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Abstract
This study aimed to evaluate and compare the phytoremediation potential of Cyperus laxus and Chrysopogon zizanioides, exposed
to a mixture of leachates containing heavy metals. C. laxus is a native species from Mexico and C. zizanioides is an introduced
species. Exposure to the leachate was performed using concentration kinetics concerning exposure times (TE) (Control 1, Control
40, 1,7, 15, 30, and 40 days). For this purpose, a completely randomized two-factor design with a 2x7 arrangement in triplicate
was performed. The data were analyzed by ANOVA followed by an LSD multiple range test. For the quantification of metals in
leachate and plants, inductively coupled plasma atomic emission spectroscopy (ICP-OES) was used. Ten chemical elements (Al,
As, Ba, Cr, Hg, Ni, Pb, Se, Tl, and Zn) were identified in leachate and plants. It was observed that C. laxus absorbed mostly Al,
Ba, Cr, Cr, Hg, and Ni, while C. zizanioides absorbed As, Pb, Se, Tl, and Zn. In translocation factor (TF) calculations C. laxus
translocated only As, whereas C. zizanioides translocated As>Tl>Ba>Cr>Ni, respectively.
Keywords: phytoremediation, native plant, introduced plant, translocation factor, sanitary landfill.

Resumen
El objetivo de este estudio fue evaluar y comparar el potencial fitorremediador de Cyperus laxus y Chrysopogon zizanioides,
expuestas a una mezcla de lixiviados con metales pesados. C. laxus es una especie nativa de México y C. zizanioides es una
planta introducida. La exposición al lixiviado se realizó por medio de una cinética de concentración con respecto a tiempos de
exposición (TE) (Control 1, Control 40, 1 ,7, 15, 30 y 40 días). Para ello se realizó un diseño completamente aleatorizado de
dos factores con un arreglo de 2x7 por triplicado. Los datos fueron analizados mediante un ANOVA seguido de una prueba de
contraste múltiple de rangos LSD. Para la cuantificación de metales en lixiviado y plantas, se empleó la técnica espectroscopía
de emisión atómica de plasma acoplado inductivamente (ICP-OES). Se identificaron 10 elementos químicos (Al, As, Ba, Cr,
Hg, Ni, Pb, Se, Tl y Zn) en lixiviado y plantas. Se observó que C. laxus absorbió más de Al, Ba, Cr, Hg y Ni, mientras que C.
zizanioides absorbió más de As, Pb, Se, Tl y Zn. En los cálculos del factor de translocación (TF) C. laxus translocó solo el As,
mientras que C. zizanioides translocó el As>Tl>Ba>Cr>Ni, respectivamente.
Palabras clave: fitorremediación, planta nativa, planta introducida, Factor de translocación, relleno sanitario.
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1 Introduction

The generation and management of solid waste require the
commitment of society to minimize the adverse effects on
the environment and health, mainly those that are disposed
in landfills (Valderrama et al., 2018). In order to contain
the generation of waste, a variety of methods have been
proposed for its final disposal. For example, until a few
years ago, solid urban waste was deposited in open-air
dumps that caused water, soil, and air pollution. To reduce
environmental impact, these sites became what we now
know as landfills (Vallero and Blight, 2019). It should be
noted that in the first landfills, liquid emissions (leachates)
were not controlled and these drained to surface water
sources or infiltrated the lower soil layers and in many cases
contaminated aquifers (Méndez et al., 2004). Due to the
toxicity of its components, some studies have considered
leachates as the major pollutant of a landfill (Méndez et al.,
2002).

Because of the complexity of leachates, various studies
have been carried out comparing different remediation
technologies; in which bioremediation is contemplated
(Giraldo, 2001). There are different bioremediation
technologies capable of reducing the concentration of
various compounds through biochemical in situ or ex
situ processes carried out by plants and microorganisms
associated with them; one of these is phytoremediation
(Delgadillo et al., 2011). This technique has positioned itself
as an economic alternative due to its low cost, since it takes
advantage of biological processes and plant mechanisms
to remove, degrade, metabolize, or volatilize different
pollutants such as metals (macronutrients, trace metals, and
radioactive isotopes), petroleum hydrocarbons, HPA, PCBs,
industrial solvents, pesticides, VOCs, BTEX, explosives
among others (Dickinson, 2017; Wei et al., 2021). Petenello
and Feldman (2012) suggest using native plants for the
phytoremediation of a contaminated site, because they are
easily adapted to the particular environmental conditions of
the region.

