
Vol. 21, No. 3(2022) Bio2864
Revista Mexicana de Ingeniería Química 

 
CONTENIDO 

 
Volumen 8, número 3, 2009 / Volume 8, number 3, 2009 
 

 

213 Derivation and application of the Stefan-Maxwell equations 

 (Desarrollo y aplicación de las ecuaciones de Stefan-Maxwell) 

 Stephen Whitaker 

 

Biotecnología / Biotechnology 

245 Modelado de la biodegradación en biorreactores de lodos de hidrocarburos totales del petróleo 

intemperizados en suelos y sedimentos 

 (Biodegradation modeling of sludge bioreactors of total petroleum hydrocarbons weathering in soil 

and sediments) 

S.A. Medina-Moreno, S. Huerta-Ochoa, C.A. Lucho-Constantino, L. Aguilera-Vázquez, A. Jiménez-

González y M. Gutiérrez-Rojas 

259 Crecimiento, sobrevivencia y adaptación de Bifidobacterium infantis a condiciones ácidas 

 (Growth, survival and adaptation of Bifidobacterium infantis to acidic conditions) 

L. Mayorga-Reyes, P. Bustamante-Camilo, A. Gutiérrez-Nava, E. Barranco-Florido y A. Azaola-

Espinosa 

265 Statistical approach to optimization of ethanol fermentation by Saccharomyces cerevisiae in the 

presence of Valfor® zeolite NaA 

 (Optimización estadística de la fermentación etanólica de Saccharomyces cerevisiae en presencia de 

zeolita Valfor® zeolite NaA) 

G. Inei-Shizukawa, H. A. Velasco-Bedrán, G. F. Gutiérrez-López and H. Hernández-Sánchez 

 

Ingeniería de procesos / Process engineering 

271 Localización de una planta industrial: Revisión crítica y adecuación de los criterios empleados en 

esta decisión 

 (Plant site selection: Critical review and adequation criteria used in this decision) 

J.R. Medina, R.L. Romero y G.A. Pérez 

 

 

 

 

Modeling process conditions of modified starches to be used as wall materials in the
encapsulation by nano-spray drying

Modelación de las condiciones de modificación de almidones para utilizarse como
materiales de pared en la nano-encapsulación mediante secado por aspersión

A. Aparicio-Saguilán1, D.E. Páramo-Calderón1, L.A. Vázquez-León2, G. Reynoso-Meza3, A.
Ramírez-Hernández4, R. Colorado-Peralta5, J. Carrillo-Ahumada1*

1Ingeniería en Alimentos. Universidad del Papaloapan. Circuito Central 200, Col. Parque Industrial, 68301 Tuxtepec, Oaxaca,
Mex.

2Cátedras CONACYT-Instituto de Biotecnología, Universidad del Papaloapan. Circuito Central 200, Col. Parque Industrial,
68301 Tuxtepec, Oaxaca, México.

3Industrial and Systems Engineering Graduate Program (PPGEPS), Pontificia Universidade Católica do Paraná (PUCPR),
Rua Imaculada Conceição, 1155, Zip Code 80215-901 Curitiba, PR, Brazil.

4Centro de Investigaciones Científicas, Instituto de Química Aplicada, Universidad del Papaloapan. Circuito Central 200, Col.
Parque Industrial, 68301 Tuxtepec, Oaxaca, Mex.

5Facultad de Ciencias Químicas. Universidad Veracruzana. Prolongación de Oriente 6, #1009, C.P. 94340, Orizaba, Veracruz,
Mex.

Received: June 24, 2022; Accepted: October 25, 2022

Abstract
In the present work, time-variable modeling of high-energy mechanical grinding (0, 20, 30, 40, 50, 60, 70, and 80 min), was
carried out to obtain the best grinding conditions process for obtaining modified starches with applications as wall materials
with favorable viscosity and particle size characteristics for the nano-encapsulation of bioactive compounds by means of nano-
spray drying. The pasting profile was affected by the different mechanical grinding times, since the maximum viscosity (95 ºC)
decreased as the grinding time increased, but this was not the case in the cooling stage (30 ºC) since at times of 30 and 40 min
the viscosity was more significant than the maximum viscosity. The modified starches showed larger particle sizes compared
to their native counterpart, indicating the formation of agglomerations. The model presents an adequate fit with respect to the
experimental data and the feasible and infeasible conditions of this process are represented.
Keywords: Nano-spray, Starch modified, Wall materials, Nano-encapsulation, Modeling.

