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Abstract
The Lerma River’s high pollution has changed its environmental conditions. Therefore, in batch cultures, the present work
characterized the sediments from the Lerma River, where the methane production and the structure of the microflora were
evaluated in three sampling points. Biomass was taken from an anaerobic Waste Water Treatment Plant (WWTP) as a control
sludge. Results showed that the glucose degradation rate of the control was 48 times faster than the degradation rate of the
sediments; however, the substrate degradation rates presented by the three sediments were similar, with chemical oxygen demand
(COD) removal efficiencies higher than 95%. Regarding the Biomethane Potential (BMP), the control and the three sediments
presented high BMP. Finally, the sediments showed the potential to produce methane, and the main microflora identified in
the sediments were delta-proteobacteria, beta-proteobacteria, clostridia, bacteroidia, and methanomicrobia; these classes are
involved in each stage of anaerobic digestion.
Keywords: Anaerobic-sludge, sediments, BMP, microflora, methane, river.

Resumen
La alta contaminación del río Lerma ha modificado sus condiciones ambientales. Por lo tanto, en el presente trabajo se realizó
la caracterización de los sedimentos del río Lerma, donde se evaluó la producción de metano y la estructura de la microflora en
tres puntos de muestreo, en cultivos por lote. Como estudio control se utilizó biomasa de una Planta de Tratamiento de Aguas
Residuales (PTAR) anaerobia. Los resultados mostraron que la tasa de degradación de la glucosa del estudio control fue 48 veces
más rápida que la tasa de degradación de los sedimentos; sin embargo, las tasas de degradación del sustrato que presentaron
los tres sedimentos fueron similares, con eficiencias de remoción de la demanda química de oxígeno (DQO) superiores al 95%.
En cuanto al Potencial de Biometano (PBM), el control y los tres sedimentos presentaron valores altos de PBM. Finalmente,
los sedimentos presentaron el potencial de producir metano, y la principal microflora identificada en los sedimentos fueron
delta-proteobacteria, beta-proteobacteria, clostridia, bacteroidia y methanomicrobia; esta microflora participa en cada una de
las etapas de la digestión anaerobia.
Palabras clave: lodo anaerobio, sedimentos, PBM, microflora, metano, río.
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1 Introduction

The Lerma River Upper Basin (LRUB) is the second longest
river in Mexico, with 1281 kilometers. LRUB has become
the central waste collector from anthropogenic activities,
a receptor of wastewater from towns, industrial zones,
industrial parks, and water treatment plants, which contains
high contents of organic matter, heavy metals, and other
complex pollutants (Barceló-Quintal et al., 2013, González-
Blanco., 2017, Mora et al., 2021). The increased pollution
exceeded its assimilation and dilution capacity throughout
the Lerma River, showing accumulation of pollutants (e.g.,
82.41 mg BOD5/L, 0.2 mg dissolved oxygen (DO)/L,18.3
mg NH+

4 /L, and metals like Pb at 444.3 ± 13.3 µg/g) (Salinas
Tapia et al., 2015; Hernández-Mendoza et al., 2018). In
addition, the high pollution in the Lerma River significantly
diminishes the dissolved oxygen concentration, propitiating
anaerobic conditions and destroying aquatic life.

The Lerma River, being contaminated for a long time,
allows microorganisms to adapt to these pollutants (Carreño
et al. 2018). The characterization of sediments in terms of
molecular biology and the degradation of organic matter to
produce methane is scarce in the literature. In the present
work, the sediments were studied as inoculum sources
to evaluate their capability to produce methane, using
glucose as carbon and energy source, in batch cultures. This
information might be helpful to understand the influence
of the anaerobic conditions in the microflora, sediments’
participation in the water quality of the Lerma river, and
their capability to degrade glucose and produce methane.
In addition, these sediments might be an excellent inoculum
source to inoculate biological reactors. Therefore, evaluating
the sediments’ biomethane potential and microbiota would
indicate their metabolic potential. Thus, this work aimed to
assess the BMP and characterize the microflora of the Lerma
River sediments.

2 Material and methods

2.1 Sampling points

The sample collection sites are P1, P2, and P3, as shown
in figure 1. 5 liters of simple samples were taken. The
flow of water direction is from P1 to P3. The first sample
collection site (i.e., P1) was taken one kilometer before
WWTP (Reciclagua Ambiental), the second sample site (P2)
was 500 meters before WWTP, and the last sample site was
taken 200 meters after the discharge point of the WWTP.
Anaerobic sludge from the WWTP of an industrial candy
producer was used as a control.