Cyperus laxus is a native plant from the southeastern
region of Mexico and other South American countries such
as Venezuela and Peru. Its common name is “Pelo de Chino",
but in some states of the country like Veracruz, it is known as
“Zacate Chontul" (López, 2013). It taxonomically belongs
to the Tracheophytes division of the class Angiospermae
and sub-classes Monocotyledonous, it is in the Family
Cyperaceae, and belongs to the genus: Cyperus, species:
Cyperus laxus lamouroux (López et al., 2008).

Chrysopogon zizanioides (L) Roberty, also known as
vetiver, is an introduced plant in Mexico, native to the Indian
subcontinent. It can be found in floodplains and riverbanks,
also in tropical and subtropical regions of Africa, Asia,
America, Australia, and Southern Europe (Maffei, 2002).
It belongs to the family Poaceae, subfamily; Panicoideae,
tribe: Andropogonae, and subtribe: Sorghina, and the genus

includes ten species (Bertea and Camusso, 2002).
To date, studies and assessments related to C. laxus

remain scarce, but there are other successful cases in which
the Cyperus genus has been used (Escalante et al., 2005;
López et al., 2008).

On the other hand, C. zizanioides has morphological and
physiological characteristics that make it suitable to be used
in the field of environmental protection (Roongtanakiat et
al., 2007). It has also been widely studied since the twentieth
century and nowadays it is internationally recognized for
soil conservation (Veldkamp, 1999), erosion control (Dalton
et al., 1996), tolerance to extreme conditions in soil and
heavy metals (Roongtanakiat and Chairoj, 2001), absorption
of heavy metals in soil (Wong, 2003), and the capacity
to phytoremediate hydrocarbon contaminated soils (Brand
et al., 2006), leachates (Roongtanakiat et al., 2007) and
sewage sludge (Torres, 2010). As well for biological nutrient
removal from wastewater (Wang et al., 2009), landfill
rehabilitation and restoration (Ghosh et al., 2015), use
in artificial wetlands (Ramirez, 2018), and hydroponic
phytoremediation (Davamani, 2021). As it is an introduced
species, some projects consider the use of native species with
phytoremediation potential in the region, where C. laxus
figures out as a pollutant removal agent.

For those reasons, this research aimed to identify and
evaluate the efficiency of heavy metals removal from the
leachates of a municipal solid waste (MSW) landfill using
the native plant C. laxus and the introduced plant C.
zizanioides.

2 Materials and methods

2.1 Sampling of plants, soil, and leachate

The plants were obtained from a nursery garden within the
landfill facilities. It is located on a hillside far away from
any contamination, and the site must be controlled under
its regulations. The landfill is located at the Villahermosa
- Teapa highway Km. 25 in Villahermosa, Tabasco,
Mexico, with coordinates 17°48’32.20 "N, 92°59’33.23 "W.
Both plant species were randomly collected. Twenty-one
complete modules were extracted from mother plants of each
species.

On the other hand, 15 L of leachate from the artificial
leachate lagoon near the MSW cell was sampled based
on NMX-AA-003-1980 (SECOFI, 1980) in high-density
polyethylene (HDPE) containers and preserved at 4 ºC for
the determination of heavy metals. The soil was obtained
from the landfill nursery based on standard method (NMX-
AA-132-SCFI-2006, SECOFI, 2006) from 0 - 30 cm depth
and placed in black polyethylene bags. A preliminary study
was conducted to identify that the soil was free of pollutants.

All samples were transported to the Soil Science
Laboratory of the Academic Division of Biological Sciences

2 www.rmiq.org



Cahuich-Flores et al./ Revista Mexicana de Ingeniería Química Vol. 22, No. 1(2023) IA3034

(DACBiol) for pretreatment where the plants were carefully
washed to remove any adhering soil and then acclimatized.
The soil was dried in an oven at 100 °C, grounded, and
sieved with a 2 mm mesh (#10). On the other hand,
the leachate was filtered through Whatman #40 paper to
remove particles that could interfere with the analyses for
characterization.