Resumen
En el presente trabajo se realizó una modelación de la variable tiempo de la molienda mecánica de alta energía (0, 20, 30, 40, 50,
60, 70 y 80 min), para determinar las condiciones que permitan obtener almidones modificados con características de viscosidad,
y tamaño de partícula, que potencialicen su uso como materiales de pared en la nano-encapsulación de compuestos bioactivos
mediante secado por aspersión. El perfil de empastado fue afectado por los diferentes tiempos de molienda: la viscosidad máxima
(95 ºC) disminuyó a medida que aumentó el tiempo de molienda, sin embargo, en la etapa de enfriamiento (30 ºC) la viscosidad
fue mayor que la viscosidad máxima a los 30 y 40 min. Los almidones modificados mostraron tamaños de partículas más grandes
en comparación con su contraparte nativa, lo cual indica la formación de aglomeraciones. El modelo presenta un ajuste adecuado
con respecto a los datos experimentales y se representan las condiciones factibles y no factibles de este proceso.
Palabras clave: nano-secado por aspersión, almidón modificado, material de pared, nano-encapsulación, modelación.
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1 Introduction

Chayote is a perennial herbaceous, monoecious (both
sexes), climbing plant, native to Mexico and Central
America (Lira, 1996). This tuberized root is an
attractive option for agronomy because it contains
starch as itsmain component and can be used as
an alternative source for its isolation, however,
there is limitedinformation on the starch of the
chayote tuberized root. Hernández-Uribe et al., (2011)
isolated and physicochemically and rheologically
characterized chayotextle starch grown in Hidalgo,
Mexico. They reported a 49% yield, with a starch
purity of 89%. The physicochemical properties
showed an amylos econtent of 26.3%, with a type
B diffraction pattern, with a high peak viscosity
and a low gelatinization temperature compared to
potato starch. They presented viscoelastic properties
with elastic predominance, with the modulus G’
greater than G”. The yield and purity, as well as
the physicochemical and rheological properties are
of importance for industrial applications, hence the
interest in the extraction and characterization process
for its use as a food additive, a food packaging
material, and a wall material for encapsulation.
Starch is a polysaccharide widely used in the
food industry as ingredients for the manufacture of
various products, such as soups, cookies, snacks,
cereals (Huang et al., 2021), due to its functional
and physicochemical properties that it presents as
a thickener, capacity expansion, solubility, pasting,
gelatinization temperature (Chen et al., 2010),

In recent years, other applications that have drawn
attention to the starch industry have been directed
to its use as wall material in the encapsulation of
bioactive compounds (antioxidants, oils, vitamins) by
spray drying (Alias et al., 2021). Spray drying is a
widely used technique to protect bioactive compounds
from various degradation reactions (Hoyos-Leyva et
al., 2018). Various authors have used starches from
various sources as wall material for the encapsulation
of bioactive compounds. Encapsulated compounds are
introduced in a matrix with the aim of preventing
their loss, reducing their instability by protecting them
from external factors and prolonging the shelf life of
the products (Mukurumbira et al., 2022). In addition,
it allows promoting easy handling, controlling the
release during the moment of its application and
improve the sensory and/or functional properties of
the products in which they are applied (Baranauskiené

et al., 2006). The efficiency of encapsulation and
the stability of the capsules during storage depends
mainly on the composition of the wall material
(Gharsallaoui et al., 2007). Generally, the criteria
for selecting wall materials are based on good
physicochemical properties such as film-forming,
high solubility, low viscosity at high concentrations,
emulsification, melting/glass transition temperature,
crystallinity, and low cost. In its native form, starch
presents limitations for its application due to its
intrinsic properties such as low resistance to shear
and thermal decomposition, high retrogradation and
synthesis, as well as low solubility in common organic
solvents. So, for application-specific purposes, it is
necessary to modify the properties through various
methods. The modification of the starch expands its
versatility and provides desirable functional attributes,
which allows it to offer an economical alternative
to other hydrocolloid components that are of low
availability and high cost (Tharanathan 2005; Neelam
et al., 2012). Techniques for starch modification
have been classified into four categories: physical,
chemical, biochemical and genetic modifications, or a
combination of these.

