 were obtained as precipitates
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at pH 4. This pH has been described as optimal to
control the reaction progress towards dimer formation
and avoid oligomer production as well as other
side-products of methyl ferulate and methyl sinapate
(Andreoni et al., 1995; Moussouni et al., 2011).
However, for the dimerization of methyl p-coumarate
(6) and methyl caffeate (8), the optimum pH was
found to be 5 and 6, respectively. Nevertheless,
different oxidative coupling products were formed,
and laborious isolation procedures had to be applied,
such as in the case of dimer (18). We hypothesized that
the aromatic substitution pattern plays a significant
role in establishing the optimal pH conditions, mainly
the presence of the ortho-methoxy groups.

As mentioned previously, co-solvents play a key
role in the outcome of dimerization reactions. For
example, MeOH and glycerol have been used to
successfully synthesize dimers of methyl p-coumarate
and methyl ferulate, respectively, while dimethyl
formamide (DMF) was used for methyl caffeate
oxidative coupling (Moussouni et al., 2011; Palade et
al., 2019). In this study, aqueous acetone favored the
formation of dimer 20 as was also reported by Setälä et
al?. (1994). However, no benefit was observed for the
dimerization of eugenol with the addition of acetone,
dioxane or tetrahydrofuran (Sánchez-Carvajal et al.,
2018)?. Nevertheless, our findings are consistent with
the reports mentioned above for the application of
polar and aprotic solvents for dimerization of ethyl
sinapate and the use of polar and protic co-solvents
to obtain dimers over oligomers of alkyl p-coumarate,
caffeate and ferulate.

Vanilloids 14-16 were tested as substrates for
dimerization catalyzed by the crude RRP enzyme.
Three main dimer products were isolated after
precipitation in the reaction media (21-23; Figure 3).
For the remaining vanilloids tested, products were
neither isolated as precipitates, nor could be identified
following the separation on preparative thin layer
chromatography (Table 3). Compounds 21 and 22
were isolated in 5 and 15% yield, respectively. The
13C-NMR analysis was significantly easier than that of
the phenylpropanoid derivatives due to the symmetry
of the products. It revealed the formation of dimers
21-23 that were coupled in ortho-ortho position, as
confirmed by the characteristic chemical shift at ∼124
ppm (Antoniotti et al., 2004; Nishimura et al., 2010;
Enomoto & Iwata, 2020).

 

Figure 3. Chemical structures of dimers isolated after oxidizing of vanilloids with RP preparation 

  

Figure 3. Chemical structures of dimers isolated after
oxidizing of vanilloids with RPP preparation.

Furthermore, dimer 21 showed characteristic
chemical shifts for the methylene of the ethoxy
moiety as the multiplet at 4.31 ppm and two broad
singlets for the four aromatic hydrogens at 6.70
and 6.72 ppm on 1H NMR spectra respectively.
Complementary to proton analysis, 13C NMR spectra
revealed characteristic signals for the methylene
carbon at 64.34 ppm, and the aldehyde carbon
was identified at 191 ppm. As for dimer 22, the
prototypical chemical shifts for six hydrogens of the
methoxy moiety were observed as a singlet at 3.34
ppm, and two hydrogens of the carboxylic acid residue
were assigned as a singlet at 12.85 ppm on 1H NMR
spectra. The carboxylic acid carbon at 166.74 ppm was
observed on 13C NMR spectra.

Preparation of compounds such as 21 and
23 via this methodology could represent a very
convenient route, as these dimers present remarkable
pharmaceutical applications. Jantaree et al. (2017)
tested both, 5,5’-divanillin and 5,5’-diapocyn, for
the inhibition of focal adhesion kinase (FAK), an
enzyme involved in a downstream process that triggers
metastasis of liver cancer cells. Experimentally
authors found that dimers were better inhibitors than
their respective monomers. In that same report, authors
used molecular modelling for better understanding
of this inhibition, and compared interaction cites
of these dimers with a known FAK inhibitor (I;
1,2,4,5-benzenetetraamine hydrochloride). Divanillin
and diapocyn bind tightly to the very same domain
than the inhibitor, thus preventing its phosphorylation.
Their work showed that diapocyn binds to the domain
through 5 hydrogen bonds, forming a very stable
supramolecular structure that helps prevent metastasis.
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Table 3. Isolated dimers after oxidative coupling of phenolic compounds with RP preparation. ND: Not
Determined.