2.2 Experimental design

The design consists of the elaboration of a metal
concentration vs time kinetic to determine the metals taken
up by the plants C. laxus and C. zizanioides. For that
purpose, seven exposure times were established: 1, 7, 15, 30,
and 40 days, besides the control samples on day 1 and day
40, for each species in triplicate for a total of 42 experimental
units.

One kilogram of soil was placed in each pot. One
plant module per pot was incorporated to obtain statistical
independence between plants. The plants were previously
washed, planted on the homogenized soil, and acclimatized
for one month. At the end of this process, the plants were
prepared to be exposed to the leachate, for which a fixed
volume of 250 mL of crude leachate (100 % concentration)
was added per pot to prevent other variables from affecting
the results. In the case of the controls, they were irrigated
with drinking water every 3 days.

2.3 Sample pretreatment

After the exposure time established for each pot, the plants
were harvested completely and washed thoroughly with
potable water, taking care not to leave soil adhered to the
roots and leaves. They were dried in the shadow at room
temperature. Once dried, the plants were separated into two
parts (leaf and root) and ground to powder.

2.4 Acid digestion of plants, soil, and
leachate

For each solid sample of root and lead for both species,
0.25 g was weighed and a volume of 10 mL of the leachate
(liquid sample) was extracted. The samples were placed
in 50 mL Teflon tubes. To the solid samples, 10 mL
of concentrated HNO3 (Nitric Acid) and 2 mL of H2O2
(Hydrogen Peroxide) were added and for the liquid sample,
5 mL of HNO3 were poured. Subsequently, the samples
were placed in a microwave oven for 15 minutes and when
finished, they were allowed to cool at room temperature.
Finally, they were gauged to 50 mL with deionized water and
filtered with Whatman #40 paper due to the sample turbidity
(Ramos et al., 2019).

2.5 Inductively Coupled Plasma Optical
Emission Spectroscopy (ICP-OES)

After the acid digestion treatment, the metal content in
the leaves and roots was analyzed using an inductively
coupled plasma optical emission spectroscope (ICP-OES),
IRIS Advantage from Thermo Jarrel Ash Corporation, by
using a calibration curve with a Sigma-Aldrich 51844
standard solution.

2.6 Determination of the translocation
factor

The Translocation Factor (TF) allows to know the efficiency
of a plant to mobilize an element accumulated in the roots
to the aerial part of the plant (stem, leaves, flowers, seeds,
or fruits), this factor is calculated through the following
expression Eq. (1) (Ramos et al., 2019).

Translocation factor (TF) =

Metal concentration ∈ the aerial part
Metal concentration ∈ roots

(1)

2.7 Statistic analysis
A completely randomized two-factor design with a 2 × 7
arrangement was used. Factor A was the two plant species
consisting of two levels: C. laxus and C. zizanioides. Factor
B was the exposure time to the leachate with 7 levels:
Control Day 1, Control Day 40, Day 1, Day 7, Day 15,
Day 30, and Day 40. To determine the effects of the species
and the different times, a multifactorial analysis of variance
(ANOVA) followed by an LSD rank test was performed
using the statistical package Stat graphics Centurion© XVI.
Metal characterization in the leachate was performed in
triplicate. A significance level of 0.05 (α = 0.05) was used
for all cases.

3 Results

3.1 Metal concentration in leachate
Table 1 shows the concentrations of the 10 chemical
elements identified in the leachate: Al, As, Ba, Cr, Hg,
Ni, Pb, Se, Tl, and Zn. The concentrations obtained were
contrasted with the ranges reported by El-Fadel et al. (1997),
who made a compendium of other studies where they report
the normal concentration ranges for each metal in landfills
and with the values reported by Gajski et al. (2012) who
evaluated leachate samples for metal concentrations.

The elements Al, As, Ba, Cr, Hg, Ni, Pb, Se y Zn were
found within the ranges presented by El-Fadel et al. (1997)
except Tl which exceeded the range 0-0.32 mg kg−1 with a
value of 25.42±0.04 mg kg−1.
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Figure 1. kinetics of the phytoabsortion of Al, Cr, Hg, Tl and Zn of both species (whole plant). Values are represented by the
mean (± LSD). C1 = control day 1 and C40 = control day 40.

On the other hand, the values reported by Gajski et al.
(2012) observed that As, Cr, Hg, Ni, Pb, Se, and Zn, exceed
the values by far. There was no comparison point for Al, Ba,
and Tl elements.