One of the most recent trends in encapsulation
of bioactive food ingredients is nanoencapsulation,
which typically involves nanocarriers with dimensions
smaller than 100 - 1000 nm. Another obstacle is the
production of very small droplets; ultrasonic atomizer
based on a vibrating mesh technology can produce
these tiny droplets forconversion into nanoparticles,
but low viscosities in the feed mixture are required
(Assadpour and Jafari, 2019; Vázquez-León et al.,
2022). For example, the nano spraydryer B-90
development by Büchi Company requires nanocarriers
with particle size <7 µm and viscosities ≤0.01 Pa·s
in the feed mixtures, to carry out the dried process.
Thus, researchers need carry out a modification of
native starch to produce starch-based nanocarriers that
comply with these technical specifications, and the
physical treatments can be an option.

Physical treatments generally produce changes
only in the packing arrangements of the starch
polymer molecules within the granules, such changes
can have a significant impact on the properties of the
starch, the attributes of its pastes and gels, and even
its digestibility. These modifications are of interest
since they do not imply any chemical treatment that
could be harmful for human consumption. Recently,
high-energy mechanical grinding has been used as
an alternative physical modification to conventional
chemical modification methods (Moraes et al., 2013;
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Zhang et al., 2012; Lin et al., 2016; Liu et al.,
2018; Huang et al., 2021; Juarez-Arellano et al., 2021;
Chorfa et al., 2022).

When mechanical grinding is used on starch,
the effects of friction, collision, shear and other
mechanical actions modify the starch granule size
and the crystalline structure and, consequently, the
physicochemical properties of the starch granules,
which produces gradual changes in the molecular
structure, the crystalline structure, the solubility in
water, the thermal and morphological characteristics
and the digestibility of starches (Kim et al., 2001;
Huang et al., 2008; Moraes et al., 2013; Juarez-
Arellano et al., 2019; Yang et al., 2021).

The properties of milled materials, as well as
the particle size distribution, viscosity profile and the
degree of disorder, depend on the grinding conditions,
such as: grinding materials (for example, silicon
nitride, ceramic, stainless steel and tungsten carbide),
grinding speed, grinding time, grinding media (eg dry
grinding or wet grinding), diameter of grinding balls,
proportion of sample/balls and grinding temperature
(El-Eskandarany, 2015). Therefore, there are many
factors that should be limited to obtain feasible starch-
based nanocarriers, and many experimental works
could be necessary, so an alternative would be to
use the methods of mathematical modeling to obtain
the most favorable properties in starch by mechanical
grinding modification: starch granule size <7 µm and
viscosity≤0.01 Pa·s in water suspension.

However, the result of the application of
simulation tools is heavily dependent on the quality
of the mathematical model (Carrillo-Ahumada et al.,
2020; Nogales et al., 2022; Buddhakulsomsiri et al.,
2018; Maraphum et al., 2022; Melgarejo-Torres et
al., 2022; Gutierrez-Antonio et al., 2022). Also, it has
been observed that the process dynamics are nonlinear,
which has made the modeling task even more complex
(Feil et al., 2004; Castillo-Santos et al., 2017; Toro et
al., 2018). Modifying the processes results in a novel
situation, and, a vast set of experiments needs to be
performed in order to generate data which can be used
to construct novel models to describe the new process.
Therefore, the development of a phenomenological
process model has become a difficult task (Santamaria
et al., 2021; Li et al., 2022; Rovalino-Córdova
et al., 2021; Manepalli and Alavi 2021). In view
of these difficulties, different methodologies have
been used to model the behavior of starch. Among
these methodologies are Genetic Programming
(GP) is based on input-output data instead of
conventional regression (Ramírez-Hernández et al.,

2017). Response Surface (RS) with polynomial
models (Tijsen et al., 1999; Barua et al., 2021; Hamidi
et al., 2021; Matkowski and Lisowski 2020; Wang
et al., 2021; Pandey et al., 2020; Oluwasina et al.,
2020; Das et al., 2022; Setyaningsih et al., 2021;
Kizhakedathil et al., 2021; Kristiawan et al., 2019)
use a large data-set to obtained a phenomenological
model. The curve Fitting ToolboxTM of Matlab®