Substrate Dimer Name Yield (%)

6 18 methyl (E)-2-(4-hydroxyphenyl)-5-(3-methoxy-3-oxoprop-1-enyl)-
2,3-dyhidrobenzofuran-3-carboxilate

11

7 ND — —
8 ND — —
9 ND — —

10 ND — —
11 ND — —
12 19 ethyl (E)-2-(4-hydroxy-3-methoxiphenyl)-7-methoxy-5-(3-methoxy-

3-oxoprop-1-enyl)-2,3-dyhydrobenzofuran-3-carboxilate
13

13 20 diethyl 7-hydroxy-1-(4-hydroxy-3,5-dimethoxyphenyl)-6,8-
dimethoxy-1,2-dyhydronaftalen-2,3-dicarboxilate

11

14 23 6,6’-dihydroxy-5,5’-dimethoxybiphenyl-3,3’-dicarbaldehyde 26
15 22 6,6’-dihydroxy-5,5’-dimethoxy-[1,1’-biphenyl]carboxylic diacid 15
16 21 6,6’-dihydroxy-5,5’-diethoxybiphenyl-3,3’-dicarbaldehyde 5
17 ND — —

Although the peroxidase-catalyzed synthesis of
dimers 21 and 22 have not been reported yet, vanillin
and related derivatives (apocynin, 4-methylguaiacol)
have been subjected to the dimerization reaction using
soybean peroxidase at low pH (Antoniotti et al.;
2004). The expected products were afforded at 2-
32% yields as main products. Amarasekara et al.
(2012) reported the synthesis of divanillin with HRP
at 95% yield which is in accordance with those
obtained by Antoniotti et al. (2004) for vanillin,
apocynin and 4-methylguaiacol. It was suggested
that electronic effects determine the coupling type
in the way that electron-donating substituents favor
primarily ortho-ortho coupling, as well as dimer
formation over higher oligomers. Furthermore, to
explain low yields obtained for some substrates,
it was suggested that electron-withdrawing para-
substituents, like the aldehyde and carboxylic acid
moieties, could deactivate the reaction.

Another factor that could be consider is the
possible inactivation of the enzyme. There is
experimental evidence that suggests that this type
of peroxidases could be inactivated because of a
covalent bond formation between the substrate and the
enzyme (Huang et al., 2005; Kim et al., 2009). First,
Huang et al. (2005) reported that phenoxy radicals
inhibited the activity of commercial HRP. Then, Kim
et al. (2009) observed that some phenolic derivatives,
among them vanilloids and phenylpropanoids, when
forming radical moieties, tend to inactivate a
fungal peroxidase. This effect was found to be a
consequence of the creation of a supramolecular

structure through the formation of a covalent bond
between phenoxy radicals and aromatic aminoacids,
such as Phe, following an ortho-ortho coupling
mechanism. Although high inactivation activity was
found with phenol, p-hydroxybenzaldehyde and
different cresols, phenylpropanoids and vanilloids
only presented moderate to negligible inhibitory
activity.

Noteworthy, an unexpected product was observed
during the oxidation of compound 14, and instead of
the corresponding dimer, compound 23 was obtained
(26% yield; Table 3). Zhi et al. (2008) previously
suggested the oxidation of primary alcohols when
using HRP. Thus, we propose a similar mechanism
for the oxidation of vanillyl alcohol when testing
its dimerization (Scheme 3). First, Fe (III) of the
protoporphyrin heame-group in the active site of
peroxidase is oxidized with H2O2 to form an iron
(IV)-oxo complex of the porphyrin (E) radical cation
(compound I in Equation 1, Scheme 3). In the next
step (Equation 2, Scheme 3), this radical species
abstracts the proton from the Cα of vanillyl alcohol
(14) which leads to the formation of an iron (IV)-
hydroxy complex of the porphyrin (E) radical cation
and a benzylic radical. The latter quickly undergoes a
rearrangement to aldehyde 5 (through the hemiacetal
intermediate) in the presence of water and is therefore
catalyzed by the enzyme which returns to its resting
state (Fe III). Additionally, we suggest peroxidase
maintains enzymatic activity to catalyze oxidative
coupling of the newly formed vanillin (5, Equation
3, Scheme 3). Briefly, compound 5 reacts with the
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activated form of peroxidase producing an ortho
radical species which couples to form the ortho-ortho
dimer (compound 23).

