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Application of Fourier transform infrared spectroscopy (FTIR) in combination with
attenuated total reflection (ATR) for rapid analysis of the tequila production process
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Abstract
The manufacturing process of tequila made of Agave tequilana Weber var. azul consists of several important process stages such
as milling, cooking, fermentation, distillation, and aging. The purpose of this contribution was to characterize five of the most
important stages of the tequila production process in a pilot plant by using FTIR-ATR spectroscopy. The results showed that
FTIR-ATR spectra of raw juices in the range 4000 and 700 cm−1, were mostly composed of absorption peaks associated with
water and fructose. The spectra of cooked juices showed the thermal hydrolysis of the fructans to fructose in the interval between
1200 and 800 cm−1. The FTIR-ATR spectra of the samples fermented showed a gradual sequence transforming fructose peaks to
ethanol peaks during the interval time from 0 to 48 h at 35°C. The spectra obtained from the distillation showed that the intensity
of the peaks was a function of the concentration of ethanol in the product distillates. The evolution of the aging of the "tequila
blanco" in an oak barrel was monitored for 60 days. The results showed that the region between 1300 and 900 cm−1 of the
FTIR-ATR spectra was associated with the aging process in the oak barrel.
Keywords: tequila, FTIR-ATR spectroscopy, agave juice, cooking and fermentation process, stage of aging.

Resumen
El proceso de elaboración del "Tequila" a base de Agave tequilana Weber var. azul consta de varias etapas importantes de proceso
tales como la molienda, cocimiento, destilación, y añejamiento. El propósito de este trabajo fue caracterizar cinco de las etapas
importantes del proceso de producción del tequila en una planta piloto mediante espectroscopía FTIR-ATR. Los resultados
mostraron que los espectros FTIR-ATR de jugos crudos se presentaron en el intervalo entre 4000 y 700 cm−1 donde están
solamente los picos de absorción asociados con sus compuestos principales agua y los fructanos de agave. Los espectros de
jugos cocidos mostraron la hidrólisis térmica de los fructanos a fructosa en el intervalo entre 1200 y 800 cm−1. Los espectros
FTIR-ATR de las muestras fermentadas mostraron una secuencia gradual de transformación de los picos de fructosa en picos de
etanol durante un intervalo de tiempo de 0 a 48 h a 35°C. Los espectros obtenidos de la destilación mostraron que la intensidad
de los picos era función de la concentración de etanol. Se dio seguimiento de la madurez del "tequila blanco" en barrica de roble
durante 60 días, finalmente, los resultados mostraron que la región entre 1300 y 900 cm−1 de los espectros FTIR-ATR se asoció
con el proceso de maduración en la barrica de roble.
Palabras clave: tequila, espectroscopía FTIR-ATR, jugo de agave, proceso de cocimiento y fermentación, etapa de maduración.
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1 Introduction

Tequila is a Mexican alcoholic beverage widely known
around the world, which is produced from the heads of
Agave tequilana Weber var. azul. Tequila production
begins when A. tequilana plants are harvested at
the optimum maturity age, generally between 6 to
8 years. The juices of the heads are rich in agave
fructans, which are polymer chains composed of units
of fructose linked to a molecule of sucrose (López et
al., 2003, Rodríguez-Garay, 2015). At industrial level,
the agave heads are cooked to hydrolyze the juices rich
in agave fructans to fructose (Waleckx et al., 2008).
These fructose juices are first fermented, followed by
a double-distillation to obtain tequila, called "tequila
blanco" (Prado-Ramírez et al., 2005). The "tequila
blanco" (white tequila) is a mixture of ethanol and
water with traces of higher alcohols, aldehydes, fatty
acids, esters, sulfur compounds, etc. (Prado-Jaramillo
et al., 2015, Lopez-Ramirez et al., 2013, Martin del
Campo et al., 2011), giving the characteristic aroma
and flavor to the beverage. Tequila can also be later
aged in oak barrels to produce "tequila reposado"
(tequila rested up to three months in barrels) or
"tequila añejo" (aged tequila, with 1 to 5 years in
barrels).