3.2 Metal concentration in plants
Figures 1 and 2 show the kinetics of the concentration of
each metal obtained for both species. This phytoremediation
mechanism has been reported as phytoabsorption or
phytoextraction and is generally characterized as being

effective in heavy metal removal (Peralta and Volke 2020). In
this case, the entire plant will be lost, and the concentrations
obtained in roots and leaves will be unified. Each rate has
two controls: day one control (C1) and day 40 control
(C40). Furthermore, according to the absorption trends,
phytoabsorptions were divided into two groups.

Figure 1 is constituted by the phytoabsorption of Al,
Cr, Hg, Tl, and Zn. This group is characterized because
both species showed high phytoabsorption since the first day,
proving to be higher than the concentrations obtained in the
samples of the initial controls.
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Figure 2.  kinetics of the phytoextraction of As, Ba, Ni, Pb and Se of both species (whole 
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Figure 2. kinetics of the phytoextraction of As, Ba, Ni, Pb and Se of both species (whole plant). Values are represented by the
mean (± LSD). C1 = control day 1 and C40 = control day 40.

Their phytoabsorption trends after day one decreased
until day 40, but these concentrations were still higher than
those of the final controls.

Figure 2 is formed by the phytoabsorption of As, Ba,
Ni and Pb, and Se. This group is characterized because both
species presented low phytoabsorptions on the first day, but
the phytoabsorption tendency gradually increased with the
passing of the days.

3.3 Translocation factor

Figures 3 and 4 show the TF values for both species. These
values are based on the maximum phytoabsorptions obtained
in the kinetics for each metal and are represented by the
mean ± Standard Deviation. Ramos et al., (2019) mention
that plants with a TF> 1 % are considered as accumulators
or hyperaccumulators, so they can accumulate large amounts
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Figure 3. Translocation factor of C. laxus. n=3. 
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Table 1. Concentration of metals in leachate from the landfill compared to the ranges of El-Fadel et al. (1997) and
concentrations from Gajski et al. (2012).

Metals Concentrations obtained* Concentration ranges El-Fadel et al. (1997) Gajski et al. (2012)

Al 31.15±1.22 0.5-85 -
As 0.96±0.06 0-70.2 0.043
Ba 3.01±0.08 0-12.5 -
Cr 3.23±0.28 0-22.5 0.040
Hg 1.12±0.12 0-3 0.029
Ni 4.25±0.32 0-7.5 0.125
Pb 2.86±0.01 0-14.2 0.025
Se 0.44±0.01 0-1.85 0.01
Tl 25.42±0.04 0-0.32 -
Zn 18.00±0.01 0-1000 0.334

*The values are represented by mean ± standard deviation. n=3. All values are expressed in mg kg−1.

of metals. Those with values between 0.1 and 1 % are
considered as tolerant and those with values <0.1 % are
considered exclusion plants.

4 Discussion

4.1 Metal concentration in leachate
In Table 1, the presence of heavy metals in the samples
analyzed, which may be related to the fact that in open
dumps and landfills, there are mixtures of various wastes,
mainly used oils, batteries, and electronic devices, as well
as glass, various metals, pesticides, fertilizers, and paints. It
has been reported that these residues are altered by direct
contact with liquids that come from various sources (rainfall,
groundwater table, floods, among others), generating runoff

through them (known as percolation), this set of liquids it
is known as leachate. This mixture of liquids is generally
a function of the components in the site since these are
made up of a wide range of organic and inorganic polluting

compounds (Kjeldsen et al., 2002; Wiszniowski et al., 2006;
Aziz et al., 2010; San et al., 2021). Table 2 presents the main
sources of the heavy metals identified.

One of the greatest risks posed by the heavy metals
present in the leachate is migration out of the landfill, either
due to a leak or a failure of the sanitary landfill lining
(Hussein et al., 2020). For this reason, this implies a serious
threat to public health and aquatic and terrestrial ecosystems,
since heavy metals are very challenging to remedy due
to their persistence, non-biodegradability, toxicity, and
bioaccumulation (Alloway, 2012). Also, these results, are
according to the ones reported by Cameron (1992), except
for Al and Ba, As, Cr, Hg, Ni, Pb, Se, Tl and Zn,
which are included in the list of priority organic pollutants.
Additonally, there are some elements that present the
greatest risk to humans and ecosystems like: Pb, Hg, Ni, and
Zn. Those elements can be found, due to the frequency of use
in different domestic, agroindustrial, and industrial activities
(Cameron, 1992).