When phenylpropanoids and vanilloid dimers are
compared, it is remarkable that the latter present a
clear symmetry, while the former do not. Rodrigues
et al. (2017) suggested that when HRP is used
in its commercial preparation, the reaction loses
stereoselectivity, thus forming a mixture of isomers
that includes asymmetric ones. Authors claimed that

some synthases are naturally present along with
peroxidases, but when the latter is purified for
commercial purposes, loses such auxiliary enzymes.
These synthases are thought to play an important role
in the alignment of phenoxy radicals generated by the
action of peroxidases. In our case, it could be possible
that these protein-aides are necessary only for the
alignment of phenylpropanoids and not the vanilloid
derivatives, and presumably these additional enzymes
were not present in the crude preparation.

 

Scheme 3. Proposed mechanism for the vanillin alcohol conversion to vanillin and oxidative 
coupling to form dimer 23 

 

Scheme 3. Proposed mechanism for the vanillin alcohol conversion to vanillin and oxidative coupling to form dimer
23.
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The current study demonstrated that Raphanus
sativus var. sativus extract presents peroxidase
activity towards the oxidative coupling of phenolic
compounds. The reaction strongly depends on the
reaction medium, as well as the chemical structure and
electronic effects of the substrates used. The important
disadvantage of the application of crude peroxidase in
this study is that it could contribute to low reaction
yields, lack of separable dimers of some phenolic
compounds tested here, and unexpected products.
It was also curious that, depending on the starting
compound structures, the outcome of dimerization
reactions was different. When hydroxycinnamate
derivatives were used, predominantly asymmetric
dimers were prepared, although with a specific
stereochemistry. While the use of vanilloids garnered
entirely symmetric derivatives. These might as well
could be due to the length of the propanoid chain of
cinnamates. Although there is enough evidence of the
formation of symmetric dimers of phenylpropanoids,
such as 5-5’ of ferulic acid and others. It would be
very interesting to take advantage of the computational
tools at hand to help determine the nature of the
interaction between the substrate and the enzyme, and
thus explain product structures. This has been recently
reported with related enzymes such as laccase and
veratryl alcohol oxidase (Herrera-Zúñiga et al., 2021).

Finally, protein parameters measured for the
extract used in this work had lower specific activity
(0.09 U/mg) in comparison to 12.51 U/mg of crude
enzymatic extract of Opuntia ficus-indica cladodes
(Sánchez-Carvajal et al., 2018), even though higher
than that already reported for radish (Zhi et al.,
2008). Similarly, the specific activity of brown-skin
onion bulb homogenate assessed at 0.11 U/mg was
improved in a concentrated (Rathnamsamy et al.,
2014) and partially purified extract (Moussouni et
al., 2011). Accordingly, Palade et al. (2019) reported
the dimerization of methyl ferulate using a crude
peroxidase from onion bulbs. Finally, Osman et al.
(2008) and Sánchez-Carvajal et al. (2018) highlighted
the fact that the raw extract of peroxidases consists
of several peroxidase isoforms and can contain other
enzymes capable of altering the expected peroxidase
activity during its utilization. Nevertheless, a possible
inactivation due to the linkage between phenoxy
radicals and the enzyme could play a role in the low
yields observed (Huang et al., 2005; Kim et al., 2009).

Conclusions

It has been demonstrated that red radish Raphanus
sativus var sativus presents peroxidase activity as it
can accomplish regioselective oxidative coupling of
the phenolic compounds to dimers. Notable, vanilloid
dimers formed through an ortho-ortho coupling
gave symmetrical molecules. However, due to the
crude RRP preparation used in the experiments,
low yields were obtained: 12% and 26% for
alkyl hydroxycinnamates and vanilloids substrates,
respectively. Future work will expand the scope of
phenolic substrates, focus on the effects of co-solvents
on the reaction outcome, and apply purified peroxidase
for better understanding of the enzyme-catalyzed
oxidative coupling reaction and to improve reaction
yields. Although testing the possible inactivation of
the enzyme due to the formation of a covalent bond
between radicals and aromatic aminoacids residues
could give more insight into the outcome of these
reactions.
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