The quality of tequila in its different
step productions has been studied using Gas
Chromatography (López-Ramírez et al., 2013,
Arellano et al., 2008, Arrizon et al., 2006, Vallejo-
Cordova et al., 2004) or High Performance Liquid
Chromatography (HPLC) (Muñoz-Muñoz et al. 2008,
Muñoz-Rodríguez et al., 2005), Raman spectroscopy
(Frausto-Reyes et al., 2005), UV-Vis spectroscopy
(Contreras et al., 2010, Barbosa-García et al., 2007),
and Fourier Transform Infrared spectroscopy (FTIR),
in the infrared medium region (4000-650 cm−1)
(Smyth and Cozzolino, 2013, Lachenmeier et al.,
2005). The FTIR spectroscopy in combination with
the ATR interaction accessory, has been widely used
to characterize various types of biopolymers (Arrieta-
Almario, et al., 2019) as well as alcoholic and non-
alcoholic beverages (Gómez-Montaño et al., 2021,
Belchior et al., 2019, Lohumi et al., 2015, Silva et al.,
2014, Leopold et al., 2011, Karoui et al., 2010, Llario
et al., 2006, Paradkar et al., 2002). FTIR spectroscopy
features the following advantages: fast response to
obtaining spectra, for the analysis it is only needed a
small amount of the sample, it is low-cost equipment,
it has high repeatability, and often it does not require

chemical agents for the preparation of the tested
sample. In the ATR device, the sample is placed on
the surface of a crystal with a high refractive index
where the infrared radiation interacts in an attenuated
form inside the sample (Lee et al., 2017, Rodriguez-
Saona and Allendorf, 2011, Hind et al., 2001). The
spectrum obtained from the FTIR-ATR measured in
the range 4000 to 650 cm−1 (mid-infrared), provides
information related to the vibrational modes of the
bonds of a sample (for example, stretching or bending)
(Baishya et al., 2021, Stuart, 2004, Coates, 2000).
In this contribution, it is reported the rapid and
reliable monitoring of the tequila process using FTIR-
ATR spectroscopy. The different stages contemplated
ranged from the characterization of the raw juices of
the agave head, followed by the cooking, fermentation,
distillation, and aging stages in a pilot plant process.
The FTIR-ATR spectra will allow determining the
state of the production process in its different stages.
If the production samples are measured in real-time
important decisions could be taken opportunely during
the production process.

2 Materials and methodology

2.1 Material

The plant heads of A. tequilana Weber var. azul at the
optimum age (6 years) were purchased from producers
in the town of Tequila, Jalisco, Mexico (Latitude: 20°
52’ 34.79" N, Longitude: 103° 50’ 7.19" W).

2.2 Samples of the tequila process

The raw juice was obtained by grinding the
A. tequilana Weber var. azul heads. The raw
juice was immediately characterized by FTIR-ATR
spectroscopy. In the cooking stage, the agave heads
were split in halves and subjected to a cooking process
for 6, 12, 24, 36, and 48 h at 95 °C. Juice samples
were collected by grinding the cooked heads. The
juice extracted was stored at 4 °C until analysis.
For the fermentation stage, the yeast Saccharomyces
cerevisiae was grown in the agave cooked juice at
a temperature of 35°C for 48 h. The fermentation
process was sampled every 8 h.

The distillation process was carried out in two
stages: in the first one an ordinary product with content
between 20 and 30% of alcohol volume was obtained.
In the second stage, a distillate between 40 and 60%
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volume of alcohol was achieved. Heads and tails in
both cases were discarded. The samples selected in
duplicate were stored under refrigeration at 4 °C until
the characterization by FTIR-ATR spectroscopy.