MathWorks (2008) has been used to obtained different
model structures (Wen et al., (2012); Al-Malah et
al., (2009); Ghosh (2018); Hallauer et al., (2007)).
Curve Fitting ToolboxTM of Matlab® (MathWorks
(2008)) provides an app and functions for fitting
curves and surfaces to data with input and output
date. The structures of mathematical models and tools
that the app has available are: exponential, Fourier,
Gaussian, interpolant, linear fitting, polynomial,
power and rational. After choosing the structure of
the mathematical model, the parameters are chosen by
means of numerical optimization. In this work were
used rational models because represents of better way
the experimental data.

Specifically, the rational models are defined as
ratios of polynomials:

y =

∑n+1
i=1 pixn+1−i

xm +
∑m

i=1 qixm−1 (1)

where n is the degree of the numerator polynomial
and 0≤n≤5, while m is the degree of the denominator
polynomial and 1≤m≤5. The main advantage of
rationals is their flexibility with data that has
complicated structure. To evaluate the fit between
the model and the experimental data, the following
indexes are used: S S E, R2 and RMS E.

The coefficients of determination S S E (Equation
2), R2 (Equation 3) and RMS E (Equation 4) describes
the adjustment between the experimental data and the
calculated data. The aim is to obtain a model that
can explain the process conditions in the production
of modified starches to be used as wall materials in
the nano-encapsulation of compounds by nano-spray
drying.

S S E =

N∑
k=1

((y(k)− ŷ(k))2 (2)

R2 = 1−
S S E∑N

k=1(ŷ(k))
(3)

RMS E =

√
S S E
N

(4)
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where N is the number of samples used for model
identification, y(k) is the experimental output, ŷ(k) is
the calculated output and k is the sample.

In decision making stage, data visualization
tools are important to the designer/experimenter. In
addition, it is established which conditions are feasible
and infeasible for the entire data set obtained by mean
the models. Specifically, what operating conditions are
suitable for the experimenter in a graphic way.

The aim of this work was to evaluate the properties
of viscosity and particle size distribution of starches
modified by mechanical milling at different times
and to model these study variables (using Curve
Fitting Toolbox of MatlabTM) to predict the operation
conditions that allow to obtain a feasible starch-based
nanocarrier than could be use in a nano-spray dryer B-
90 from Büchi Company, which to carry out the dried
process requires particle sizes < 7 µm and viscosities
≤ 0.01 Pa·s in the feed mixtures.

The structure of the article is the following:
Section 2 shows the experimental and computational
methodologies; The results and discussion are shown
in Section 3. Finally, some remarks are exposed in
conclusions.

2 Methodology

2.1 Material

The tubers of chayotextle (Sechium edule Sw) were
purchased from producers in Tulancingo, Hidalgo,
Mexico.

2.2 Methods

2.2.1 Starch isolation

Chayotextle starch was isolated using the method
proposed by Flores-Gorosquera et al., (2004) with
slight modifications. The tubers were cut into 2×2 cm
cubes and immediately macerated at low speed in a
blender (500 g of root per 500 g of water) for 2 min.
The homogenate was sieved consecutively, using 50,
100, 200, 270 and 325 US mesh, and washed until
the wash water was clear. The starch solution settled
overnight and was then decanted. This material was
dried in a convection oven at 35 ºC overnight. The
dried starch was ground to a powder and then sieved
through a standard 100 mesh. The starch powder was
stored in a sealed container until use.

2.2.2 Starch modification by high-energy
mechanical milling

To carry out high-energy mechanical milling, 8.0 g
of sample was placed in an 80 mL siliconnitride
bowl and 15 siliconnitride balls of 10 mm diameter
were added to each bowl. Mechanical grinding was
carried out using a mill (FRITSCH, Planetary Micro
MillPulverisette 7; Idar-Oberstein, Germany) at times
of 20, 30, 40, 50, 60, 70 and 80 min. The grindings
were carriedout dry method, speed of 700 rpm, in
cycles of 5 min of grinding and 10 min of cooling
to avoid heating the bowls and therefore avoid any
unexpected modification.

