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Abstract
A simple kinetics scheme was considered for the systematic derivation of the Monod equation for multi-substrate conditions.

The model derivation is based on a series expansion of the system solution in terms of a characteristic time constant. The
multi-substrate Monod equation is structurally similar to the single-substrate Monod equation, containing terms that reflect the
competitive interactions between the different substrates. Biodegradation of phenol-toluene was used to illustrate the ability of
the Monod model for describing experimental data.
Keywords: Monod equation, multi-substrate; kinetics scheme; series expansion.

Resumen
Se consideró un esquema cinético simple para la derivación sistemática de la ecuación de Monod para condiciones de sustratos
múltiples. La derivación del modelo se basa en una expansión en serie de la solución del sistema en términos de una constante de
tiempo característica. La ecuación de Monod de sustrato múltiple es estructuralmente similar a la ecuación de Monod de sustrato
único, y contiene términos que reflejan las interacciones competitivas entre los diferentes sustratos. Se utilizó la biodegradación
de fenol-tolueno para ilustrar la capacidad del modelo de Monod para describir datos experimentales.
Palabras clave: ecuación de Monod, multisustrato; esquema cinético; expansión en serie.
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1 Introduction

The Monod equation is widely used to describe
cell growth under single nutrient-limiting conditions.
Models based on the Monod equation have found
sound applications for the modeling and design
of bioreacting systems in physiology, biotechnology
and bioengineering (Bailey and Ollis, 1986). The
attractiveness of the Monod equation relies on its
simplicity, physical appeal and reasonable fitting of
experimental data (Gaudy and Gaudy, 1980). The
equation depends only on two parameters representing
the maximum specific growth rate (µmax) and the
half-saturation constant (KS ), and can be written as
follows:

µX(X,S ) =
µmax

KS + S
(1)

As usual, S and X denote substrate and biomass
concentrations, respectively. The parameters µmax
and KS are commonly used for the interpretation
of kinetics mechanisms from experimental data.
Many extensions to the Monod equation have been
proposed in the past decades, mostly departing
from heuristic grounds. For instance, Xu (2020)
proposed a hybrid Monod-logistic model where the
logistic factor accounts for the carrying capacity of
the medium. Remarkably, the equation exhibits an
implicit analytical solution in terms of transcendental
functions.

Even though the Monod equation is widely
used, it lacks some biochemical aspects, e.g., the
microbial growth takes place under a mixture of
several substrates and the limiting factor is not just one
compound as the Monod equation supposes. In some
instances, the growth of a single microbial species
takes place under a mixture of several substrates.
The biodegradation of naphthalene, phenanthrene,
and pyrene mixtures (Guha et al., 1999), and the
simultaneous degradation of chlorophenol mixtures
by Pseudomonas aeruginosa (Durruty et al., 2011)
are instances of microbial growth under multi-
substrate conditions. Also, biodegradation of mixtures
of benzene, toluene, and phenol by Pseudomonas
putida has been studied (Reardon et al., 2000). Some
efforts have been taken for extending the Monod
equation for multi-substrate conditions. Guha et al.
(1999) proposed that microbial growth is due to the
utilization of all the compounds, such as the total

specific growth rate is given by

µT =

N∑
i=1

µi (2)

Here, µT is the total specific growth rate, and µi is
the specific growth rate on the substrate S i. It was
proposed that the specific growth rate can be given as

µi =
µmax,iS i

KS ,i +
∑N

j=1
KS ,i
KS , j

S j

(3)

where µmax,i and KS ,i are respectively the maximum
specific growth rate and half saturation constant
from substrate S i. It should be emphasized that
the derivation of Eq. (3) was made under the
hypothesis that all substrates are simultaneously
utilized. Presumably, the ratio KS ,i/KS , j reflects the
competitive interaction between the substrate S i and
the substrate S j. Other studies proposed that specific
growth rates are simply the sum of the traditional
Monod equation (1) for individual substrates (Reardon
et al., 2000; Akermann et al., 2021; Miri et al., 2021).

Although reported expressions like Eq. (3)
provided acceptable fitting of experimental kinetics,
they were proposed from heuristic grounds without
a theoretical basis for justifying their functional
structure. A detailed derivation of the Monod model
for the multi-substrate condition would provide a tool
to interpret experimental data and accurately describe
the dynamics and operation of bioreacting systems.
Motivated by this, the present note departs from a
kinetics scheme to derive systematically a Monod
equation for multi-substrate conditions. The resulting
multi-substrate model can be reduced to the traditional
Monod equation for single substrates.