2.3 FTIR-ATR spectroscopy

The FTIR-ATR spectra from all samples were
obtained using an infrared spectrometer Cary 630
(Agilent, USA) equipped with an ATR accessory of
a single internal reflection. Samples were placed on
diamond/ZnSe crystal plate of 1.8 mm in diameter and
scanned from 4000 to 650 cm−1 for 20 scans with a
resolution of 4 cm−1. Previously for each spectrum,
the background of the surrounding air was collected.
The spectrum of water was subtracted from each
spectrum obtained from the cooking and fermentation
stages. All the spectra were plotted in function of the
wavenumber (cm−1) versus the absorbance.

2.4 Aging process

A white oak barrel was purchased from artisan
manufacturers in the tequila region of Amatitán,
Jalisco, Mexico. The capacity of the barrel was 5
liters and had internal toasting carried out by the
manufacturer. The "tequila blanco" had an alcoholic
strength of 35% alcohol vol. The "tequila blanco"
was placed in the barrel up to 90% of its capacity
and stored at 20 °C. During the experiment, a sample
of mature tequila was taken from the barrel every
10 days for 60 days. FTIR-ATR measurements were
taken for every sample to obtain their spectrum. In
this step, each sample obtained was placed on the
glass of the ATR accessory (Approximately 19.5 mg
of the sample). The tequila sample was allowed to
evaporate at room temperature to eliminate the ethanol
and water. The acquisition of the corresponding
FTIR-ATR spectrum was carried out by observing

the disappearance of the peaks associated with
ethanol and water. Before obtaining the infrared
spectra, the background of the surrounding air was
obtained, which was subtracted automatically during
the measurement of each sample.

3 Results and analysis

3.1 FTIR-ATR characterization of the raw
agave juices

The FTIR-ATR spectrum of the raw agave juice
showed peaks associated with its major components:
water and agave fructans as shown in Figure 1. In
the spectral range, located between 1200 and 800
cm−1, the peaks that appear come from bonds of
the agave fructans molecules (Vázquez-Vuelvas et al.,
2020). Around 1024 cm−1 appeared an intense peak
associated with the C-O stretch of the C-OH group
and the C-C stretch of the fructans. The peak at 1128
cm−1 was associated to the stretching of the C-O
bond of the C-O-C linkage. The peak located at 928
cm−1 was due to the bending of the C-H bond of the
agave fructans. The peak located at 2940 cm−1 was
assigned to the stretching of the C-H bond from CH2
and the peak at 2880 cm−1 was related to the C-H
bond from CH3. Two peaks associated with the water
molecule located around 3245 and 1636 cm−1 were
observed in Figure 1, mainly caused by vibrations of
stretching and bending at the bonds O-H and H-O-H,
respectively (Stuart, 2004). In infrared spectroscopy,
water is the majoritarian component of the agave juice
samples; therefore, the infrared modes of water are
very intense and may overlap with the signals of
interest. Nevertheless, in this study, the water peaks
do not cover the characteristics peaks of the agave
fructans in the region 1200 to 800 cm−1 (Table 1).

Table 1. Bond and their mode of vibration obtained from the FTIR spectra of raw agave juice.

Wavenumber (cm−1) Bond Mode of vibration

3245 O-H (water) stretching
2940 C-H (CH2) (agave fructans) stretching
2880 C-H (CH3) (agave fructans) stretching
1636 H-O-H (water) bending

1500-1200 skeletal vibration (agave fructans) bending/stretching
1200-900 C-O, C-C (agave fructans) bending/stretching
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Figure 1. Representative FTIR-ATR spectrum of raw
agave juice in the 4000-750 cm−1 spectral region.

Hence, the FTIR-ATR technique can be associated
with the maturing process of the agave given that
the intensity of the peaks located in the region
between 1200 and 800 cm−1, is the consequence of
the formation of fructans in the agave heads (Mellado-
Mojica and Lopez, 2012).