However, other reports mention that certain metals do
not represent risks at certain concentrations depending on
the matrix where they are found (rivers, sea, estuaries, etc.).
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Tabla 2. Main sources of heavy metals identified in the leachate.

Metal Sources References

Al Cans, doors, linnings, car body parts, food packaging, candy, cigarrette
wrappers, dross, salt cake, black dross, White dross.

Calder and Stark (2010)

As Enamels, pigments, alloys, ceramics, lubricant oils, Wood preservatives,
Fireworks, glass, printing, tanning process, semiconductors,
photoconductors.

Cameron (1992)

Ba Paints, bricks, tiles, glass, rubber, making ceramics, insect and rat poisons,
oil and fuel additives, paper making and sugar refining, refining vegtables
and animal oils.

ATSDR (2007)

Cr Steel and other metal alloys, Chrome plating, electroplating, varnishes, dye
fixatives, corrosion inhibitors, photographic emulsions, production of other
chromium derivates.

Cameron (1992)

Hg Batteries, paints, plastics, fungicides, pharmaceutical products, paper
production, electrical appliance manufacturing, catalytic process products.

Cameron (1992)

Ni Batteries, paints, cosmetics, pigments, electroplating solutions, lacquers,
cellulose derivatives, steels and alloys, spark plugs, gasoline.

Cameron (1992)

Pb Lead-acid batteries and electronic devices, lead-based solder which is used for
attaching components to printed circuit boards, and cathode ray tubes (leaded
glass for X-ray protection) in monitors or television production.

Jang and Townsend (2003)

Se Paints, pigments, and electrical industry products, bleaching and manufacture
of colored glass, production of calcium sulfide selenium pigments.

Cameron (1992)

Tl Iron, cadmium, and zinc refining by-products, use in metal alloys, costume
jewelry, optical lenses, artistic pigments, semiconductor ceramics, X-ray
detection devices, and green fireworks.

Gad and Pham (2014)

Zn Galvanization of iron and steel and brass manufacturing. Galvanized objects
such as wire, nails, and plates, among others, are used in several activities
such as automotive, construction, office equipment, and kitchen utensils.

Rubio et al. (2007)

For example, Al is stable in the environment without
interacting with biological processes, its concentration in the
soil varies between 10,000 and 300,000 ppm depending on
the pH of the soil, but in acidic soils pH <5, it is transformed
into its toxic form Al+3 (Gupta et al., 2013). In the case of
As, the concentrations in soil are between 1 and 60 ppm and
in water for human consumption, values of 50 µg/L have
been reported (Cameron, 1992; Irgolic, 1992). Normal Ba
concentrations reported for soil are between 15 and 3,500
ppm, while values of <5 to 15,000 µg/L have been reported
in water (ATSDR, 2007).

Likewise, for Cr concentrations of 80 - 200 µg/g have
been reported in soil, while in water the concentrations
are less than 1 ng/ml (Miller, 1992). In the case of Hg,
concentrations of 0.1 to 0.3 ppm have been reported in soil,
while in water the values are between 0.04 and 500 ng/Kg
(Cameron, 1992; Drabæk and Iverfeldt, 1992). For Ni, the
concentrations in soil are between 3 to 300 ppm, in the case
of water their values are <60 ppm. For Pb, the concentrations
in soil can contain up to 10 ppm of total lead (Cameron,
1992).

On the other hand, the concentrations of Se in soil are
between 0.079 - 78 ppm, while in water they are between
0.000016 to 0.041 ppm (Ihnat, 1992). Tl is ubiquitous in
the environment, but in very low concentrations, its average
abundance in the crust is 0.8 ppm (Voegelin, 2015), on
the other hand, the Cameron, 1992 mentions that the Tl

concentration ranges in German soils are from 0.17 to 0.53
ppm. Finally, Zn concentrations in soils are from 100 to 300
ppm and in bodies of water from 0.6 to 5 ppb (Cameron,
1992; Jones et al., 2014).

