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Abstract
This study conducted a comprehensive evaluation of groundwater quality at 1,068 monitoring sites across all hydrologic-
administrative regions in Mexico. Based on the analysis of 14 physicochemical and microbiological parameters, which include
fluorides, fecal coliforms, nitrate-nitrogen, arsenic, cadmium, chromium, mercury, lead, manganese, iron, alkalinity, conductivity,
water hardness, and total dissolved solids, it was found that 41% of the sites exhibited good water quality. Additionally, 23% of
the sites presented regular water quality, while 36% of the sites showed poor water quality. Sites with good water quality exhibited
lower concentrations of major ions (Ca, Mg, Na, K, SO4, Cl, and HCO3) compared to sites with regular and poor water quality.
Water nomenclature was also estimated using the VL model based on Support Vector Machines with linear kernel, statistical
techniques, and Monte Carlo simulation. This model classified 87% of the monitoring sites into four basic water classes: Na
HCO3 (47%); Na Cl (18%); Ca HCO3 (17%); and Na SO4 (5%). Furthermore, the t-SNE computational algorithm was applied
to reduce the dimensionality of the data and visualize it in a 2D plot; in this context, the data corresponds to the chemical
concentrations of major ions and contaminants. This algorithm obtained a clustering consistent with the water nomenclature
estimated by the VL model. The contaminant study results revealed that all hydrologic-administrative regions presented at least
one physicochemical-microbiological parameter that exceeded the acceptable levels defined by regulations of Mexico. Therefore,
the implementation of environmental sanitation strategies is crucial to ensure the availability of high-quality water resources that
are safe for human health.
Keywords: Support Vector Machine, Gradient Boosting, Log-ratio transform, Hill-Piper diagram, Visualization 2D t-SNE.

Resumen
Este estudio realizó una evaluación integral de la calidad del agua subterránea en 1,068 sitios de monitoreo en todas las regiones
hidrológico-administrativas de México. Según el análisis de 14 parámetros fisicoquímicos y microbiológicos, que incluyen
fluoruros, coliformes fecales, nitrato-nitrógeno, arsénico, cadmio, cromo, mercurio, plomo, manganeso, hierro, alcalinidad,
conductividad, dureza del agua y sólidos disueltos totales, se encontró que el 41% de los sitios exhibieron agua de buena calidad.
Adicionalmente, el 23% de los sitios presentaron agua de calidad regular, mientras que el 36% de los sitios mostraron agua de
mala calidad. Los sitios con buena calidad de agua presentaron menores concentraciones de los iones mayores (Ca, Mg, Na, K,
SO4, Cl y HCO3) en comparación con los sitios con calidad de agua regular y mala. También se estimó la nomenclatura del agua
utilizando el modelo VL basado en Máquinas de Vectores de Soporte con kernel lineal, técnicas estadísticas y simulación Monte
Carlo. Este modelo clasificó el 87% de los sitios de monitoreo en cuatro clases básicas de agua: Na HCO3 (47%); Na Cl (18%);
Ca HCO3 (17%); y Na SO4 (5%). Además, se aplicó el algoritmo computacional t-SNE para reducir la dimensión de los datos
y visualizarlos en un gráfico 2D; en este contexto, los datos corresponden a concentraciones químicas de los iones mayoritarios
y contaminantes. Este algoritmo obtuvo un agrupamiento coherente con la nomenclatura del agua estimada por el modelo VL.
Los resultados del estudio de contaminantes revelaron que todas las regiones hidrológico-administrativas presentaron al menos
un parámetro fisicoquímico-microbiológico que excedió los niveles aceptables definidos por la normatividad de México. Por lo
tanto, la implementación de estrategias de saneamiento ambiental es crucial para garantizar la disponibilidad de recursos hídricos
de alta calidad que sean seguros para la salud humana.
Palabras clave: Support Vector Machine, Gradient Boosting, Log-ratio transform, Hill-Piper diagram, Visualización 2D t-SNE.
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1 Introduction

Water is an essential natural resource for the
survival of organisms and ecosystems. However, it
is susceptible to changes produced by anthropogenic
activities and natural factors, making water quality
management crucial. Monitoring physicochemical and
microbiological parameters of water is essential to ensure its
adequacy. Hydrogeochemical assessment and groundwater
classification can contribute to sustainable development and
mitigate potential adverse health consequences in the future
(Amiri and Nakagawa, 2021).