3.2 FTIR-ATR spectroscopy characterization
of the cooked agave juices

During the cooking of the agave heads, the fructans are
mainly converted to fructose, with a lower percentage
of glucose (<10%). Traditionally, the cooking of the
agave is carried out in masonry ovens at a temperature
of 95 °C for a period time between 28 and 48 h.
Nowadays, to reduce the duration of cooking, agave
heads are usually cooked in autoclaves applying steam
under pressure, reaching temperatures about 120 °C,
during a time interval of 12 to 24 h. Cooked juices have
been characterized by UV spectrometry (at 490 nm),
°Brix, HPLC quantification of fructose and glucose,
and changes in the pH of the juices depending on
the temperature and the cooking time (Waleckx et al.,
2008).

In infrared spectroscopy, every carbohydrate
has characteristic peaks associated with stretching
vibrations of C-O, C-C, or C-O-C in the range from
1400 to 800 cm−1, where its position and intensity
change depending on the type of carbohydrate
analyzed (Cassani et al., 2018). Notably, a maximum
peak of fructose dissolved in water approximately
at 1060 cm−1 is observed in the FTIR-ATR spectra
(Grube et al., 2002).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. FTIR-ATR spectrum of agave juice at finish step of cooked (48 h) after water 

spectrum was subtracted. Spectrum in the interval between 4000 and 500 cm-1.   
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Figure 2. FTIR-ATR spectrum of agave juice at finish
step of cooked (48 h) after water spectrum was
subtracted. Spectrum in the interval between 4000 and
500 cm−1.

The FTIR-ATR spectra of the agave heads juice
after cooking (48 h) are shown in Figure 2. The peaks
associated with the fructose molecule can be observed
in the region between 1200 and 750 cm−1, indicating
relatively a complete transformation of a sample from
juice rich in fructans to juice rich in fructose. Also,
Figure 2 shows small peaks located at 972, 922, 864,
810, and 755 cm−1, associated with a combination
of vibrations of the C-C, C-O, and C-H bonds from
the fructose molecule (Grube et al., 2002). Around
1060 cm−1 an intense peak was associated with a
combination of stretching of the C-O and C-C bonds.
The peak at 1253 cm−1 was related to C-O and C-
C stretching. At 1342 cm−1 a peak associated with
the O-H bending of the C-OH group appears. The
peak observed around 1416 cm−1 corresponded with
the combination of O-H bending and C-H bending
of the alkenes. The peak located at 2963 cm−1 was
assigned to the stretching of the C-H bond from
the CH2 group and at 2715 cm−1 there was a peak
assigned to the C-H bond from the CH3 group. As
shown in Figure 2, two negative peaks are located
approximately at 3265 and 1636 cm−1, which come
from the O-H stretching and H-O-H bending from the
water molecule, respectively. The negative peaks were
due to lower water concentration in the cooked juice
compared to the reference used (100% water), as a
consequence of the spectral subtraction: juice-water.

On the other hand, the evolution of the FTIR-
ATR spectrum during the cooking process is shown
in Figure 3, where the gradual disappearance of the
peaks coming from the raw agave juices was observed,
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Figure 3. Transformation of the FTIR-ATR spectrum in the interval between 1200 and 

750 cm-1 of the samples since juice uncooked (rich in agave fructans) until final 

transformation in fructose, during different cooking times at 95 °C: (a) 0 h, (b) 6 h, (c) 

12 h, (d) 24 h, (e) 36 h y (f) 48 h.  

 

 

 

 

 

 

 

 

 

1200 1150 1100 1050 1000 950 900 850 800 750

1128 

1024 

928 

1060 

1060 

972 
922 864 810 755 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Wavenumber (cm-1) 

Ab
so

rb
an

ce
 (a

. u
) 

Figure 3. Transformation of the FTIR-ATR spectrum
in the interval between 1200 and 750 cm−1 of the
samples since juice uncooked (rich in agave fructans)
until final transformation in fructose, during different
cooking times at 95 °C: (a) 0 h, (b) 6 h, (c) 12 h, (d)
24 h, (e) 36 h and (f) 48 h.

e.g. peaks located at 1128, 1024, and 928 cm−1 and
the continuous formation or deconvolution of the
observed peak at 1060 cm−1, which it is characteristic
in an FTIR spectrum of fructose (Cadet et al., 1997).
The FTIR spectrum of the final cooking sample only
showed peaks associated with the fructose molecule,
including the peaks of lower intensity located at 972,
922, 864, 810, and 755 cm−1, which can be inferred
from a satisfactory cooking process of the agave heads.
Therefore, efficient monitoring of the transformation
of fructans to fructose can be carried out by FTIR-ATR
in a fast, and accurate way at the pilot or industrial
level.

