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Abstract
To predict the electrical energy generation behavior in a photovoltaic system, we developed an adaptive neuro-fuzzy inference
system (ANFIS) model which integrates an optimization through a genetic algorithm (GA). The evolutionary ANFIS-GA uses a
geographical area’s solar radiation and ambient temperature. This model uses the capacity to classify and identify data patterns of
neural networks, and through fuzzy modeling, it calculates the optimal membership functions and fuzzy rules. The ANFIS-GA
model is developed using MATLAB® software and is trained with the acquired data weather station and the electrical power
output of the photovoltaic system located in Hermosillo, Sonora, México. The above was compared under the same parameters
with an ANFIS model based on a hybrid algorithm. Reach values of RSME of 259.41, MAE of 132.7, MAPE of 4.56 for the
ANFIS-GA model; RSME of 295.26, MAE of 149.58, and MAPE of 6.98 for the ANFIS model, respectively. The results indicate
that the ANFIS-GA model emulates the power output with better precision, thus providing a valuable planning tool to predict
photovoltaic system behavior.
Keywords: Photovoltaic systems; Solar power generation; Statistical methods; Genetic algorithms; ANFIS.

Resumen
Para predecir el comportamiento de generación de energía eléctrica en un sistema fotovoltaico, desarrollamos un modelo basado
en un sistema de inferencia neuro-difuso adaptativo (ANFIS) que integra una optimización a través de un algoritmo genético
(GA). El ANFIS-GA evolutivo utiliza la radiación solar y la temperatura ambiente de un área geográfica. Este modelo utiliza la
capacidad de clasificación e identificación de patrones de datos de las redes neuronales y, a través del modelado difuso, calcula las
funciones de pertenencia y las reglas difusas óptimas. El modelo ANFIS-GA se desarrolla utilizando el software MATLAB® y se
entrena con los datos adquiridos de la estación meteorológica y la potencia eléctrica de salida del sistema fotovoltaico ubicado en
Hermosillo, Sonora, México. Lo anterior se comparó bajo los mismos parámetros con un modelo ANFIS basado en un algoritmo
híbrido. Alcanzando valores de RSME de 259,41, MAE de 132,7, MAPE de 4,56 para el modelo ANFIS-GA; RSME de 295,26,
MAE de 149,58 y MAPE de 6,98 para el modelo ANFIS, respectivamente. Los resultados indican que el modelo ANFIS-GA
emula la potencia de salida con mayor precisión, proporcionando así una valiosa herramienta de planificación para predecir el
comportamiento del sistema fotovoltaico.
Palabras clave: Sistemas fotovoltaicos; Generación de energía solar; Métodos de estadística; Algoritmos genéticos; ANFIS.
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1 Introduction

Due to the fast growth of the application of
photovoltaic energy, the operational performance of
solar photovoltaic energy has turned out to be an
essential issue of research. Particular areas such as the
optimization of parameters of photovoltaic systems,
the development of new technologies in photovoltaic
cells and performance analysis, and the development
of new techniques to predict the power output in actual
weather conditions have been critical in the continuous
improvement of the efficiency of the systems (Wang et
al., 2021; Matsumoto et al., 2019; Ferrero- Bermejo
et al., 2019; Ma et al., 2014). Research has shown
the use of predictive tools through the development
of intelligent systems such as learning machines (Xia
et al., 2017), artificial neural networks (Di-Piazza et
al., 2021; Rico-Contreras et al., 2014), and fuzzy
logic (Yazdanbaksh et al., 2013; Virgen-Navarro et
al., 2016). Also, hybrid systems, such as the adaptive
neuro-fuzzy inference system (ANFIS) (dos- Santos
et al., 2021), can provide a close prediction of the
behavior of systems during their operation (Mellit and
Kalogirou, 2008; Zor et al., 2017).

Several studies have reported data prediction
relevant to different areas, such as meteorology,
energy, industrial processes, communication, control,
and pattern recognition (Brusamarello et al., 2020;
Armaghani and Asteris, 2021; Gómez-Vargas et al.,
2010; Figueroa-Garcia et al., 2021; Talebjedi et al.,
2020; Ruz-Hernandez et al., 2019; Chalapathy et al.,
2021). Tao et al. (2021) presented a novel model
based on ANFIS to predict global solar radiation from
the atmospheric temperature in different locations.
An essential improvement in the efficiency of the
ANFIS model was obtained by optimizing its internal
parameters reaching results with R2 between 0.769
and 0.802. Alamoudi et al. (2021) used an ANFIS
system to analyze the performance of photovoltaic
solar panels installed in a university hospital. They
found the best working conditions and defined the self-
expenditure rates and performance of the PV system.
Pitalúa-Díaz et al. (2019) compared two deterministic
models and ANFIS. The predicted electric power
values from a photovoltaic system were compared
with experimental data. The intelligent algorithm had
lower deviation values computed with MAE and
MAPE.