2.2 Batch cultures

Batch studies were performed in serological 120 mL bottles
of nominal volume and 80 ml of operating volume. The
sludge and sediments were washed ten times with sodium
chloride (9 g/L) to eliminate all residual contaminants or
impurities. Batch cultures were inoculated with 4 g VSS/L
and 1 g glucose-COD/L as a carbon and energy source.
The culture medium was the following, in g/L: NH4CI
(0.15), K2HPO4 (0.35), KH2PO4 (0.27), NaHCO3 (1.5),
CaCI2 (0.01), and 0.5 mL/L of trace elements (Romualdo-
Martinez et al., 2022). The liquid culture medium and
headspace were flushed with helium for 3 min to remove
oxygen and ensure anaerobic conditions. Batch cultures
were carried out at 30°C in an incubator in duplicate. An
inverted column containing a 3% sodium hydroxide solution
was used for measuring methane. This study evaluated the
potential of the sludge and sediments through the following
variable responses: the BMP, specific COD consumption
rate, and COD removal. The Gompertz equation was used to
compute the specific rates through the OriginLab program.
In addition, the Tukey statistical test (α = 0.05) was used for
data analysis in the MiniTab 18 software.

Owen et al. (1978) mentioned that to evaluate the
organic content in a liquid sample, the BMP should be
expressed as L CH4/ g CODremoved . So, according to
the following equations, the theoretical BMP calculated
according to the environmental conditions of batch cultures
was 0.384 L CH4 / g glucose-CODremoved .

BMP =
∆COD

Kt
= LCH4 (1)

kt =
P ∗ L
R ∗T

(2)

Where ∆COD is 1 g of glucose-COD removed and converted
to CH4, R is the gas constant (0.082 atm-L/mol-K), T is
the temperature of the experiment (303.15 K), p is the
atmospheric pressure (1.01 atm), and L is 64 g COD/mol
CH4.

2.3 Microbial community analysis

A mass of 0.25 g of sediments and anaerobic sludge was
used to extract DNA from an extraction kit (QUIAGEN,
USA). The methodology detailed in Aguirre-Garrido et al.
(2016) was employed for DNA extraction, PCR analysis,
amplicon multiplexing, and sequencing. 16S rRNA data was
processed in MOTHUR software (Schloss et al., 2009).
The number of OTUs, indices of Chao1 richness, inverse
Simpson diversity, and Shannon diversity were calculated
in Mothur. Finally, the composition and structure of the
bacterial communities were determined with the RDP
Trainset 14 Bayesian classifier (Wang et al., 2007).
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Figure 1. Sample collection sites in the Lerma River Upper
Basin (taken from google earth).

3 Analytical methods

The soluble COD was determined with the closed reflux
technique. The volatile suspended solids (VVS) were
quantified by the gravimetric technique reported in the
standard methods (APHA, 2005). CH4 was detected by gas
chromatography, with He as the carrier gas at a 20 mL/min
flow rate and thermal conductivity detector; the injection
port, oven, and detector temperatures were 80, 30, and 120
°C, respectively, using a stainless-steel column packed with
Porapak T (60/80 mesh) (GOW-MAC Model 580 isothermal
120 V, 60 Hz). The pH was determined with a selective
electrode (HANNA Instrument).

4 Results and discussion

Figure 2 shows the COD consumption profiles. The biomass
from WWTP and sediments of P2 took 32 days to remove
the initial COD at 100%, whereas the sediments of P1 and

P3 took 40 days. The control study showed a fast drop from
0 to 6 days; the profile consumption was slow after that.
However, the sediments P1, P2, and P3 showed a linear
consumption profile from the beginning to the end of the
batch cultures. For instance, the samples collected from
P1 and P2 were more influenced by municipal wastewater,
whereas P3 was more influenced by municipal wastewater,
industrial wastewater, and treated water from the WWTP.
The control study showed a COD consumption rate of
418.04 ± 88 mg COD/g VSS-d. P1, P2, and P3 displayed
a COD consumption rate of 7.35 ± 1.47, 9.78 ± 1.49, and
13.39 ± 7.93 mg COD/g VSS-d, respectively (Table 1).
Statistically, the sediment studies did not show a significant
difference.

Figure 3-A shows the methane production profiles; for
example, the control study achieved almost 120 ml of CH4,
but the sediments from P1, P2, and P3 produced less,
reaching about 72 ml of CH4 at the end of the batch cultures.
The BMP of all studies, including the control, showed an
over methane production regarding the theoretical methane
production (i.e., 0.384 L CH4/ g glucose-CODremoved), as
seen in figure 3-B.

According to the COD removed, producing that amount
of methane is impossible, so there was another carbon
source or the participation of endogenous metabolism. The
time of batch culture suggested that anaerobic digestion
of the sediments took place, so a control test was carried
out without glucose to verify the methane production via
anaerobic sludge digestion. The experimental results showed
a methane production of 40 mL via anaerobic digestion
of the sediments (Figure 3-A). These experimental results
justify the over-methane production.
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Figure 2. COD consumption profiles. (�) control, (•) P1, (♦)
P2, (N) P3

Table 1. Kinetic parameters of the batch cultures.