3.3 FTIR-ATR spectroscopy characterization
at the fermentation stage

In tequila production, the fermentation process is
one of the most relevant stages. Fermentation
determines the ethanol productivity and the formation
of volatile compounds in an alcoholic beverage. The
fermentation of the agave cooked juice was carried
out by the yeast Saccharomyces cerevisiae. The
fermentation kinetics depends on several factors, such
as the chemical composition of the cooked agave
juices, the operating conditions of the process, and
particularly the yeast strain used. The monitoring
of the fermentation process for obtaining ethanol in
alcoholic beverages has been successfully analyzed

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. FTIR-ATR spectrum of agave juice fermented in the finish step (48 h at 35 

°C) after substrate water spectrum in the interval between 4000 and 500 cm-1. 
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Figure 4. FTIR-ATR spectrum of agave juice
fermented in the finish step (48 h at 35 °C) after
substrate water spectrum in the interval between 4000
and 500 cm−1.

using FTIR spectroscopy. For example, Di Egidio et
al. (2010) monitored by FTIR-ATR the fermentation
of fructose in ethanol using Saccharomyces cerevisiae
as a culture medium to obtain red wine. Also, Wu et al.
(2015) monitored during the fermentation of Chinese
rice wine different parameters such as ethanol, sugars,
and total acidity using FTIR-ATR spectroscopy.

Figure 4 depicts the FTIR-ATR spectrum showing
the peaks associated with the final fermented sample.
In this figure, the peaks related to the ethanol molecule
can be observed in the range between 1200 and
650 cm−1, which indicates a relatively complete
transformation of the fructose into ethanol in the
fermentation process. The peaks located at 1084 and
1045 cm−1 were due to stretching vibrations of the
C-O bond (Zeinalipour-Yazdi and Loizidou, 2021).
The peaks that appear at 2977 and 2898 cm−1 were
associated with the stretching of the C-H bond.
Around 3225 cm−1 a negative peak was located, which
can be associated with the stretching of the O-H
bond from the water molecule. Also, the negative
peak located at 1636 cm−1 was associated with the
water molecule. In other regions of the spectrum,
peaks associated with minor compounds present in the
fermented sample also can be observed, probably due
to bonds associated with the biomass (dead yeast),
non-fermentable sugars, or organic acids. Figure 5
shows the spectral transformation of fructose into
ethanol during the fermentation process (0-48 h).
In the FTIR-ATR spectrum of the initial sample (0
h) the peak associated with fructose, located around
1060 cm−1, disappears gradually in the interval from
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Figure 5. Transformation by fermentation of the FTIR-ATR spectrum in the interval 

between 1200 and 750 cm-1 of fructose (sample cooked at 48 h at 95 °C) to ethanol 

spectrum, during different fermentation times at 35°C: (a) 0 h, (b) 8 h, (c) 16 h, (d) 24 

h, (e) 32 h, (f) 40 h y (g) 48 h. 
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Figure 5. Transformation by fermentation of the FTIR-
ATR spectrum in the interval between 1200 and 750
cm−1 of fructose (sample cooked at 48 h at 95 °C) to
ethanol spectrum, during different fermentation times
at 35°C: (a) 0 h, (b) 8 h, (c) 16 h, (d) 24 h, (e) 32 h, (f)
40 h and (g) 48 h.

6 to 48 h. Afterward, in the FTIR spectrum of the
final sample of the process, it can be observed the
progressive formation of two peaks (at 1084 and
1045 cm−1). As previously mentioned, these peaks
were associated with the stretching vibration in the
C-O bonds in the ethanol molecule. In addition, the
peak that appears at 877 cm−1 in the final sample
of the fermentation began its transformation even
from the start of the fermentation process. Therefore,
the fermentation stage can be followed in the range
between 1200 and 700 cm−1 of the FTIR spectrum, in
which the transformation of fructose peaks to ethanol
could be detected.