Aldair et al. (2018) developed an ANFIS-
based controller for following an autonomous

photovoltaic system. The conclusions disclose that
the ANFIS model has a better active answer than
the incremental conductance and constant voltage
procedures. Bendary et al. (2021) developed an
ANFIS system to search, monitor, and eliminate faults
in photovoltaic modules. The environmental changes
were considered. The simulation of the process
improved the effectiveness of photovoltaics afterward
the optimization process. Bilgili et al. (2021) applied
ANFIS with Fuzzy-c-means and ANFIS with a Long
Short-Term Memory neural network. The comparison
was made of 4 types of renewable technologies. The
results were evaluated, comparing them with the actual
values and statistical evaluation criteria.

ANFIS models use an intelligent neuro-fuzzy
approach to model and control uncertain and
unspecified systems (Jang, 1993). This model is
applied to various fields as a system that combines
artificial neural networks with learning capacity and
fuzzy reasoning, like the ability of human thought
(Jang et al., 1997). Firstly, the input and output values
of the systems are analyzed and determined. Later,
the fuzzy sets are created for the input variables,
and the fuzzy rules are determined to develop and
train the neural network that will constitute the
predictive system (Stojc̆ić et al., 2019). However, in
certain situations, it is hard to delimit the set of
fuzzy rules that show the information of a domain
(Sugeno and Kang, 1998). In most cases, ANFIS
uses gradient search techniques, resulting in difficulty
in accurately defining and classifying the inputs that
contribute to the prediction. Therefore, it is possible
to automatically use an evolutionary computational
system to generate fuzzy knowledge bases (Tien-Bui
et al., 2018).

In recent years, there has been a growing interest
in computational evolution, which has led to the
development of many optimization algorithms (Sexton
et al., 2011; Fernandez et al., 2019; Penghui et al.,
2020; Kar et al., 2020; García-Muñoz et al., 2021).
They can complete the prediction of systems by
improving the speed of convergence and reducing
the possibility of being trapped in local minima
(Seifi et al., 2020). Orove et al. (2015) designed a
computer code to predict the failure rate of students
using an evolutionary algorithm. It was validated by
feeding a test data set to evolved genetic programming
models. The results showed a fast convergence and
an excellent predictive capacity. Haznedar and Kalinli
(2016) presented a study about the optimization of
the premise and consequent parameters of ANFIS
using a Genetic Algorithm (GA), which applied to the
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nonlinear dynamic system identification problem and
was compared with a BP algorithm. They determined
that optimizing GA is more successful. Khosravi et al.
(2020) developed a model based on ANFIS adjusted
with a genetic algorithm and an adjusting algorithm
to support teaching-learning to determine the optimal
design parameters of a system solar power tower
(SPTS) with a thermal energy storage system. Vafaei
et al. (2015) presented a study for modeling and
controlling a photovoltaic system using ANFIS and a
genetic algorithm. The results signify that the ANFIS-
GA can match the load need with less uncertainty
about the maximum point capacity. Arara et al. (2020)
conducted an analysis that included the comparison
of advanced learning algorithms. They evaluated the
ANFIS model and three metaheuristic models. Eleven
evaluation metrics were used to assess the models,
showing that ANFIS-GA obtained better results than
the other three models.