Water classification plays a valuable role in offering
initial insights into the complex hydrochemical mechanisms
occurring beneath the surface (Kumar, 2013). However,
many of these approaches (e.g., Hill, 1940; Piper, 1944;
Durov, 1948; Handa, 1965; Chadha, 1999; Güler et al., 2002;
Ahmad et al., 2003; Ray and Mukherjee, 2008; Giménez-
Forcada, 2010; Al-Bassam and Khalil, 2012; Teng et al.,
2016; Elhag, 2017; Shelton et al., 2018; Pérez-Espinosa,
2019) rely on the traditional Hill-Piper diagram (Hill, 1940;
Piper, 1944), which utilizes two ternary diagrams based on
the normalized concentrations (mM) of 4 cations (Ca, Mg,
(Na + K)) and 4 anions (SO4, Cl, (HCO3+CO3)) to identify
five water types (Díaz-González et al., 2021).

For more than a century, geochemistry has made use
of ternary diagrams to illustrate compositional variability
among components of a geochemical sample set and to draw
information from the spatial positioning of the points on
the diagram. However, it is now widely documented that
ternary diagrams suffer from issues of distortion and errors
amplification-reduction, produced by closure and constant
sum problems (Butler, 1979; Aitchison, 1986; Verma, 2015).
Further, mixing trends in ternary diagrams have been
wrongly considered to be straight lines, but show variations
in thickness along the mixing curve when accounting for
analytical errors (Verma, 2015; Verma, et al., 2021).

In response to these limitations, Verma et al. (2021)
proposed a multidimensional model (7-hlr) for water
classification, which utilizes linear discriminant analysis,
canonical analysis, and hybrid log-ratio transformations.
Subsequently, Díaz-González et al. (2021) introduced four
new machine learning models (CB, VL, VP, VR) and
compared them with the 7-hlr model proposed by Verma
et al. (2021). These new models, based on CatBoost and
Support Vector Machines (SVM), outperformed the 7-hlr
model, demonstrating higher classification accuracy (Díaz-
González et al., 2021). Recently, to facilitate the application
and comparative analysis of these models, Díaz-González et
al. (2022) developed in Python a freely available computer
program called WCSystem (Water Classification System).

In this study, 1,068 groundwater samples collected
from monitoring sites across 13 Mexican hydrologic-
administrative regions reported by the National Water
Commission of Mexico (CONAGUA) were processed using
WCSystem software, revealing the prevalence of basic
and hybrid water types. Overcoming the limitations of
traditional ternary diagrams and introducing new models
and computational tools, this study contributes to a
more accurate water classification and assessment of
groundwater quality in Mexico, providing valuable insights

for groundwater resource management and sustainable
development.

2 Water classification models
encapsulated in the WCSystem
program

2.1 Training and validation databases of
water classification models

Training (50,000 samples) and validation (8,000 samples)
databases were generated through Monte Carlo simulations
of ionic charge-balanced concentrations of 8 ions (Ca, Mg,
Na, K, SO4, Cl, HCO3, and CO3; mM). The methodology
for generating these databases was extensively described by
Verma et al. (2021) and Díaz-González et al. (2021). The
simulation procedure can be summarized as follows:

1. Monte Carlo simulation procedure: for each
ion (Ca, Mg, Na, K, SO4, Cl, HCO3, and
CO3), uniformly distributed values IID U(0,1) were
simulated to generate the training and validation
datasets, using the Mersenne Twister pseudo-
random number generator algorithm (Matsumoto and
Nishimura, 1996; Law and Kelton, 2000; Verma and
Quiroz-Ruiz, 2006). These values were scaled to
range of 0-100 (Fig. 1a) to ensure the representability
of the ternary diagrams. Fig. 1 provides schematic
representations of the training database, including
ternary diagrams (Fig. 1a-b), a 2D plot (Fig. 1c-
d), and a 3D plot (Fig. 1e-f) for cation and anion
data. Furthermore, Fig. 2a presents a histogram of 8
variables for a training database, which are uniformly
distributed values U(0,1) and scaled to the range of
0-100.

2. Ionic charge-balance (ICB) validation procedure:
for each simulated water sample, the ionic charge-
balance (ICB; Nicholson, 1993) was calculated as

follows: ICB =
|
∑n

i cations+
∑n

i anions|
|
∑n

i cations−
∑n

i anions| , where i = 1 to

4; cations and anions are expressed in mM units. An
exacting threshold of 0.00005% was defined as the
permissible maximum unbalance, therefore when the
unbalance was greater than this value, an unbalance

factor (F =
|
∑n

i cations|
|
∑n

i anions| ) was calculated and multiplied

by a pseudo-random increment ranging from 0 to
10%, which was applied for each ion (Ca, Mg, Na,
K, SO4, Cl, HCO3, and CO3). This procedure was
applied iteratively until the sample was balanced,
enabling the generation of samples with ICB <
±0.00005%. Figure 2b shows a histogram of the
training database after the ICB validation process.