2 Multi-substrate Monod
equation

The Monod equation was proposed to model the
specific microbial growth in a single substrate
environment. The process can be seen as auto-catalytic
where the activity of the existing microbial population
leads to the production of more microbial units. In
general, biomass growth involves a complex network
of endogenous metabolic processes. A microbial unit
can be seen as a body of enzymes required for
sustaining microbial survival and reproduction. The
substrate is in general dispersed in a continuous phase
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surrounding the microbial surface. Once the substrate
reaches the microbial bulk via transport mechanisms,
the metabolic processes lead to the formation of
new microbial cells via reproduction mechanisms.
Moser (1983) departed from Langmuir adsorption
and enzyme kinetics ideas to postulate a Monod
mechanism where substrate molecules are adsorbed
on the surface of the microbial before the reaction
afterward. In this regard, Moser proposed a simple
view of the microbial growth process reflected by the
following kinetics scheme:

X + aS
kC
−−→C

kX
−−→ (1 + b)X (4)

Here, X represents the microbial population, S is
the substrate, and C is a complex formed between
the absorbed substrate and the enzymes contained
in the microbial bulk. On the other hand, kC is the
rate constant of complex formation, and kX is the
rate constant of microbial formation. The parameters
a > 0 and b are stoichiometric coefficients. It is
noted that YX/S = b/a can be seen as the yield
ratio between the consumed substrate and the formed
microbial units. That is, YX/S units of microbial cells
are formed from one unit of a consumed substrate.
Although the kinetics scheme is a simple view of
the involved mechanism in the growth of microbial
cells from a consumed substrate, the scheme provides
a base for the systematic derivation of the Monod
equation. The kinetics scheme can be seen as a lumped
representation of physical and biochemical processes
taking place outside and inside the microbial cells.
The first kinetics step in the scheme (4) denotes the
overall transport of the substrate from the bulk of
the solution to the microbial cells surface/bulk where
a substrate/enzyme complex is formed. On the other
hand, the second kinetics step involves the metabolic
processes taking place in the microbial cells and
leading to the formation of new microbial units from
the substrate consumption.

Microbial growth kinetics with multiple substrates
in real systems involves complex cellular genetics
and transport mechanisms. However, the derivation
of models for fitting experimental data requires
unavoidable simplifications. The mathematical
derivation reported in our study departed from parallel
utilization of each substrate, an assumption that
is tacitly followed by the reported Monod models
(Guha et al., 1999). By assuming that N different
substrates are available for simultaneous consumption
by microbial cells, the simple scheme (4) can be

extended as follows:

X + aiS i
kC,i
−−−→Ci

kX,i
−−−→ (1 + bi)X, i = 1, . . . ,N (5)

where the subindex i in kinetics parameters refers
to the ith-substrate. The derivation of the differential
equations governing the substrate kinetics is carried
out by means of the law of mass action. In this way,
the mass balances from the kinetics scheme (5) leads
to the following set of differential equations:

dX
dt

= −

 N∑
j=1

kC, jS j

X +

N∑
j=1

(1 + b j)kX, jC j

dCi

dt
= kC,iS iX − kX,iCi, i = 1, . . . ,N (6)

dS i

dt
= −aikC,iS iX, i = 1, . . . ,N

The derivation of a Monod equation involves the
elimination of the intermediate species Cis, such that
the growth rate of microbial cells depends only on
itself and substrate concentrations. To achieve this end,
let us consider the new variables

Zi = aiCi + S i (7)

It is noted that the variable Zi reflects the total number
of i-th substrate units that has not been converted
to microbial units. Hence, the system (6) can be
expressed as follows:

dX
dt

= −

 N∑
j=1

kC, jS j

X +

N∑
j=1

(
1 + b j

a j

)
kX, j(Z j − S j)

(8a)
dZi

dt
= −kX,i(Zi − S i), i = 1, . . . ,N (8b)

dS i

dt
= −aikC,iS iX, i = 1, . . . ,N (8c)

The equation (8b) governing the behavior of the
intermediate variables Zi has the advantage that
is linear, and so offers some advantages for
mathematical handling. First, note that the parameter
k−1

X,i, i = 1, . . . ,N reflects the characteristic time-
scale of the formation of microbial cells from
the i-th substrate S i. On the other hand, the
parameter (kC,iS 0,i)−1, i = 1, . . . ,N, where S 0,i is the
initial substrate concentration, can be seen as the
characteristic time scale for the formation of the
intermediate complex Ci (see Eq. (5)). Introduce the
dimensionless parameters