The literature survey indicates the absence of
investigations on predicting the energy production
of a photovoltaic system using neuronal networks
and fuzzy systems coupled with a genetic algorithm.
Therefore, this study aims to present the design
and modeling of an intelligent ANFIS-GA system
for predicting electrical energy generation from a
photovoltaic system located in Hermosillo, Sonora,
Mexico. To evaluate and process meteorological and
electrical data and create the predictive model of the
photovoltaic system performance, we have analyzed
approximately 26,000 variable records. An ANFIS
hybrid system optimized was developed using a
genetic algorithm capable of processing information,
learning, and convergence. The results are compared
with an intelligent hybrid ANFIS system trained and
tested under the same parameters (Cerecedo et al.,

2021). The comparison has been made using rigorous
statistical metrics. The ANFIS-GA system reached an
RSME of 259.41, MAE of 132.7, and MAPE of 4.56,
meaning a relative improvement against the ANFIS
hybrid system that obtained an RSME of 295.26,
MAE of 149.58, and MAPE of 6.98 under the same
parameters. Additionally, when comparing one month,
the MAPE values obtained were 4.78 for ANFIS-GA
and 6.56 for ANFIS, respectively, determining that
ANFIS-GA produces more accurate prediction results.

2 Materials and methods

The study photovoltaic system is located at the
University of Sonora in Hermosillo, Sonora,
Mexico. The system comprises rack-Mounted ten
polycrystalline panels of the Phono Solar brand,
model PS310P-24T, installed with an inclination of
25° concerning the horizontal. Each panel is made
up of 60 cells with a combined capacity of 310 W
and an efficiency of 15.98%. A pyranometer LI-COR
LI-200 records solar irradiance. It features a silicon
photovoltaic detector mounted in a fully cosine-
corrected miniature head. It was calibrated against an
Eppley Precision Spectral Pyranometer (PSP) under
natural daylight conditions. The typical error under
these conditions was ± 5%. It is installed at the same
angle as the system. The ambient temperature was
collected with a weather station model WIRELESS
VANTAGE PRO2 installed on-site. The temperature
sensor is mounted on a passive or fan-drawn radiation
shield to minimize the impact of solar radiation on the
sensor readings.

a) Photovoltaic system. b) Solar radiation sensor. c) Weather station.

Figure 1. Photovoltaic system and meteorological sensors.
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The temperature sensor works from -40 to +74
°C with an accuracy of ± 1°C. A FRONIUS GALVO
3.1-1 208-240 inverter records the output power range
of 2.5-4.5 kW, with a maximum efficiency of 96%.
The development of the intelligent system, the data
processing, the model training, and the predictive tests
were carried out on a laptop with a CPU i3-1005G1
and 8 GB of RAM. Figure 1 shows the photovoltaic
system and sensors.

3 Analysis of experimental data

The first step for any challenge related to the data is to
conduct a rigorous review of the information. Studying
the distributions of specific variables and determining
their possible correlations is necessary to define the
input variables with the most significant influence
on the system’s output power. It also indicates the
association between the quantitative input and output
variables (Asuero et al., 2006).

In this study, the correlation of six input
meteorological variables against the output power
was calculated to select the variables that have the
most significant impact on electricity generation.
Pearson’s correlation coefficient (equation 1) (Benesty
et al., 2009) and Spearman’s correlation coefficient
(equation 2) (Griffiths, 1980) were used:

rp =
S XY

√
S X2.S Y2

(1)

rs =
6
∑

d2(XY)
n(n2 − 1)

(2)

Where n is the number of data points of the two
variables, X, Y are the deviations of any pair of
characteristics from their respective medians, XY
is the product of the two previous values for any
individual, S XY is the sum of said products for all
individuals. S X2 is the sum of the squares of all the
various values of X, S Y2 is similar for Y , rp is the
Pearson correlation coefficient,

∑
d is the sum of the

rank differences of all the individuals, and XY is the
product of the two previous values for any individual,
finally rs is the Spearman correlation coefficient.

The data used to develop the model in this
study were global horizontal solar radiation and
ambient temperature as input variables and the
electrical power generated by the system as the
output variable. A correlation comparison of the
output variable (electrical power) was made with

six input meteorological variables (solar radiation,
ambient temperature, humidity, dew point, wind
speed, and atmospheric pressure). Only global
horizontal solar radiation and ambient temperature
significantly correlated with the output variable. It
was done with approximately 26,000 records of each
variable captured every 5 minutes for 268 days. The
programming and development of the model were
carried out using Matlab software. The leading causes
for poor results when training different predictive
models are overfitting and underfitting. In overfitting,
the model will only adjust the cases we teach it
and will be unable to recognize new input data.
Underfitting the model considers valid data identical
to that used in training. It cannot correctly distinguish
the inputs if they are slightly out of the pre-established
ranges (Hawkins, 2004; Belkin et al., 2018). These
two cases cause an inability of the model to make
optimal predictions, so it is necessary to partition
the data system for training and validation to find a
balance between bias and variance, which means that a
model must reach an equilibrium between underfitting
and overfitting (Belkin et al., 2019).