2.3 Characterization of modified starch

2.3.1 Profile Pasting

For the modified starch paste formation profile, a
10 % (w/v) dispersion was prepared, for which a
rheometer (TA Instruments, Discovery HR-2 Hybrid;
New Castle, DE, USA) equipped with a starch pasting
cell (Smart SwapT M , SPC 110533; New Castle, DE,
USA) was used. The dispersion was subjected to a
heating-cooking-cooling cycle according to Ramírez-
Hernández et al., (2020). The initial temperature was
30 ºC which was maintained for 60 s, then heating
to 90 ºC was performed at a heating rate of 15 ºC
min−1 and the temperature was maintained for 10 min
(cooking) and finally cooled to 30 ºC at a speed of
30 ºC min−1, keeping at this temperature for 7 min.
Trios software version 4 (TA Instruments; New Castle,
DE, USA) was used to obtain the parameters of paste
temperature, peak viscosity, cool paste viscosity, and
final viscosity from the grazing curve.

Particle size distribution is defined as the relative
percentage of grains of each of the different size
fractions represented in a sample (Perry et al., 2001).

The particle size distribution of the flours
was determined by laser diffraction using a
Mastersizer 2000 (Malvern Instruments Ltd., Malvern,
Worcestershire, UK). Powders samples were dispersed
using a Scirocco dry dispersion unit (Malvern,
Worcestershire, UK) at a feed pressure of 2 bars and a
feedrate of 40 %.

The obscuration was in the interval from 0.5 to
5%. The Fraunhofer approximation was used for the
calculation of particle size. The volume, particle size
distribution and average values were determined from
at least three experimental runs.
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2.3.2 Computational methodology

In this section shows the computational methodology
of this research work. Firstly, the experimental
data of the starches was observed. Subsequently,
with the experimental data and the use of Curve
Fitting ToolboxTM of Matlab®, a set of nonlinear
mathematical models were identified that represents
the variable responses: volume (%) in function of size
(µm), and viscosity (Pa·s) in function of sample. Then,
to validate the models obtained, correlation indices
of the model vs. experimental data were performed.
Finally, by mean of decision making stage were
statement factible and non-factible and selected areas
of conditions in function of a specific size both of them
at different times.

3 Results and discussion

3.1 Characterization of modified starch

3.1.1 Profile Pasting

The native starch of Chayotextle presented high values
of maximum viscosity of 8 Pa·s (Figure 1).

Chavarria-Fernandez et al., (2021) reported similar
values for chayotextle flour. These results indicate

that this source of starch has very high viscosities
at gelatinization temperatures, being a very important
limitation to consider to be used as a wall material in
the nano-encapsulation of bioactive compounds using
nano-spray draying equipment, since this equipment
requires a very low viscosity (0.01 Pa.s). However,
the modification by high-energy mechanical grinding
decreased the maximum viscosity significantly with
increasing grinding time up to 40 min. This is due
to the fact that the energy generated by grinding
caused a breakdown of the crystalline zones of
amylopectin, causing a decrease in viscosity. It
has been reported that the maximum viscosity is
influenced by the structure of amylopectin (Juarez-
Arellano et al., (2019)). Juarez-Arellano et al., (2021)
reported a similar behavior for potato starch, where
they observed that mechanical milling significantly
decreased maximum viscosity, swelling power and
crystallinity by increasing the energy supply by
mechanical milling. An opposite behavior was
observed in the cooling stage, since the viscosity
during this stage increased significantly compared
to the maximum viscosity (Heating stage). This is
due to the fact that mechanical grinding generates a
mechano-hydrolysis of the starch polymers causing an
increase in amylose content (Moraes et al., 2013) and
as a consequence an increase in retrogradation of the
starch during the cooling stage.

Fig. 1. Pasting profile of starches modified by mechanical milling at different times.
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Fig. 2. Particle size distribution of starches modified by mechanical milling at different times.