4.2 Metal concentration in plants
The identified metals could be divided into two categories
according to their role in plants: essential metals (nutrients
required by the plant for its development): Al, As, Cr, Ni, Se,
and Zn (Prieto et al., 2009; Marin et al., 2010; Toneatti and
Rivera 2006) and non-essential metals (nutrients that do not
have a biological function): Ba, Hg, Pb, and Tl (Prieto et al.,
2009; Lamb et al., 2013).

Overall, the ANOVA test reports that there is no effect
on the interactions of the kinetics of all metals (Figures
1 and 2) (p>0.05). This indicates that the phytoabsorption
for each kinetics was not different in both species type
and phytoabsorption times, therefore, both species can
phytoabsorb metals equally. Table 3 shows the statistically
significant differences between species for each metal.
Particularly in the mean of Al, there is a significant effect
between species (p<0.05), where C. laxus with a value of
18.15 ± 10.49b was able to phytoabsorb more Al than C.
zizanioides with a value of 16.42 ± 8.89a. There are no
significant differences between species for the rest of the
metals (p>0.05).
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Table 3. Metal concentration means for each species.
Species Metals

Al As Ba Cr Hg Ni Pb Se Tl Zn

C. laxus 18.15 ± 10.49b 0.21±0.21a 0.77 ± 1.33a 1.92 ± 1.17a 0.41 ± 0.33a 1.33 ± 1.26a 0.94 ± 0.81a 0.30 ± 0.22a 9.77 ± 6.51a 6.33 ± 4.96a

C. zizanioides 16.42 ± 8.89a 0.25±0.20a 0.67±1.08a 1.88 ± 0.99a 0.44 ± 0.32a 1.26 ± 1.29a 0.89 ± 0.98a 0.21 ± 0.19a 10.68 ± 7.26a 6.87 ± 5.81a

The values are represented by the mean ± standard deviation (SD) and in mg kg−1. n=21.Numbers with different letters in the same column indicate a significant difference p<0.05
according to the ANOVA test.

The kinetics in Figure 1 indicate that the metals are
being absorbed as they get in contact with the leachate since
they are bioavailable for the plant. However, it is also quite
likely that the plant might have passed the non-essential
metals as essential metals. For this reason, the plant absorbs
them quickly as they are required for growth.

In the kinetics of Al, the species C. laxus and C.
zizanioides presented their maximum phytoabsorptions on
days 1 and 7 with concentrations reaching 28.9 mg kg−1 and
24.5 mg kg−1 respectively. Schachtschneider et al. (2017)
and Banerjee (2016), reported concentrations values of Al in
Cyperus marginatus and C. zizanioides at 2097 mg kg−1 and
214.02 mg kg−1 respectively. According to the authors, these
values do not mean that C. laxus absorbs less amount of the
metal, but the concentrations may vary due to the variables
of each study. Schachtschneider et al. (2017) reported that
C. marginatus was used together with other plant species to
enhance higher water quality in a river as riparian vegetation,
whereas Banerjee (2016) used C. zizanioides ex situ as an
alternative method for an iron mine rehabilitation. Some
authors have reported that Al is not essential for most plants,
despite its ubiquity and its presence during the life cycle of
plants (Poschenrieder et al., 2008). Under acidic conditions
with pH values below 4.3, Al+3 is the most abundant and
toxic form for plants (Nogueirol et al., 2015). Frech and
Cedergren (1992) mentioned that normal Al rates range from
0.9-1000 mg kg−1 in different types of plants.

The kinetics of Cr in the species C. laxus and C.
zizanioides were both obtained at day 30, with maximum
phytoabsorptions of 2.99 mg kg−1 and 2.639 mg kg−1,
respectively. De Moya (2016) and Banerjee (2016) reported
Cr values in Cyperus odoratus and C. zizanioides of 36.8
mg kg−1 and 13.22 mg kg−1, respectively. De Moya (2016)
employed C. odoratus to evaluate Cr and Zn accumulation
in the species. Cr is a non-essential metal for most plants
but might be essential for some of them. Cameron (1992)
mentions normal ranges of Cr in plants at 0.1-0.5 mg kg−1

and toxic ranges of 5-30 mg kg−1.