Regarding the above, empirical studies show that
the best results are obtained using 70-80% of the data
for training and the remaining 20-30% for testing.
It is recommended to avoid overfitting (occurs when
the data set from which they have been created is
adjusted so precisely that they lose much of their
predictive power) and underfitting (occurs when the
set of training data is insufficient or unrepresentative)
(Gholamy et al., 2018).

In the present ANFIS-GA model training, 70%
of the total universe of registered data was used for
training, and the remaining 30% was used to carry
out the prediction or testing tests. Therefore, it could
be considered that the range used in this model falls
within the sweet spot margin reported in the literature
(Nguyen et al., 2021).

4 Methodology of the predictive
algorithm

The ANFIS-GA generates a Sugeno-type FIS structure
consisting of membership functions (MF) that can
learn fuzzy sets in neurons. The MF must be found
and understood by the system. It is characterized by
clarity, excellent precision, and few rules (Kukolj and
Levi, 2004). ANFIS uses a systemic methodology for
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data modeling.
The ANFIS-GA model finds the mapping

relationship between the input and output data through
hybrid learning to determine the optimal distribution
of the membership functions. The learning algorithm
adjusts all the weights to fit the training data, usually
using least squares methods and stochastic gradient
descent (SGD) versions, with backpropagation to
calculate partial derivatives (Hecht-Nielsen, 1992).
The inclusion of the genetic algorithm aims to
optimize the ANFIS classifier model to obtain a more
accurate estimate.

The basic principle of this type of model is
based on the mathematical model of neurons. In this
calculation model, an input vector from the variables
or other neurons provides an output response where
each input xi is affected by a weight wi, which
represents the intensity of interaction between each
presynaptic and postsynaptic neuron (Kröse, 1993).

In this case, a multilayer perceptron was obtained
by adding intermediate (hidden) layers to a simple
perceptron (MLP). It is a type of ANN formed by
multiple layers composed of several interconnected
neurons, organized by input, an output layer, and two
hidden layers. It can be used to solve mathematical
models that are not linearly separable (Kröse, 1993;
Yousif, 2019). The structure of the MLP constitutes
a universal function approximator (Brio and Molina,
2001).

Finally, the training of the neurons of the layers
of the multilayer architecture is provided by the error
backpropagation algorithm (BP). For this, an error
function similar to equation 3 is used. It is derived
based on the weights of the output layer and as
a function of the weights of the hidden neurons,
using the chain rule. Given an input pattern xµ (µ =

1, . . . , p), the global operation is expressed by equation
4, determined in (Brio and Molina, 2001).

E =

n∑
i=1

Ei =

n∑
i=1

Ti − (Fouti)2 (3)

Where, Ei is the error measure for the i-th input of the
given training data set, Ti is the desired output of the
i-th input, and Fouti is the output of the system using
the i-th input, then:

zµk =
∑

w1
k jy

µ
j − θ

1
k =

∑
j

w1
k j f

∑
i

w jix
µ
i − θ j

− θ1
k

(4)

On the other hand, according to Jang (1997), fuzzy
logic uses values that are continuous between 0 (the

facts are entirely false) and 1 (the facts are quite
true). In this way, fuzzy sets can be used where
the concepts are associated with groups in a process
called fuzzification. Fuzzy values can be used in
language rules and obtain a result that can remain
fuzzy or defuzzify to get discrete values. Model fuzzy
clustering is a process that assigns input data to one
or more clusters using membership levels. Therefore,
the fuzzy systems are based on fuzzy partitioning of
information, where their decision capacity depends on
base rules and a fuzzy reasoning mechanism.

In the most general form, the knowledge encoding
of a multiple-input and a single-output (MISO)
system can be defined by different partitions of the
input-output space based on various IF-THEN rules
consisting of fuzzy variables in both its antecedent and
its consequent. Each compartment is represented by
a membership function, as observed in the example
below and explained in detail in Emami et al. (1998).

IF U1 is B11 AND U2 is B12 AND . . . AND Ur is B1r

THEN V is D1 AND V2 is D12 AND . . . AND Vs isD1s

ALSO
. . .