Mechanical grinding affects the structure of
amylopectin, mainly the amorphous zones (the branch
points or α-1,6 bonds) which are more susceptible
to breakage due to the energy supplied by the
impact of the balls with starch, releasing short
linear chains (amylose) (Cavalliniand Franco, 2010)
that during cooling are capable of trapping water
molecules increasing viscosity. Such short fractions
can have a positive impact on the encapsulation of
bioactive compounds. Several authors have reported
an improvement in the encapsulation efficiency of beta
carotenes instarches modified by mechanical milling
(Morrison et al., 1993; Roa et al., 2017; Gonzalez et
al., 2020). However, there are few studies focused on
the nanoecapsulation of bioactive compounds using
nano spray drying equipment, so mechanical grinding
is a viable alternative to obtain wall materials with
desirable rheological characteristics.

On the other hand, at high milling times (50 to
80 min) it was no longer possible to determine the
viscosity profile of the starch, this indicates that the
granular structure of the starch was completely lost,
obtaining an amorphous polysaccharide.

3.1.2 Particle size distribution (PSD)

Chayotextle starch showed a multimodal particle size
distribution with 3 populations of sizes 38, 63 and 92
µm, with 63 µm having the largest volume (Figure 2).

These sizes of starch granules do not favor
their use in the nano-encapsulation of compounds

through the nano-spray draying technique, since the
equipment requires sizes from 7 µm to nm, so it is
necessary to reduce the particle size. On the other
hand, mechanical grinding showed a mono modal
distribution at all grinding times; however, the size of
the particles increased with mechanical grinding time.
This behavior is due to the formation of agglomerates
during mechanical grinding, Since the decrease in
particle size increases the surface area, promoting the
agglomeration of starch granules by Van der Waals
forces (Li et al., 2014; Soe et al., 2020; Huang et al.,
2021; Zhang et al., 2021).

Several authors have reported behavior like this
study. Jhan et al., (2021) reported that ball milling
caused starch granule fragmentation. Gonzalez et al.,
(2018) reported that the native starches showed a
bimodal distribution and during the milling process,
said granule size distribution changed to monomodal.

3.2 Model identification of the modified
starches as wall materials in the nano-
encapsulation

Experimental results of viscosity and size distribution
of particle are not the ideal ones to use those modified
starches as wall material in the nano-encapsulation
of bioactive compounds using the nano-spray drying
equipment.

For this reason, a modeling of the operating
variables was carried out of mechanical grinding to
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elucidate the best operating conditions and obtain
modified starches with required viscosities and
particle sizes two to be used as wall material in nano-
encapsulation.

The models of modified starches as wall materials
in the nano-encapsulation are the following:

Volume =
(p11S z5 + p12S z4 + p13S z3 + p14S z2 + p15S z + p16)
(q10S z5 + q11S z4 + q12S z3 + q13S z2 + q14S z + q15)

(5)

Viscosity =
(p21S p5 + p22S p4 + p23S p3 + p24S p2 + p25S p + p26)
(q20S p5 + q21S p4 + q22S p3 + q23S p2 + q24S p + q25)

(6)

where Equation (5) is a correlation between
volumen [=]% and S z (size, µm), Equation (6)
is a correlation between viscosity [=]Pa·s and S p
(sample). Considering different times: 0, 20, 30, 40,
50, 60, 70 and 80 min. The parameters pi, j with i = 1,2
and j = 1,2, ...,6 and qi,k with k = 0,1,2, ...,6 are
described in Table 1 and 2.

Numerical simulation of Equations (5) and (6)
with the parameters described in the Table 1 and 2 with
its respectively times are shown in Figures 3 and 4.

Fig. 3. Validation of the mathematical model (Equation 5) vs. experimental data: a) Time = 0 min, b) Time = 20
min, c) Time = 30 min, d) Time = 40 min, e) Time = 50 min, f) Time = 60 min, g) Time = 70 min, h) Time = 80
min. i) Mean of all times.

Fig. 4. Validation of the mathematical model (Equation 6) vs. experimental data: a) Time = 0 min, b) Time = 20
min, c) Time = 30 min, d) Time = 40 min, e) Time = 50 min, f) Time = 60 min, g) Time = 70 min, h) Time = 80
min. i) Mean of all times.
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Table 1. p11,12,...16 and q10,11,...16 parameters with different temperatures of Equation (5).
Time (min) Parameters

0 p11 = −0.3459, p12 = 59.4, p13 = −341.9, p14 = 739.4, p15 = −375.1, p16 = 38.39
q10 = 1.0, q11 = 590, q12 = −1487, q13 = 1456, q14 = −438, q15 = 0