3.4 FTIR analysis of the tequila distillation
process

Distillation is a process in which ethanol and
other compounds that give tequila its remarkable
characteristics of aroma and flavor are concentrated.
In the case of tequila, the ethanol obtained from
fermentation, with content between 4 and 7%
by volume, is subjected to a double distillation
process. In the first distillation, the product
has between 20 and 25% volume of ethanol.
In the second distillation process, the ethanol
content in the product is concentrated between 55
and 60% by volume. Subsequently, the distilled
tequila is adjusted with water until reaching an
ethanol concentration of around 40% by volume.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. FTIR-ATR spectra of tequila from: (a) first distillation (20-25%), (b) second 

distillation (55-60%), (c) adjusted to commercial alcoholic grade (40 % GL). (d) is the 

spectrum of water distillated and (e) is the spectrum of ethanol grade reactive (98% 

pure).     
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Figure 6. FTIR-ATR spectra of tequila from: (a) first
distillation (20-25%), (b) second distillation (55-60%),
(c) adjusted to commercial alcoholic grade (40% GL).
(d) is the spectrum of water distillated and (e) is the
spectrum of ethanol grade reactive (98% pure).

Traditionally the ethanol concentration in a distilled
tequila is measured by densitometry and the result
is expressed as a percentage of alcohol volume. In
the FTIR-ATR spectra of the samples obtained from
the first and second distillation (Figure 6a and 6b,
respectively), it is observed that the peaks correspond
to bending vibrations from water (3245 and 1636
cm−1) and ethanol (1084 and 1045 cm−1). This can
be seen more clearly when these spectra are compared
with the spectra of distilled water and ethanol (98%
of purity) (Figure 6c and 6d, respectively). Also, the
FTIR-ATR spectrum of distilled tequila adjusted at
40% ethanol is presented (Figure 6e). In the first
distillation the peaks located at 1084 and 1045 cm−1

(bonds from C-O of the ethanol molecule) were less
intense in comparison to these same peaks observed
in the spectrum obtained from the second distillation.
The difference in the height of the peaks in the FTIR-
ATR spectra (absorbance) was due to the variation of
the ethanol concentration in the distilled samples, that
was, 0.14 and 0.29 at 1045 cm−1 in samples from
the first (22% GL) and second (56% GL) distillation,
respectively. In the adjusted tequila spectrum, the
heights of the peaks (absorbance) associated with
the ethanol molecule showed an intensity dependable
on the adjusted ethanol content with distilled water,
that was, 0.22 for tequila at 40% GL. Therefore, the
FTIR-ATR spectroscopy could be a helpful option to
measure the result of the distillation process through
the ethanol content using the absorbance at 1045
cm−1.
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Figure 7. FTIR-ATR spectra of tequila blanco (a) and tequila reposado (b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4000 3500 3000 2500 2000 1500 1000 500

(a) 

(b) 

Wavenumber (cm-1) 

Ab
so

rb
an

ce
 (a

. u
) 

Figure 7. FTIR-ATR spectra of tequila blanco (a) and
tequila reposado (b).