ALSO
IF U1 is Bn1 AND U2 is Bn2 AND . . . AND Ur is Bnr

THEN V is Dn1 AND V2 is Dn1 AND V2 is Dn2 AND
. . .AND Vs isDns

Where, U1, U2, . . .Ur are the input variables, V1, V2,
. . . , Vs are the output variables, Bi j (i = 1, . . . ,n, j =

1, . . . ,r), Dik (i = 1, . . . ,n,k = 1, . . . , s) are the fuzzy set
of the universe of discourse X1, X2,. . . , Xr; Y1, Y2, . . . ,
Ys of U1, U2, . . . , Ur and V1, V2, . . . , Vs, respectively.

It is observed that the fuzzy sets Bi j and Dik make
up the fuzzy model parameters, and the number of
rules determines its structure.

This model can estimate the output of the inputs
based on the calculations of the five layers used
to build the inference system. The equations for its
development are widely explained and adapted from
(Jang, 1993; Ying and Pan, 2008; Kohonen, 1988;
Lippmann, 1987; Jang and Sun, 1995).

Layer 1. Fuzzification is performed in the
first layer. In this process, the neurons transfer
the previously received signals according to their
programming. Each node in this layer generates
degrees of membership based on a linguistic label,
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where the node function of the i-th node can be:

O1
i = µAi(x), i = 1,2;µAi(x) = exp

−
(

x− ci

αi

)2
 (5)

Where x is the entry of node i, and Ai is the linguistic
label (high, medium, low, etc.) associated with the
function of the node, i.e., O1

i is the membership
function of Ai, and specifies the degree to which the
Ai(x) given satisfies the quantifier Ai. in addition, αi, ci
are premise parameters, being αi the adjustable center
and ci the variances center. As the values of these
parameters change, the functions vary accordingly,
thus exhibiting various forms of membership functions
in the linguistic label Ai.

Layer 2. In this layer, the weights of the
membership functions are calculated. This layer is
called the ruler layer. The firing strength of each rule
is calculated with the degrees of affiliation that come
out of the previous layer. Each node in this layer is a
circular node labeled Tz that multiplies the incoming
signals and sends them out.

O2
i = wi = µAi(x)xµBi(y), i = 1,2 (6)

Each node output represents the firing strength of a
rule.

Layer 3. In this layer, the fuzzy rules are
determined, and the beginning of each of them is
calculated. It is called the normalization layer. Each
node in this layer is a circular node labeled N. The ith
node computes the ratio of the ith rule’s firing strength
to the sum of all firing rules.

O3
i = wi =

wi

w1 + w2
, i = 1,2 (7)

The outputs of this layer are known as normalized
firing forces.

Layer 4. Called the defuzzification layer. In this
layer, the output values are computed. The output
value for each rule is calculated using the trigger
strength value from previous layers. Every node i in
this layer is a square node with a function node.

O4
i = wi fi = wi(pix + qiy + ri) (8)

Where wi is the output of layer three and {pi,qi,ri} are
the set of parameters. The parameters in this layer are
called consequent parameters.

Layer 5. It is the addition layer. In this layer,
the total output is calculated as the sum of all the
previous signals. The production of ANFIS is obtained
by collecting the output values of each rule obtained
in the defuzzification layer. The only node in this layer
is a circular node labeled

∑
that computes the total

output as the sum of all input signals, i.e., the output
has a continuous type of value instead of a fuzzy set
type.

O5
i = overall output =

∑
i

wi fi =

∑
i wi fi∑
i wi

, i = 1,2 (9)

The neurons in each layer receive prior information
from other neurons to calculate the output signal
propagated to other neurons. Figure 2 shows an
ANFIS structure with two inputs and one output,
where the model is composed of five layers.

In general, the search space in ANFIS during
data processing can have a high computational load,
hindering its convergence and even getting trapped in
local minima or maxima. As noted above, optimizing
the ANFIS parameters using GA can help solve this
problem.

Layer 1 Layer 2 Layer 3 Layer 4

Antecedent
T norm

Consequent
T norm

X1

𝝅 N

N

Layer 5

Ouputs

∑

Membership
Functions

Normalizer

X2

A1

A2

B1

B2

𝒇𝟏

𝒇𝟐

X y

X y

𝝅

𝑓𝑜𝑢𝑡

𝑤1

𝑤2

ഥ𝑤1

ഥ𝑤2

ഥ𝑤1𝑓1

ഥ𝑤2𝑓2

Inputs

Figure 2. Structure of adaptive neuro-fuzzy inference based on two inputs variables and one output variable.
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Yes

No

GA parameter 
encoding

Start

Initial 
population

Evaluation

Objective 
function and 
constraints

Optimal 
result

Stop

Selection Crossover Mutation

Is the 
concurrent 
generation 

have a 
significantly 
fitness than 

the previous?