20 p11 = −0.4472, p12 = 237.6, p13 = −762.6, p14 = 847.8, p15 = −386.5, p16 = 60.02
q10 = 1.0 q11 = −67.87 q12 = 2357, q13 = −5585, q14 = 4078, q15 = −867.5

30 p11 = 0.2091, p12 = −98.08, p13 = 1.616× 104, p14 = 3.797× 104, p15 = 1.971× 105, p16 = −1.488× 105

q10 = 1.0, q11 = −189.5, q12 = 1.601× 104, q13 = −5.227× 105, q14 = 7.818× 106, q15 = −5.271× 106

40 p11 = 0.6124, p12 = −241.2, p13 = 2.764× 104, p14 = −1.533× 105, p15 = 1.533× 106, p16 = −1.247× 105

q10 = 1.0, q11 = −207.5, q12 = 1.904× 104, q13 = −7.114× 105, q14 = 1.181× 107, q15 = 5.671× 106

50 p11 = 0, p12 = 270.2, p13 = −1.069× 105, p14 = 1.07× 107, p15 = −2.292× 107, p16 = 8.063× 105

q10 = 1.0, q11 = −510.2, q12 = 9.52× 104, q13 = −6.624× 106, q14 = 1.871× 108, q15 = −6.804× 106

60 p11 = 0.2335, p12 = −205, p13 = 7.423× 104, p14 = −2.107× 105, p15 = 1.479× 105, p16 = −2.764× 104

q10 = 1 q11 = 161.6, q12 = −2.778× 104, q13 = 1.237× 106, q14 = −1.259× 106, q15 = 2.809× 105

70 p11 = 1.244, p12 = −550.4, p13 = 5.664× 104, p14 = 3.669× 105, p15 = −5.199× 104, p16 = 400.8
q10 = 1.0 q11 = −242.7, q12 = 2.892× 104, q13 = −1.453× 106, q14 = 3.707× 107, q15 = −3.771× 105

80 p11 = 0.06458, p12 = −63.63, p13 = 7443, p14 = 7.739× 105, p15 = −8.089× 105, p16 = 9074
q10 = 1.0 q11 = −249.7, q12 = 2.59× 104, q13 = −1.174× 106, q14 = 2.44× 107, q15 = 4.82× 105

Table 2. p11,12,...16 and q10,11,...16 parameters with different temperatures of Equation (6).
Time (min) Parameters

0 p21 = 0.05021, p22 = −6.797, p23 = 434.3, p24 = −9599, p25 = 7.973× 104, p26 = −1.95× 105

q20 = 0.0, q21 = 1.0, q22 = −81, q23 = 3293, q24 = −5.876× 104, q25 = 3.65× 105

20 p21 = 0.02165, p22 = −3.013, p23 = −73.69, p24 = 2.15× 104, p25 = −4.373× 105, p26 = 2.264× 106

q20 = 0 q21 = 1.0 q22 = −237.5, q23 = 1.805× 104, q24 = −4.03× 105, q25 = 2.83× 106

30 p21 = 6.499, p22 = −1185, p23 = 6.497× 104, p24 = −1.932× 105, p25 = −3555, p26 = 5.293× 104

q20 = 1.0, q21 = −194.8, q22 = 1.202× 104, q23 = 1.726× 105, q24 = 4.957× 104, q25 = 1.109× 104

40 p21 = 0.02719, p22 = −3.642, p23 = 143.2, p24 = 593.5, p25 = −1.723× 104, p26 = 4.12× 104

q20 = 0, q21 = 1.0, q22 = −118.4, q23 = 5651, q24 = −5.035× 104, q25 = 9.892× 104

50 p21 = 0.2745, p22 = −97.29, p23 = 1.648× 104, p24 = −1.75× 104, p25 = 3824, p26 = 1.061× 104

q20 = 1.0, q21 = −407.6, q22 = 4.762× 104, q23 = 1.017× 106, q24 = 1498, q25 = −1155
60 p21 = −1.409× 10−7, p22 = 7.701× 10−5, p23 = −0.00508, p24 = 0.1955, p25 = 10.1, p26 = −74.22

q20 = 0 q21 = 0, q22 = 0, q23 = 1.0, q24 = 2.872, q25 = −62.13
70 p21 = 0.003161, p22 = −0.4339, p23 = 2.879, p24 = 1597, p25 = −3.537× 104, p26 = 3.37× 105

q20 = 0 q21 = 1.0, q22 = −186, q23 = 1.187× 104, q24 = −1.871× 105, q25 = 1.17× 106