εi = (kC,iS 0,i)/kX,i, i = 1, . . . ,N (9)
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The set of differential equations (8) can be re-written
in the following form:

dX
dt

= −

 N∑
j=1

kC, jS j

X +

N∑
j=1

kC, jS 0, j

ε j

(
1 + b j

a j

)
(Z j − S j)

(10a)

εi
dZi

dt
= (kC, jS 0, j) (−Zi + S i) , i = 1, . . . ,N (10b)

dS i

dt
= −aikC,iS iX, i = 1, . . . ,N (10c)

Consider the following series expansion for the
variable Zi:

Zi = Z(0)
i + εiZ

(1)
i + ε2

i Z(2)
i + O(ε3

i ), i = 1, . . . ,N
(11)

Here, Z(0)
i , Z(1)

i and Z(2)
i are functions that should be

determined by the method of variation of parameters.
Here, we assume that the parameters εi, i = 1, . . . ,N
are sufficiently small, such that the expansion (11)
is valid up to O(ε2

i ). Such assumption implies that
the rate of complex formation is much slower than
the rate of cellular production. That is, the formation
of the intermediate complex dominates the dynamics
of the substrate consumption. It should be mentioned
that the above assumption was taken as instrumental
for the derivation of an expression with a structure
similar to that of the single-substrate Mond equation.
By substituting in the above expression in Eq. (10b),
one obtains the equality

ε3
i

dZ(2)
i

dt
+ ε2

i

dZ(1)
i

dt
+ kC, jS 0, jZ

(2)
i

 + ε1
i

dZ(0)
i

dt

+kC, jS 0, jZ
(1)
i

)
+ ε0

i

(
Z(0)

i − S i
)

= 0, i = 1, . . . ,N
(12)

The matching condition implies the following
equalities:

Z(0)
i − S i = 0 (13a)

dZ(0)
i

dt
+ (kC, jS 0, j)Z

(1)
i = 0 (13b)

dZ(1)
i

dt
+ (kC, jS 0, j)Z

(2)
i = 0 (13c)

By considering Eq. (9), it can be shown that the
approximate solution up to O(ε2

i ) terms is given by

Zi = S i −

(
1

kX,i

)
dS i

dt
+

(
1

kX,i

)2 d2S i

dt2
+ O(ε3

i ), i = 1, . . . ,N

(14)

One can use the expression given by Eq. (8c) to obtain
the following expression:

Zi = S i +

(
1

kX,i

)
aikC,iS iX +

(
1

kX,i

)2 (
a2

i k2
C,iX

2S i

−aikC,iS i
dX
dt

)
+ O(ε3

i ), i = 1, . . . ,N (15)

The above equation can be used in Eq. (10a) to give

dX
dt

= −

 N∑
j=1

kC, jS j

X +

N∑
j=1

(
1 + b j

a j

) [
a jkC, jS jX+

(
1

kX, j

)(
a2

jk
2
C, jX

2S j − a jkC, jS j
dX
dt

)
+ O

(
ε3

j

)]
(16)

As required, it is noted that the dynamics of the
microbial concentration in the above equation depends
only on microbial and substrate concentrations. By
solving for the time-derivative of the microbial
concentration, the following expression is obtained:

dX
dt

=

 N∑
j=1

b jkC, jS j

X +
N∑

j=1

(
1

kX, j

)
(1 + b j)a jk2

C, jX
2S j

1 +
N∑

j=1

(
1

kX, j

)
(1 + b j)kC, jS j

(17)

In order to set the above equation in terms of
the Monod’s traditional parameters (i.e., maximum
specific growth rate and half saturation constant), let
us analyze Eq. (17) for a single substrate. In this case,

dX
dt

=
bkCS X +

(
1

kX

)
(1 + b)ak2

C X2S

1 +
(

1
kX

)
(1 + b)kCS

(18)

which can be re-written as follows:

dX
dt

=
µmaxS

KS + S
X +

akCS
KS + S

X2 (19)

The first term in the right-hand side has the structure
of a Monod model with the maximum specific growth
rate and half-saturation constant are respectively given
by

µmax =

(
b

1 + b

)
kX (20a)

KS =
kX

(1 + b)kC
(20b)

Eq. (19) shows that the kinetics scheme (4) leads
to the traditional Monod equation with an additional
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second-order term akCS X2, which reflects the self-
catalytic effect of the produced biomass. Following
the definitions given by Eq. (20), the rate of multi-
substrate biomass generation given by Eq. (17) can be
expressed as follows:

dX
dt

=

 N∑
j=1
µmax, j

S j
KS , j

X +

 N∑
j=1

a jkC, j
S j

KS , j

X2

1 +
N∑

j=1
S j/KS , j

(21)