Figure 3. Genetic algorithm flowchart.

Genetic algorithms transform individual
populations of binary character strings into new
populations using operations modeled on natural
genetic processes (Koza, 1990). The population
of candidate solutions progresses towards better
solutions. Each potential solution has a set of
characteristics known as genotype, which can be
mutated and changed, and where the fittest individuals
are randomly selected from the current population.
The genome of individuals is adjusted by applying
a set of genetic operators (selection, crossover,
mutation, evaluation, and replacement) to provide a
new and optimized generation.

The optimized generation of the candidate
solutions is utilized in the next iteration of the
algorithm (Carrascal et al., 2009). The GA stops when
the optimal solution is obtained. The algorithm runs
a defined maximum number of iterations until there
is no change in the population. The cycle repeats
systemically from selection, crossbreeding, mutation,
evaluation, and replacement in each process. Figure 3
shows the flow chart of the genetic process.

The premise and the consequent parameters in
ANFIS can be optimized (Haznedar and Kalinli,
2016). The premise parameters are related to the
membership functions in the first layer of the ANFIS
structure, and the consequent parameters are used in
the fourth layer for the defuzzification process.

The adjustable parameters of the membership
functions are αi, ci, which are indicated in equation
(5). The optimization of the ANFIS model using the
GA starts with the random production of the initial
population from binary strings, where each represents
a solution for the fuzzy components of the antecedent
part (Azimi et al., 2019). Once the initial population
is calculated, the function for each chromosome is
determined in such a way that it allows training the

Table 1. Parameters of ANFIS-GA.
Process Value

Alpha (α) 0.7
Betha 8
Crossover percentage 0.4
Iterations 1000
Membership function 10
Mutation percentage 0.7
Mutation rate 0.15
Train Population 18241

data of the output matrix and defining its relative
output error.

The process continues to generate new populations
using the crossover operator. The two chromosomes
with the best fitness of the previous generation are
selected, forming a new chromosome with better
characteristics. Subsequently, the mutation operator
selects a chromosome of the prior generation and
randomly alters one of its bits to avoid getting stuck in
the optimal local points. This process produces a new
chromosome and a new generation, thus continuing
a process of evolution for a specified number of
generations until the optimal population is reached.

The ANFIS membership function parameters were
updated during the optimization process. Figure
4 presents the ANFIS-GA process. Parameters
initialized randomly in the first step are updated using
GA, and all parameters are updated iteratively until
the objective function is achieved. Table 1 shows some
details of the ANFIS and GA parameters configured in
the process.

After the development and training process of the
ANFIS-GA model, the outputs can be estimated. The
outputs are evaluated with rigorous statistical methods
explained extensively by Yousif et al. (2019).

www.rmiq.org 7
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Figure 4. Flowchart of ANFIS-GA.

In this investigation, to verify the functioning of
the model, the root means square error (RMSE), the
mean square error (MSE), and the mean absolute error
in percentage (MAPE) were used. Equations 10, 11,
and 12 were used for model verification.

RMS E =

√√
1
a

a∑
i=1

(di − yi)2 (10)

Where, di is the predicted values and yi are the
observed values, and n is the number of observations.

MS E =
1
N

n∑
i=1

(yi − xi)2 (11)

Where, yi is n number of predictions, and xi is n
number of actual values.

MAPE =
1
N

n∑
t=1

∣∣∣∣∣At − Ft

At

∣∣∣∣∣ (12)

Where n is the number of fitted points, At is the actual
value, Ft is the forecast value, and

∑
is the summation

notation (the absolute value is summed for each point
in the forecast time).

5 Results

The characteristics used for developing and modeling
the ANFIS-GA system are shown below. The total

days of the study period were 258, with recording
intervals of 5 minutes, for a total of 26058 records
for each variable. The training used 70% of the
data collected, and the remaining 30% were used to
measure the system’s performance.