In the Hg kinetics, the species C. laxus and C.
zizanioides presented maximum phytoabsorptions on days
1 and 7, with values of 0.83 mg kg−1 and 0.82 mg kg−1,
respectively. Perez et al. (2016) and Troung et al. (2010),
reported Hg levels in C. laxus and C. zizanioides of 5.47 mg
kg−1 and 0.41 mg kg−1, respectively. The study by Perez et
al. (2016) was focused on the isolation and identification of
Hg-resistant bacteria in symbiosis with C. laxus to remediate
soils from a mine in Colombia, in contrast, Troung et
al. (2010) showed the uptake of Hg from a heavy metal-
contaminated soil. Hg is a non-essential metal for the plant

that is toxic at low concentrations. Drabæk and Iverfeldt
(1992) reported that normal ranges of Hg in plants lie
between 0.1 and 9.5 mg kg−1 and 18.02 mg kg−1 for C.
zizanioides.

Talium is the most important metal, with the higher
toxicity and concentration in leachate showing the kinetics
of maximum phytoabsorptions at days 7 and 40 reaching
values of 14.8 mg kg−1 for C. laxus and 18.02 mg kg−1

for C. zizanioides. Alvarez et al. (2013) and De la Cruz
et al. (2018), reported Tl concentrations of 0.26 mg kg−1

and 5.55 mg kg−1 respectively in Cyperus longus and C.
zizanioides. The study by Alvarez et al. (2013) evaluated the
environmental impact caused by the meteorization of mining
waste containing sphalerite. In addition, De la Cruz et al.
(2018) evaluated the phytoremediation potential of leachate
for heavy metals. The elevated accumulation of this metal in
plants seems to be a function of its concentration in the soil
mobile fraction. The process of Tl assimilation by plants is
relatively easy as it is generally present as an analog of K. Its
transfer from the soil to the plants depends on the properties
of each plant species, as well as the soil properties such as
texture and humic content, cation exchange capacity, pH,
and other properties (Madejón, 2012). Tl is a nonessential
metal, and it is highly toxic to plants, as well as for animals
and humans. Normal Tl levels in plants range from 0.008 -
0.126 mg kg−1 (Cameron, 1992).

Phytoabsorption of Zn, obtained peaks on days 1 and
15, reaching concentrations of 12.86 mg kg−1 and 13.65 mg
kg−1, in C. laxus and C. zizanioides, respectively. Alvarez et
al. (2013) and Truong et al. (2010), reported Zn contents
of 591 mg kg−1 and 975 mg kg−1, in C. longus and C.
zizanioides, respectively. Zn is an essential element for the
plant and in elevated concentrations, it might be detrimental.
According to Cameron (1992), Zn normal ranges in plants
are 27-150 mg kg−1.

The kinetics in Figure 2 indicate that these metals were
poorly bioavailable for the plants on the first days, mainly
influenced by factors such as temperature, pH, growth
conditions, and even the leachate nature.

The As kinetics of the species C. laxus and C.
zizanioides exhibited maximum phytoabsorption on days
15 and 30, with As concentrations of 0.44 mg kg−1 and
0.50 mg kg−1, respectively. Raab et al. (2007) and Troung
et al. (2010) reported As concentrations of 8.6 mg kg−1

and 130.5 mg kg−1 in Cyperus papyrus and C. zizanioides,
respectively. The Raab et al. (2007) study consisted of the
selection of a variety of similar species, to find out the
behavior of metal uptake in those species. As a result of the
low availability of As, its concentration in plants is low and
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fluctuating. Huang et al. (2006) mentioned that the normal
As content in plants can vary from less than 0.01 to 5 µg
g−1, while the Cameron (1992) mentions that normal ranges
are <0.5 mg kg−1 and that the toxic ranges are within 5-20
mg kg−1.

The kinetics of Ba in C. laxus and C. zizanioides
obtained maximum phytoabsorptions of 2.8 mg kg−1 and
2.41 mg kg−1 respectively, both recorded at day 40. In this
case, Li et al. (2011) and Ramos et al. (2019) obtained Ba
concentrations of 159.3 mg kg−1 and 76 mg kg−1 in Cyperus
iria and C. zizanioides, respectively. Li et al. (2011) used C.
iria to evaluate whether it had the potential for remediating
soils contaminated with uranium waste from a factory in
southern China. Conversely, Ramos et al. (2019) focused
on the identification of metals in a heterogeneous leachate
mixture. Ba is non-essential metal for the plant and only a
few research on its toxic effect is available. Chaudhry et al.
(1977) reported normal non-toxic concentrations of 4-50 mg
kg−1 in plants.