80 p21 = 0, p22 = −1.258× 107, p23 = 5.144× 105, p24 = −0.004496, p25 = −0.2335, p26 = −0.9315
q20 = 0 q21 = 0, q22 = 0, q23 = 0, q24 = 1.0, q25 = −4.336

Table 3. Fit indices of Equation 5 at different times.

Time (min) R2 RMS E S S E
0 0.9761 0.3661 13.40

20 0.9708 0.3458 11.95
30 0.9970 0.1132 1.2815
40 0.9971 0.1130 1.2768
50 0.9402 0.4661 21.7267
60 0.9824 0.3082 9.5010
70 0.9969 0.1121 1.2563
80 0.9998 0.0356 0.1266

Table 4. Fit indices of Equation 6 at different times.

Time (min) R2 RMS E S S E
0 0.9845 0.2383 11.93

20 0.9846 0.2199 10.15
30 0.9773 0.2706 15.37
40 0.9861 0.1517 4.83
50 0.9860 0.0389 0.3175
60 0.9673 0.0549 0.6331
70 0.9834 0.0221 0.1022
80 0.9627 0.0191 0.0766
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Figure 3 shows that for the times from 0 to 80
min (3a, 3b,...,3h) the model (Equation 5) adequately
represents the experimental data of the volume (%).
Figure 3i shows the value of the response of the model
and the means of the set of times obtained. Figure
4 shows that for the times from 0 to 80 min (4a,
4b,...,4h) the model (Equation 6) adequately represents
the experimental data of the viscosity (Pa·s). Figure 4i
shows the value of the response of the model and the
means of the set of times obtained.

Validation of the model with the experiments data
are evaluated with fit indices are shown in Table 3 and
4 with R2 > 0.96 RMS E < 0.23 and S S E < 21.7 for
both equations.

Up to this point a model that fits the experimental
data, but a decision stage to obtain the operating
conditions required by the experimenter.

3.3 Decision Making stage with the model

In this research work are presented the factible (what
the experimenter requires), non-factible (what the
experimenter does not require) and selected (what
the experimenter requires more specifically) areas of
process conditions.

The selection criterion is that of all samples
are considered factible with size 1 to 7 µm and
viscosity≤0.01 Pa·s are shown in Figures 5a-5c and
6a-6c.

The model allowed elucidating the operating
conditions for mechanical milling from experimental
data raised by the experimenter that allows obtaining
modified starches in short times. This mathematical
modeling is an alternative for obtaining modified
starches with specific properties of viscosity and
particle size to be used in nano-encapsulation.

Other starch modification methods such as acid
hydrolysis nine days, (Aparicio-Saguilán et al., 2014)
seven days (Aparicio-Saguilán et al., 2015) have been
reported to produce changes in starch properties.
However, this method requires very long hydrolysis
times compared to this proposed methodology.

Conclusion

The models obtained for the modification of starch
indicate that under evaluated conditions both 20
and 30 min of mechanical grinding allow to obtain
wall materials with viscosities and particle sizes that
favor their use in nano-spray drying equipment. The
model obtained for this type of starch represents the
volume (%) and the viscosity (Pa·s) with its respective
operating conditions, it had a fit with the experimental
data of R2 > 0.96, RMS E < 0.23 and S S E < 220.
With this model, it is possible to determine the feasible
operating conditions for this process.

Fig. 5. Factible, non-factible and selected areas of the mathematical model (Equation 5): a) Time = 0 min, b)
Time = 20 min, c) Time = 30 min, d) Time = 40 min, e) Time = 50 min, f) Time = 60 min, g) Time = 70 min, h)
Time = 80 min.
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Fig. 6. Selected and non-factible areas of the mathematical model (Equation 6): a) Time = 0 min, b) Time = 20 min,
c) Time = 30 min, d) Time = 40 min, e) Time = 50 min, f) Time = 60 min, g) Time = 70 min, h) Time = 80 min.
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