For the selection of the input variables, the
correlation process was carried out, selecting the
variables with the most significant influence on the
system’s energy generation. In this investigation, the
selected variables were global solar radiation and
ambient temperature. In this process, 18,241 records
for training and 7817 for testing were used. As it was
described in the materials and methods section, these
data were collected through instrumentation installed
on the site. The smooth function of Matlab was applied
to the training data. The process of smoothing data
improves the predictive capacity of the model. This
method uses locally weighted linear regression. Each
smoothed value is determined by the neighboring data
points defined within the period. Because a weighted
regression function is established for the data points
included in the span, the procedure is weighted. The
moving average was used for outliers as points more
than three local scales mean absolute deviations away
from the local median within a sliding window, where
the location of the outlier relative to the other points in
a sliding window is found. 5 minutes. The rp (Eq. 1)
for the Solar Radiation-Electric power variables was
0.967, and the rs (Eq. 2) for Ambient Temperature-
Electric power variables was 0.272.

An ANFIS structure consisting of two inputs and
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one output was created for the modeled dynamical
system. The inputs of the built ANFIS structure
used the Gaussian membership function with ten
parameters. Hence, there are 10n rules in the model.
Initially, the model generates a FIS (fuzzy inference
system) using fuzzy c-means (FCM) clustering by
extracting a set of rules that model the behavior of the
data. As input arguments, the function needs separate
input and output data sets. Genfis3 can create an initial
FIS for ANFIS training when there is just one output.
The rule extraction method employs the fuzzyc-
means to define the number of rules and membership
functions for the antecedents and consequents. It
should be noted that initially, when generating the FIS,
the type of membership function of the input variables
is of the Gaussian type and the output variable is of the
linear type. It can be adjusted according to the training.

In the optimization process through GA, an
improved fuzzy grouping and efficient strategy were

developed to select significant system inputs and
their membership functions, which is very useful in
reducing the computational load and the effects of the
curse of dimensionality (Cui, 2021).

Figure 5 shows in its section: (a, b) the initial
membership functions created by the model of
the solar radiation variable where (a) is before
optimization and (b) once the MF were optimized and,
in its section (c, d) the initial membership functions
created by the model of the ambient temperature
variable where (c) is before optimization and (d)
once the MF were optimized. The comparison of the
algorithm before and after being optimized with the
GA shows a reduction of the membership functions
and a dynamic adjustment of the membership
ranges of each function. This optimization process
represented an improvement in the predictive capacity
of the model.

a) b)

c) d)

Figure 5. Membership functions before training of variables (a) Solar radiation and (c) Ambient temperature
and membership functions of the optimized model of the input variables: (b) Solar radiation and (d) Ambient
temperature.
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Figures 6a and 6b show the comparative graphs
of the prediction of the ANFIS model described by
Cerecedo et al. (2021) and the ANFIS-GA model
developed in this study, both compared with the
experimental records of the photovoltaic system. This
comparison was made over a non-arbitrary period of
9 days from April 23 to 30, 2019. This phase is
within 30% of the total records destined for model
testing. In some cases, it was observed that the
predictive data of the model, compared to the data
recorded experimentally, showed some inaccuracies
in the prediction, especially in the highest points of
the Gaussian bell. The day compared to the case of
April 29, was a day that presented a greater trend of
solar radiation variation (the most significant variable),
showing a non-normal distribution.

The model predicts power electricity output
every 5 minutes throughout the day. These radiation
variations caused the model to not hold the prediction
at some points within the MAPE range reported in the
results. However, in the Total MAPE measurement of
the predictive stage shown in Table 2 and the electrical
power estimate reported in Figure 9, these inaccuracies
were insignificant in the results. When we compared
the values of the solar radiation variable from the
experimental data, specifically on April 29, where
the predictive model presented the peaks or outliers,
we took that range that shows the most significant
peak line. It is made up of values from 11:00 am
to 12:00 pm. These records had a standard deviation
of 198.52. If we take the same range of radiation
values from April 30, the standard deviation is 10.97.

It probably derived from MAPE values above the
average on April 29, specifically in this range where
the radiation variations presented experimentally were
very significant, affecting the estimation capacity of
the model in that range, but not the average estimate
of the period reported in the results.

Figure 8 compares both models with the
experimental data for more precise visual detail.
Both models show acceptable estimates from the
experimental data. However, it is possible to observe
that the ANFIS-GA GA model was more accurate in
approximating the peaks of the Gaussian distribution.
The r2 between the experimental data results
compared to the test data obtained by the model was
equal to 0.97.