3.5 FTIR-ATR spectrum of tequila
monitored during the aging process

The distilled or "tequila blanco" can be maturated
by storing the tequila in oak barrels during a certain
time. When the tequila is matured from 2 months
and up to a year, it is known as "tequila reposado",
while when the tequila remains in the barrel for at
least one year it is called tequila aged or tequila
añejo. The FTIR-ATR spectrum of an aged tequila
does not present noticeable changes with respect to
a FTIR-ATR spectrum of a tequila blanco (Figure
7). However, it can be observed that when the FTIR-
ATR spectrum of the residue on the ATR crystal
is obtained, as a consequence of the evaporation of
the ethanol and the water contained in the sample
of tequila reposado, a series of peaks was perfectly
observed in the interval between 1300 and 900 cm−1,
Figure 8. The evaporation occurs in a short time of
approximately 13 min on the ATR device, where first
the ethanol was evaporated, and later the water (Figure
8). The origin of these peaks observed in the spectra
come from compounds of the barrel originated from
the interaction between the tequila and the walls of
the oak barrel. The position shown of the peaks, it
is likely that they come from bonds like: C-H, C-O,
C-C or C-O-C, among others. These bonds could be
related to organic molecules of the following families:
acids, esters, and long-chain aldehydes, carbohydrates,
furans, terpenes, phenols, etc. These compounds have
been determined in tequila samples matured by other
analysis techniques and their origin has been attributed

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Sequence of peaks transformation of FTIR-ATR spectra for sample of tequila 

reposado evaporated on ATR crystal. It can be observed that first disappear peaks of 

ethanol and following peaks of water. The final FTIR-ATR spectrum showed peaks in 

the interval between 1300 and 900 cm-1 associated with molecules of compounds from 

oak barrel. 
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Figure 8. Sequence of peaks transformation of FTIR-
ATR spectra for sample of tequila reposado evaporated
on ATR crystal. It can be observed that first disappear
peaks of ethanol and following peaks of water.
The final FTIR-ATR spectrum showed peaks in the
interval between 1300 and 900 cm−1 associated with
molecules of compounds from oak barrel.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. FTIR-ATR spectra in the interval between 1300 and 900 cm-1 that showed the 

transformation of the peaks since tequila blanco and during different times of aged in 

oak barrel: (a) tequila blanco, (b) 10, (c) 20, (d) 30, (e) 40, (f) 50 and (g) 60 aged days. 
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Figure 9. FTIR-ATR spectra in the interval between
1300 and 900 cm−1 that showed the transformation
of the peaks since tequila blanco and during different
times of aged in oak barrel: (a) tequila blanco, (b) 10,
(c) 20, (d) 30, (e) 40, (f) 50 and (g) 60 aged days.

to the interaction between the oak wall and the tequila
(Muñoz-Muñoz et al., 2008).

On the other hand, Figure 9 shows the evolution
of the FTIR-ATR spectra in the interval between 1300
and 900 cm−1. This measurement regards the residue
left after evaporation of the ethanol and water, on the
ATR crystal of samples obtained at different times of
maturation. In this figure, it is possible to observe the
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formation of peaks after 10 days of maturation. These
peaks gradually increase until the end of maturation
(60 days), as can be seen in the FTIR-ATR spectrum
(Figure 9-g). In this spectrum appear two perfectly
distinguishable peaks: at approximately 1114 cm−1

and another at 1047 cm−1. Also, one shoulder can
be found at approximately 1075 cm−1. These peaks
were in the spectral region known as a fingerprint;
therefore, its origin comes from a series of vibrations
of different molecular bonds. This spectral variation
observed during the aging of "tequila blanco" could
help at an industrial level to carry out an adequate
control in a fast and effective way of the aging process
behavior in white oak barrels.

Conclusions

FTIR-ATR spectroscopy is a technique that can be
used to monitor in a rapid and reliable way the
different stages of the tequila production process.
The raw juices spectra showed peaks associated with
the water and agave fructans. The spectra obtained
from samples of cooked juices at different times at
95°C showed the transformation of agave fructans
to fructose. The spectra of the fermentation samples
showed a sequence of the gradual transformation of
fructose to ethanol. In the distillation step, FTIR-
ATR spectra showed that the peaks can be associated
with the alcoholic degree of the beverages and can
be an alternative to determine the alcoholic degree of
tequila. In the aging stage, the degree of the aging was
monitored during the maturation time in function of
the changes observed in the FTIR-ATR. These spectra
were obtained by evaporation of the sample placed on
the ATR crystal in the interval between 1300 and 900
cm−1, where the peaks observed could be associated
with compounds from the burned oak barrel.
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