Here, the parameters µmax,i and KS ,i are given
according to Eq. (20). The dynamics of the microbial
growth rate governed by Eq. (21) is the result of two
contributions. The second-order term N∑

j=1
a jkC, jS j/KS , j

X2

1 +
N∑

j=1
S j/KS , j

(22)

reflects the formation of substrate/microbial complex
units as specified by the first step in the kinetics
scheme (5). On the other hand, the term N∑

j=1
µmax, j

S j
KS , j

X

1 +
N∑

j=1
S j/KS , j

(23)

is linked to the second step in the kinetics scheme (5)
and corresponds to the generation of new microbial
cells from the substrate/microbial substrate complex.
The limiting step in the kinetics scheme (5) determines
the relative dominance of either term in Eq. (21). In
this way, the second-order term (22) can be discarded
from Eq. (21) when the generation of new microbial
units is the limiting step in the kinetics scheme (5). In
such a case, Eq. (21) can be reduced to the following
multi-substrate Monod equation:

dX
dt

=

 N∑
j=1
µmax, jS j/KS , j

X

1 +
N∑

j=1
S j/KS , j

(24)

For single-substrate conditions, Eq. (24) becomes the
traditional Monod equation. In this way, the specific
growth rate is given by the sum of individual specific
growth rates

µT =

N∑
j=1

µ j (25)

where

µi =
µmax,iS i/KS ,i

1 +
N∑

j=1
S j/KS , j

(26)

It is noted that the specific growth rate is given as a
function of the “normalized" substrate concentration
S i/KS ,i. Besides, Eq. (26) describes the individual
contribution of the i-th substrate to cell growth.
Overall, the above results suggest that the Monod
equation can be accepted as an accurate model
for microbial growth rate when the formation of
microbial/substrate complexes (via, e.g., external and
adsorption mechanisms) is faster than the internal
biochemical processes leading to the formation of new
microbial cells.

In terms of the microbial and substrate
concentrations, the dynamics of the multi-
substrate/biomass system is governed by the following
set of differential equations:

dX
dt

=

 N∑
j=1
µmax, jS j/KS , j

X +

 N∑
j=1

a jkC, jS j/KS , j

X2

1 +
N∑

j=1
S j/KS , j

(27a)
dS i

dt
= −kC,iS iX, i = 1, . . . ,N (27b)

As done above, the discarding of the second-order
term in Eq. (27) leads to the multi-substrate Monod
model

dX
dt

=

 N∑
j=1
µmax, jS j/KS , j

X

1 +
N∑

j=1
S j/KS , j

(28a)

dS i

dt
= −kC,iS iX, i = 1, . . . ,N (28b)

In principle, this model suffices to describe
the behavior of the biomass growth subjected
to simultaneous multi-substrate consumption.
Interestingly, the system (28) reduces to

dX
dt

=
µmax

KS + S
(29a)

dS
dt

= −kCS X (29b)

for single-substrate conditions.
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3 Example

The biodegradation of phenol and toluene by
Pseudomonas putida as reported by Reardon et al.
(2000) was considered for illustrating the viability
of the system (28) in describing experimental data.
Firstly, figures 1.a and 1.b present respectively the
biodegradation of individual (i.e., single-substrate)
phenol and toluene substrates. For each case, the
system (28) was used for fitting the experimental
data. The estimated parameters were µmax mg/L.h,
KS =422.25±8.26 mg/L, and kC=2.10±0.03×10−3 1/h
for phenol, and µmax mg/L.h, KS =73.25±2.26 mg/L,
and kC=1.73±0.02×102 1/h for toluene. The rate
of biodegradation, reflected by the kinetics constant
kC , is one magnitude order higher for toluene as
compared with the respective rate for phenol. The
results in Figure 1 showed that the Monod model
given by Eq. (28) provides an accurate description
of the single-substrate experimental data. The second
case considers the simultaneous biodegradation of
phenol and toluene. The experimental data borrowed
from Reardon et al. (1999) is displayed by Figure 2.
The continuous lines depict the least-squares fitting
by the multi-substrate model given by Eq. (28). The
estimated parameters were µmax,1 =0.82±0.02 mg/L.h,
KS ,1=385.52±7.28 mg/L, and kC,1=3.02±0.04×10−3