The models were evaluated with rigorous
statistical parameters indicated in the methodology.
Both the training and the predictive phase are shown
in Table 2. It is observed that the ANFIS-GA model
emulated with greater precision the behavior of
the experimental data in the compared period. The
ANFIS-GA has an RSME value of 259.41, MAE of
132.7, and MAPE of 4.56 compared to the values
obtained with the ANFIS model, which has an RSME
value of 295.26, MAE of 149.58 and MAPE of 6.98.
It is possible to observe that the percentage error
throughout the period is lower in the ANFIS-GA
model. Although there are some peaks in the daily
estimate, the monthly MAPE for the ANFIS-GA
model is 4.56%, whereas, for the ANFIS model, it
was 6.98%.

a) b)

Figure 6. Comparison of experimental records over nine days with (a) ANFIS forecast and (b) ANFIS-GA forecast.
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Figure 7. Comparison of experimental records with ANFIS forecast and ANFIS-GA forecast.

Table 2. Comparison of errors for the ANFIS and ANFIS-GA models in the training phase (70%) and the
predictive stage (30%).

MODEL FIS structure RSME MAE MAPE

Train Test Train Test Train Test

ANFIS Grid Partitioning approach 254.93 295.26 149.58 218.69 4.99 6.98
ANFIS-GA Fuzzy c-Means Clustering 189.87 259.41 126.35 132.7 4.1 4.56

Table 3. Comparison of the MAPE (%) values of both models.
MODEL MONTH WEEK 1 WEEK 2 WEEK 3 WEEK 4

ANFIS 6.56 7.47 5.86 7.09 6.54
ANFIS-GA 4.78 6.39 3.78 5.08 3.77

Table 3 presents the weekly variability of the
MAPE during the month. Based on the analysis of
both models, it is determined that the optimized
ANFIS-GA model produces better results in the
predictions for every week of the month.

However, the daily variation of the MAPE from
April 13 to May 12, 2019, is shown in Figure 8. Each
peak represents the MAPE of one day of the models.
It is observed that on most days, the ANFIS-GA has a
MAPE value below that the corresponding of ANFIS.

Figure 9 shows the electricity generation produced
by the photovoltaic system in a bar graph based on
the experimental data recovered from the inverter

and counted per week for one month. These data
are compared with predicted data from both models
over the same date range from April 13 to May
12. A numerical integration process was carried out
using the trapezoidal rule to obtain the predicted
values in kW. The graph allows us to compare the
predictive capacity of the models in terms of kW when
considering them against the electrical generation of
the system measured in the inverter. In this case, the
percentage predictive error of the models concerning
the experimental data was 5.28% for ANFIS and
2.73% for ANGIS-GA.

www.rmiq.org 11
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Figure 8. MAPE curves of intelligent models for a
month.
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Figure 9. Comparison of electric power generation
of the photovoltaic system and the predictive models
ANFIS and ANFIS-GA.

Conclusions

This study presented an intelligent neuro-fuzzy model
optimized using a genetic algorithm, which was
evaluated with statistical models to determine the
predictive error. Likewise, it was compared with an
ANFIS not optimized model.

The optimized ANFIS-GA model has a better
predictive capacity. It shows a better approach in
the peaks of the Gaussian bells (which indicate the
highest values of daily electric generation). It registers
a better evaluation of statistics errors, where values
were obtained for the ANFIS model of RSME of
295.26, MAE of 149.58, and MAPE of 6.98, and for
the ANFIS-GA model of RSME of 259.41, MAE of
132.7, MAPE of 4.56.

Additionally, it was observed that the ANFIS-
GA provided a better approximation to the electrical
generation recorded experimentally in the inverter
of the photovoltaic system, where the percentage
of predictive error of the models compared to the
experimental records was 5.28% for ANFIS and
2.73% for ANGIS-GA.

According to the tests on this model, the number of
initial MF with the best results was 10. Under greater
demand for data processing, this parameter can be
adjusted to balance the computational load and the
optimal results.

The optimization method, based on a genetic
algorithm, improved the predictive capacity of
the intelligent system. Therefore, considering the
satisfactory results of this study, it may be of interest
to use the ANFIS-GA model in different photovoltaic
systems with other geographic, climatic, and system
size conditions.
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