3. Initial assignment for 16 balanced classes: the
initial assignment for 16 balanced classes (with
a minimum of 3021 samples and a maximum
of 3247 samples) involved utilizing the concept
of Greater Molar Concentration (GMC) for each
cation and anion. These classes represent the cross-
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combinations of four cations (Ca, Mg, Na,K) and four
anions (SO4, Cl, HCO3,CO3) classes.

4. Hybrid log-ratio (hlr) transformation: The
hlr of the molar concentrations of 8 ions (Ca,
Mg, Na, K, SO4, Cl, HCO3, and CO3) was

calculated as follows: hlr(i+1) = ln
(

g(xi,...,xn)1/n

x(i+1)

)
,

i = 1,2, . . . , (n − 1), where g() represents the
geometric mean, xi represents the concentration of
each ion in the same order (Ca×Mg×Na×K×SO4×
Cl×HCO3×CO3)1/8, x(i+1) denotes one ion at a time
from second (Mg) to last (CO3), and n is the total
number of ions (n = 8). Based on this equation,

seven hlr variables (hlr2 to hlr8) were calculated
as follows: hlr2=ln(gm/Mg), hlr3=ln(gm/Na),
hlr4=ln(gm/K), hlr5=ln(gm/SO4), hlr6=ln(gm/Cl),
hlr7=ln(gm/HCO3), and hlr8=ln(gm/CO3); where
gm=(Ca×Mg×Na×K×SO4×Cl×HCO3×CO3)1/8

and represents the geometric mean of 8 ions.
According to Aitchison and Egozcue (2005),
the utilization of the geometric mean treats the
components symmetrically and provides a reasonable
approach to quantify the interdependence among the
parts. Finally, a histogram of the hlr transformations
is presented in Fig. 2c.

Fig. 1. Schematic representation (modified of Díaz-González et al. 2021) of the training database (50,000 simulated samples):
(a-b) cation (Ca, Mg, and Na) and anion (SO4, Cl, and HCO3) data ternary diagrams; (c-d) cation (Ca and Mg) and anion (SO4,
and Cl) data 2D plot; (e-f) cation (Ca, Mg, and Na) and anion (SO4, Cl, and HCO3) data 3D plot.
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Fig. 2. Histograms (modified of Díaz-González et al. 2021) of simulated variables (50,000 samples); (a) data generated of
the distribution U(0,1) multiplied by a scalar 100; (b) major ions data after ionic charge-balance procedure; (c) hlr2-hlr8
transformations of the 8 major ions.

Fig. 3. Schematic diagrams (modified after Díaz-González et al., 2021, 2022) about the methodology and application of
water classification models (7-hlr: Verma et al., 2021; CB, VL, VP, and VP: Díaz-González et al., 2021): a) flowchart of the
methodology of five water classification models; b) flowchart of computer program WCSystem procedure.

2.2 Water classification models based on
machine learning

These models were proposed by Verma et al. (2021) and
Díaz-González et al. (2021) using 7 features (hlr2 to hlr8)
for their training, and are briefly described below (see Fig.
3a).

1. 7-hlr model: This model is based on linear
discriminant and canonical analysis (LDCA)
classification parametric technique, that transforms
input data into a lower-dimensional space to
maximize the ratio of between-class variance to
within-class variance. This process makes it easier to
distinguish between different classes, which in turn
makes classification more effective (Tharwat et al.,
2019). Since LDCA is parametric, it requires that the
features of each class be multi-normally distributed.
For this purpose, each class was depurated of
multivariate discordant outliers using DOMuDaF
(Discordant Outlier from Multivariate Data) program

(Verma et al., 2016), which involved a transformation
of the Wilks statistic W to F-test (Rencher, 2002).
After applying this program, the final training
database consisted of 46,292 outlier-free samples
suitable for training LDCA.
The 7-hlr model (Fig. 3a) consists of 8 “three at a
time" LDCA classifiers (Ca-Mg-Na, Ca-Mg-K, Ca-
Na-K, Mg-Na-K, SO4-Cl-HCO3, SO4-Cl-CO3, SO4-
CO3-HCO3, and Cl-HCO3-CO3). These classifiers
enable the identification of 16 water types through
cross combinations.