Batch culture mg COD/g VSS-d COD removal efficiency (%) BMP (L CH4 / g glucose-CODremoved)

Control (WWTP) 418.04 ± 88 100 ± 0.01 1.49 ± 0.05
P1 7.35 ± 1.47 99.45 ± 0.07 0.91 ± 0.05
P2 9.78 ± 1.49 95.41 ± 6.49 0.93 ± 0.05
P3 13.39 ± 7.93 99.95 ± 0.07 0.90 ± 0.04
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Figure 4. Relative abundance of main bacterial or archaea
classes in the samples.

On the other hand, the relative abundance of bacteria
was more significant than in archaea in all samples. For
instance, the control, P1, P2, and P3 showed a relative
abundance of 98.6, 97.25, 96.94, and 96.731% for bacteria,
respectively. The relative abundance for archaea was less,
1.397, 2.048, 3.051, and 3.269%, respectively.

The class scheme shows a relative abundance according
to the proportion of sequences ranging from 0 to 18.8%
(Figure 4). The predominant microbial community was

delta-proteobacteria, beta-proteobacteria, clostridia, and
bacteroidia. The microbiome detected is involved in
various stages of methane production, such as hydrolysis,
acidogenesis, acetogenesis, and methanogenesis. For
instance, the group of bacteria belonging to Proteobacteria
degrades all kinds of carbohydrates by the presence of alpha,
beta, gamma, and delta groups (Ariesyady et al. 2007).
The clostridia class belongs to the phylum Firmicutes,
responsible for hydrolysis, organic matter fermentation,
and acetate formation (Fernández et al., 2008, Ali et al.,
2020). The class of Bacteroidetes plays an essential role
in hydrolysis and in producing volatile fatty acids, carbon
dioxide, and molecular hydrogen (Traversi et al. 2012).
Bacteroides were also associated with EPS secretion used
for granulation or biofilm formation (Yu et al., 2012).
Also, in the present work, the class methanomicrobia
(domain archaea) was identified in all samples. For example,
Tabatabaei et al. (2010) observed in an anaerobic reactor that
all the clones belonging to methanomicrobia were associated
with the genus Methanosaeta, an essential acetoclastic
methanogen for methane production in high-strength organic
wastewater. On the other hand, Anaerolineae was identified
in more relative abundance in P3 than the other samples;
for example, in P3, the chemical composition of the Lerma
River is more complex. Anaerolineae play a vital role in
hydrocarbon-degrading environments under methanogenic
conditions (Liang et al., 2017).

Table 2 summarizes the results obtained from the
analysis in Mothur. In the control test, a lower number
of observed species was found compared to the samples
of the Lerma River sediments. These results indicated a
more extraordinary richness in the sediments of the Lerma
River, which can be due to the diversity of substrates from
wastewater discharges. Contrary, the anaerobic reactor (i.e.,
the WWTP) operates under-regulated operating conditions
defined by hydraulic residence times, stable pH, organic load
rates without much variation, and defined substrates. The
latter could be one of the leading indicators of why there
is fewer species diversity in the control sludge.
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Table 2. Richness and diversity estimators of bacteria and archaea phylotypes.

Batch culture No. Sequences Sobs Good’s coverage Invsimpson Shannon Chao1

Control (WWTP) 8659 3112 0.706 144.75 6.7 25134.04
P1 8659 4006.99 0.611 284.23 7.22 27040.60
P2 8659 4122.64 0.594 313.93 7.27 32169.23
P3 8659 4302.39 0.578 336.74 7.44 36776.89

These experimental results evidenced that the
microbiome of the Lerma River sediments showed that the
prevailing environmental conditions favored the anaerobic
conditions. Sediments exposed to wastewater discharges
of chemical complexity make these sediments very
attractive for evaluating their metabolic capacity to degrade
recalcitrant compounds in future studies. In addition,
these sediments might be an excellent inoculum source
to inoculate reactors at the laboratory scale or even at the
industrial level for inoculation or reinoculation since an
inoculum source requirement is one of the main problems
in startup wastewater treatment plants under anaerobic
conditions because the inoculum is scarce or difficult to
obtain, or sometimes it is for sale at a high cost.

Conclusions

Characterizing the sediments from the Lerma River
displayed an excellent biochemical methane potential
during glucose degradation. Sediments displayed microflora
involved in anaerobic digestion, such as hydrolysis,
acidogenesis, acetogenesis, and methanogenesis. The
main classes identified were delta-proteobacteria,
beta-proteobacteria, clostridia, bacteroidia, and
methanomicrobia. Finally, this work showed evidence of
the sediments’ high potential to produce methane, and they
might be an excellent source of inoculum for wastewater
treatment plants.
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