1/h, µmax,2 =2.98±0.12 mg/L.h, KS ,2=89.65±2.19
mg/L, and kC,2=2.21±0.02×102 1/h, where the
subindices "1" and "2" stand for phenol and toluene
substrates, respectively. Notice that the values of the
estimated parameters from the multi-substrate model
are similar to the values of the parameters obtained
from single-substrate models. The differences can
be attributed to the competitive interaction between
the binding sites of the individual substrate. This
example is a common practical situation where
hydrocarbon dispersed in contaminated soils is present
in recalcitrant blends. A viable strategy to enhance the
bioremediation efficiency is the addition of an easily
assimilable substrate for carbon and energy sources,
such as molasses. The presence of molasses promotes
the microbial growth and co-metabolic degradation
of hydrocarbon (Reardon et al., 2000; García-Rivero
et al., 2008) and fermentation processes (González-
Figueredo et al., 2021). The multi-substrate Monod
equation derived in this work is a useful tool for
the systematic design of remediation strategies for

 

 

Figure 1. (a) Biodegradation of individual (a) phenol, and (b) toluene by Pseudomonas 

putida. The continuous lines denote the least-square fittings by single-substrate Monod 

model given by Eq. (28). 
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Figure 1. (a) Biodegradation of individual (a)
phenol, and (b) toluene by Pseudomonas putida. The
continuous lines denote the least-square fittings by
single-substrate Monod model given by Eq. (28).

 

Figure 2. Simultaneous biodegradation of phenol and toluene by Pseudomonas putida. The 

continuous lines denote the least-square fittings by multi-substrate Monod model given by 

Eq. (28). 
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Figure 2. Simultaneous biodegradation of phenol and
toluene by Pseudomonas putida. The continuous lines
denote the least-square fittings by multi-substrate
Monod model given by Eq. (28).

contaminated sites. The case of bioreactors is also a
potential application where multi-substrate conditions
are commonly found in practice (Miramontes-
Martínez et al., 2019).
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Conclusions

This work showed that the dynamics of biomass
growth can be described by a Monod equation
systematically derived from a kinetics scheme.
The resulting Monod equation has the structure
of a traditional Monod equation, where individual
substrates are normalized by the corresponding half-
saturation constant. By doing this, the multi-substrate
Monod equation is simple in structure and affordable
for the use and interpretation of experimental data by
practitioners. The derived model would be useful to
estimate parameters from experimental runs, describe
the dynamics of multi-substrate bioreactors and
derive optimal strategies to achieve selective substrate
degradation and consumption.

Nomenclature

a,b stoichiometric parameters
C complex concentration
kC complex formation rate constant
kX biomass formation rate constant
KS half-saturation constant
S substrate concentration
YX/S substrate-to-biomass yield
X biomass concentration
Greek letters
ε small perturbation parameter
µmax maximum specific growth rate
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Appendix. Order of magnitude
analysis

The reduction of Eq. (21) to a Monod-type expression
(see Eq. (24)) involves the discarding of the second-

order term
(∑N

j=1
a jkC, jS j

KS , j

)
X2. Establishing strict

conditions under which the second-order term has
marginal contributions to the biomass growth kinetics
is a hard mathematical problem that is out of the scope
of the present study. In the following, we describe an
order of magnitude analysis proposed by Professor F.J.
Valdés-Parada to gain insights on the contribution of
the second-order term in the numerator of Eq. (21). To
this end, starting with Eq. (17) one can propose the
following orders of magnitude estimates:

 N∑
j=1

b jkC, jS j

X = O
(
b jkC, jS jX

)
(A.1)

and

N∑
j=1

(
1

kX, j

)
(1 + b j)a jk2

C, jX
2S j = O

k2
C, jS ja j(1 + b j)

kX, j
X2


(A.2)

The reduction of Eq. (17) to Eq. (24) implies assuming
that

N∑
j=1

(
1

kX, j

)
(1 + b j)a jk2

C, jX
2S j�

 N∑
j=1

b jkC, jS j

X

(A.3)

which is satisfied under the constraint

kC, jX
kX, j

�

(
b j

a j(1 + b j)

)
(A.4)

Assume that X = O(S 0, j/a j). From Eq. (9), one
obtains

ε j�

(
b j

(1 + b j)

)
(A.5)

It is physically reliable assume that b j = O(1),
meaning that the biomass growth is basically a cellular
duplication process (see Eq. (4)). In this way, the
above inequality can be reduced to the following one:

ε j� b j (A.6)

Finally, using Eq. (9) in Eq. (A.6) one obtains the
inequality

(kC, jS 0, j)/kX,i� 1 (A.7)

That is, Eq. (17) can be reduced to a Mond-type
equation when the rate of complex formation is
the dominant kinetics step relative to the complex
decomposition to form biomass.
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