2. CB model: This model is based on the initial
dataset (50,000 samples) and CatBoost machine
learning algorithm available on CatBoost library
(Prokhorenkova et al., 2018) for Python. CatBoost
constructs decision trees sequentially, with each
subsequent tree having decreased loss (Géron, 2019).
The CB model consists of 8 “One-versus-Rest”
binary classifiers as follows (Fig. 3a): (1) Ca vs (Mg-
Na-K); (2) Mg vs (Ca-Na-K); (3) Na vs (Ca-Mg-K);
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(4) K vs (Ca-Mg-Na); (5) SO4, vs (Cl, HCO3, and
CO3); (6) Cl, vs (SO4, HCO3, and CO3); (7) HCO3,
vs (SO4, Cl, and CO3); and (8) CO3, vs (SO4, Cl, and
HCO3).

3. VL, VP, and VR models: These models are based
on Support Vector Machines (SVM) using different
kernels: linear, polynomial and the radial basis
function, respectively. These models utilized an open-
source SVC library for Python (Pedregosa et al.,
2011). Each model consists of an ensemble of 12
“One-versus-One” binary classifiers as follows (Fig.
3a): (1) Ca vs Mg, (2) Ca vs Na, (3) Ca vs K, (4) Mg
vs Na, (5) Mg vs K, and, (6) Na vs K, (7) SO4, Cl, (8)
SO4 vs HCO3, (9) SO4 vs CO3, (10) Cl vs HCO3,
(11) Cl vs CO3, (12) HCO3 vs CO3.

The water type determined by each model is obtained by
considering the probabilities associated with the competing
fields in all sub-models. These models generate probability
values for each of the cations or anions, enabling the
determination of basic and hybrid water types. Of these
probabilities, let us suppose that Pm is the highest
probability and Pn is the second-highest probability. The
conditions that define if the water type is basic are as follows:
if (Pm ≥ 0.5) and ((Pm − Pn) ≥ 0.25) and (Pn ≤ 0.25).
Otherwise, a hybrid nomenclature is assigned, that is the
highest probability cation or anion followed by the next
highest cation or anion. Thus, for the 4 cations and anions
separately, 4 basic and 12 hybrid classes can be achieved.

It should be noted that, the classification accuracy values
obtained by these five models in an external validation set
(8,000 simulated samples), were as follows: (i) VL model
(99.8%), VP model (99.0%), VR model (98.9%), CB model
(98.7%), and 7-hlr model (92.0%). It is crucial to consider
this ranking to ensure the most accurate interpretation of the
results of models. Thus, we only applied the VL model to
simplify the presentation of the results of 1,068 sites of the
groundwater network of Mexico.

2.3 Availability, structure, and use of
WCSystem software

The WCSystem software, developed by Díaz-González et
al. (2022), can be freely downloaded from the web portal
http://tlaloc.ier.unam.mx/WCSystem. This program
enables users to utilize and evaluate these new water
classification models. The overall structure of WCSystem
is presented in Fig. 3b. To utilize the software, the
user is required to provide an input file containing the
concentrations of 8 ions (Ca, Mg, Na, K, SO4, Cl, HCO3,
and CO3; mg/L) for each sample. If the file is error-free,
the user can select one model from the “Classification"
menu. Otherwise, the user must correct the corresponding
error(s). After, the program proceeds to calculate the hybrid
log-ratio transformations, applies L2 normalization (except
for 7-hlr model; Pedregosa et al., 2011), calculate the
discriminant functions associated with the chosen model,
and calculates the probability of assigning each sample to
a specific type of basic or hybrid water. WCSystem program
generates three output files for each model: (1) The first
file is an extended report that includes concentrations (mg/L
and mM), hybrid log-ratio transformations (hlr2 to hlr8),

probability values, and basic and hybrid water types for each
sample; (2) The second file is a brief report that provides
a count of samples assigned to certain water types (basic
and hybrid), thus offering insights into the most probable
water nomenclature within dataset; and (3) The third file is a
diagram representing the chemical composition of processed
samples, using a logarithmic scale on the Y-axis and mM
units.

3 Groundwater monitoring sites
of Mexico

Groundwater can be found in the saturated zone of the
subsoil and moves slowly from places with high elevation
and pressure to places with low elevation and pressure, such
as rivers and lakes.