The Ni kinetics for the species C. laxus and C.
zizanioides showed phytoabsorptions of 3.77 mg kg−1 and
3.22 mg kg−1 respectively, both obtained at day 40. Li et al.
(2011) and Melato et al. (2016) reported Ni concentrations
of 28.05 mg kg−1 and 126 mg kg−1 respectively for C. iria
and C. zizanioides species. The study by Melato et al. (2016)
consisted of researching C. zizanioides po-tential for the
rehabilitation of the tailings of a gold mine in South Africa.
Ni is an essential mineral for some plants but is highly toxic.
According to Cameron (1992), the normal ranges are from
0.1 to 5 mg kg−1, and toxic ranges in plants are from 10-100
mg kg−1.

Pb kinetics, presented maximum concentrations for C.
laxus and C. zizaniodes to be 1.98 mg kg−1 and 2.48 mg
kg−1, at days 40 and 30, respectively. Li et al. (2011) and
Banerjee (2016) reported values of 89.5 mg kg−1 in C. iria
and 2.53 mg kg−1 for C. zizanioides. Lead is a non-essential
toxic metal. Reeves and Baker (2000) stated that normal
ranges of Pb are between 0.1-5 mg kg−1.

Finally, the Se kinetics of C. laxus and C. zizanioides
species were obtained at days 40 and 30 with values of 0.47
mg kg−1 and 0.50 mg kg−1, respectively. Although studies
to compare Se accumulation in Cyperus sp are scarce,
authors such as Brieger et al. (1992) and Cherry and Guthrie
(1979) reported concentrations of 1.9 mg kg−1 and 3.5 mg
kg−1, in Cyperus odoratus and Cyperus retrofractus species,
respectively. For C. zizanioides Ramos et al. (2019) obtained
a concentration of 0.80 mg kg−1. The study by Brieger et al.
(1992) focussed on the identification of plants to analyze the
concentration of metals, while Cherry and Guthrie (1979)
investigated the bioaccumulation of metals from a drainage.
It is an essential metal, and it is toxic for plants at high
concentrations. According to Cameron (1992) normal Se
ranges from 0.01-2 mg kg−1 and toxic levels range from 5-
30 mg kg−1.

4.3 Translocation factor
In Figure 3 C. laxus translocated only As to its aerial part,
with a TF value of 1.79±0.21 %, this value of TF> 1
% indicates that the specie is a hyperaccumulator of this
metal; on the other hand, it could be observed that C.
laxus obtained TFs near 1 % being Ni, Cr and Pb, having
values of 0.97±0.03 %, 0.96±0.39 % and 0.96±0.50 %,
respectively, which demonstrates that the specie is tolerant
to these metals.

Moreover, in Figure 4 the species C. zizanioides
translocated to its aerial part five metals that were
As>Tl>Ba>Cr>Ni at values of 2.73±3.93 %, 1.40±0.16 %,
1.35±2.09 %. 1.30±0.76 % and 1.06±0.19 %, respectively. It
also obtained TF close to 1%, being Pb and Zn with values
of 0.98±0.11 % and 0.94±0.71 %, respectively, indicating
that the plant showed tolerance to these metals.

The results reveal that both species were not excluders
of any metal since the translocation factors were greater than
0.1 % according to Ramos et al. (2019). The species C. laxus
despite not being as pioneer as C. zizanioides, possesses
the ability to compete in the translocation of heavy metals
of great importance. Due to the limited number of studies,
it was not possible to establish a comparison point in the
translocation factors for both species, so this work would
be one of the first to provide comparison results for future
research.

Conclusions

This study demonstrated the high potential for the removal
of heavy metals that the native species C. laxus possesses
and that it also can compete with the species C. zizanioides,
known for being a pioneer in phytoremediation. For these
reasons, phytoremediation as an alternative to metal removal
using native plants may be key to mitigating environmental
problems related to leachate management in landfills. On
the other hand, TF studies of the C. laxus species are very
scarce, so the data reported in this study are one of the
first contributions. The data obtained from TF showed that
it can be considered a hyperaccumulator species, since it
obtained TF values greater than one, indicating that it could
accumulate large amounts of heavy metals in the aerial parts.
Finally, this study confirms that the use of native plants
is ideal to avoid the introduction of species that may be
invasive to the region.
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