3.1 Groundwater quality assessment
Adequate monitoring is crucial for groundwater quality
assessment and requires a representative monitoring
network. In Mexico, the groundwater bodies are
monitored by the National Water Commission of Mexico
(CONAGUA). In 2020, a total of 1,068 monitoring
sites were analyzed, with 98% of them being wells
and the remaining 2% comprising cenotes, springs, and
discharges. The analysis considered 14 physicochemical and
microbiological parameters, including fluorides (F), fecal
coliforms (FC), nitrate-nitrogen (NO3-N), arsenic (As),
cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb),
manganese (Mn), iron (Fe), alkalinity (Alk), conductivity
(Cond), water hardness (WH), and total dissolved solids
(TDS). Based on these parameters, three types (as a three-
color traffic light) of groundwater quality were established
(Fig. 4a), considering the official Mexican regulations
(DOF, 2022). Detailed information about the groundwater
quality parameters of Mexico is available at: https://www.
gob.mx/conagua/articulos/calidad-del-agua. The
groundwater quality assessment of monitoring sites reveals
the following findings:

1. Good quality: 41% of the sites were classified
as having good quality (green color). These sites
showed compliance with the acceptable limits of
water quality for all 14 parameters analyzed.

2. Regular quality: 23% of the sites were categorized
as having regular quality (yellow color). These
sites showed non-compliance in one or more of
the following parameters: alkalinity, conductivity,
hardness, total dissolved solids, manganese, or iron.

3. Poor quality: 36% of the sites were classified as
having poor quality (red color). These sites exhibited
non-compliance in one or more of the following
parameters: fluorides, fecal coliforms, nitrate-
nitrogen, arsenic, cadmium, chromium, mercury, and
lead.

Fig. 4a illustrates a map of the 1,068 groundwater
quality monitoring sites across 13 Mexican hydrological-
administrative regions, which are referred to as "regions"
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for simplicity. The percentage distribution of monitoring
sites in each region is as follows: Centrales (9%), Península
de Baja California (8%), Río Bravo (6%), Balsas (6%),
Pacífico Norte (6%), Golfo Norte (5%), Aguas del Valle
de México (4%), Frontera Sur (3%), Golfo Centro (2%),
Pacífico Sur (1%). Notably, half of the monitoring sites
are concentrated in Centrales del Norte, Lerma Santiago
Pacífico, and Península de Yucatán regions.

Fig. 4b presents a histogram of groundwater quality
for these monitoring sites from Mexico. More than 40%

of the sites in the following regions exhibited poor quality:
Centrales del Norte (57%, 132 of 232), Río Bravo (55%, 36
of 65), Pacífico Norte (48%, 30 of 62), Pacífico Sur (44%,
7 of 16), and Lerma Santiago Pacífico (42%, 71 of 170).
Meanwhile, Península de Yucatán (59%, 74 of 125) and
Aguas del Valle de México (45%, 17 of 38) regions presented
regular quality. Finally, Balsas (64%, 44 of 69), Frontera Sur
(59%, 20 of 34), Noroeste (57%, 54 of 94), Lerma Santiago
Pacífico (45%, 77 of 170), and Golfo Centro (43%, 9 of 21)
regions demonstrated good quality.

Fig. 4. Distribution of groundwater quality of 1,068 monitoring sites of Mexico sampled in 2020 by National Water Commission
of Mexico (CONAGUA, 2022). a) Mexico map; the color indicates the quality of the groundwater: (i) green color indicates good
quality, (ii) yellow color indicates regular quality, and (iii) red color indicates poor quality; b) Histogram of 1,068 sites grouped
by groundwater quality level and categorized by hydrological-administrative regions of Mexico.
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Fig. 5. Histogram of concentrations of physicochemical-microbiological parameters of 1,068 sites grouped by groundwater
quality level and categorized by hydrological-administrative regions of Mexico: alkalinity (Alk), conductivity (Cond), total
dissolved solids (TDS), fluorides (F), water hardness (WH), nitrate-nitrogen (NO3-N), arsenic (As), cadmium (Cd), chromium
(Cr), mercury (Hg), lead (Pb), manganese (Mn), and iron (Fe).

www.rmiq.org 7
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3.1.1 Statistical analysis of physicochemical-
microbiological parameters and major ions

Fig. 5 shows a box plot set of concentrations of alkalinity
(Alk), conductivity (Cond), total dissolved solids (TDS),
fluorides (F), water hardness (WH), fecal coliforms (FC),
nitrate-nitrogen (NO3-N), arsenic (As), cadmium (Cd),
chromium (Cr), mercury (Hg), lead (Pb), manganese
(Mn), and iron (Fe). The concentrations are grouped
by groundwater quality level and regions. Overall, sites
classified as good quality presented lower concentration
of alkalinity, conductivity, total dissolved solids, water
hardness and iron compared to sites categorized as regular
and poor quality. Interestingly, sites with regular quality
presented higher Mn concentrations compared to sites with
good and poor quality. However, sites with poor quality
demonstrated higher concentration of NO3-N, As, Cr and Pb
compared to sites with good and regular quality, except Pb,
that was only reported in sites with poor quality. Particularly,
four (Lerma Santiago Pacífico, Río Bravo, Centrales del
Norte, and Pacífico Norte) showed high concentrations of
arsenic, while two (Pacífico Sur and Golfo Centro) regions
showed high concentrations of Cr. The concentration of Cd
was not frequently reported. Finally, only Balsas, Pacífico
Sur and Golfo Centro regions reported high concentrations
of Hg.

3.1.2 Monitoring sites that exceed the permissible limits of
physicochemical parameters

Fig. 6 shows for each region, the percentage of monitoring
sites that exceeded the acceptable levels of Mexican
regulations (DOF, 2022) of all physicochemical parameters
of groundwater. The results demonstrated that in most of
the Mexican regions, more than 10% of the monitoring sites
exceeded the established water quality limits. In the case
of conductivity, more than 20% of the monitoring sites in
the Baja California Peninsula, Golfo Centro, and Yucatán
Peninsula regions exceeded the regulations. However, the
Yucatan Peninsula region had the highest water hardness (as
CaCO3) in the country, with 52% of monitoring sites having
concentrations above the acceptable limit of 500 mg/L.
Regarding heavy metals, Fe was detected in all regions.
The Pacífico Sur (44%), Aguas del Valle de México (34%),
and Golfo Centro (33%) regions presented the highest
percentage of monitoring sites that exceeded the permissible
limit of 0.3 mg/L for Fe. Likewise, approximately 30-40%
of the sites in Pacífico Sur and Centrales del Norte regions
showed Cr and As concentrations above acceptable limit
of 0.05 mg/L. It is important to note that arsenic is a
highly toxic, carcinogenic trace metal that can potentially
contaminate groundwater sources, particularly in volcanic
regions (Apostol, 2022). Other parameters that showed
significant presence were total dissolved solids, fluorides,
and nitrate-nitrogen. The Río Bravo, Península de Baja
California, Golfo Central, Golfo Norte and Aguas del
Valle de México regions presented the largest number of
parameters with non-standard values. The pollution of heavy
metals and other physicochemical parameters poses hazards
to human health, biodiversity loss, disturbance in food chain

Fig. 6. Percentage of monitoring sites that exceeded
the permissible limits (DOF, 2022) of the following
physicochemical parameters of water: alkalinity,
conductivity, total dissolved solids (TDS), fluorides (F),
hardness (WH), fecal coliforms, nitrate-nitrogen (NO3-N),
arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg),
lead (Pb), manganese (Mn), iron (Fe). The monitoring sites
were grouped by region.

and impacts on quality of environment. The presence of
these parameters in the groundwater can be attributed to
anthropogenic (e.g., fertilizer and industrial pollutants) as
well as natural (e.g., volcanic action) sources (Krishan et al.,
2021).

3.1.3 Multivariate data visualization

In Fig. 7, a set of radar plots shows multivariate data
of normalized concentrations of 14 physicochemical-
microbiological parameters and 8 major ions. For
comparative purposes, all variables were normalized to
a range of [0,1], and the same scale from 0 to 0.5 was
maintained in all the subplots of Fig. 7. These radar diagrams
showed some variations in the chemical composition of
groundwater in all regions, which can be attributed to both
geogenic and anthropogenic factors. In all the regions,
except for Aguas del Valle de México and Balsas regions,
high concentrations of HCO3 and alkalinity were observed.
Similarly, elevated concentration of nitrate-nitrogen was
present in all regions, except for Pacífico Norte and
Lerma Santiago Pacífico regions. Amiri and Nakagawa
(2021) suggest that agricultural activities, fertilizer use,
effluent leakage, and natural processes such as ammonia
oxidation, can contribute to increased NO3 concentration in
groundwater. Three regions (Aguas del Valle de México,
Balsas, and Frontera Sur) exhibited high normalized
concentrations of K and moderate normalized concentrations
of Na. The correlation between these components may
be due to water-rock interaction processes, favoring
the dissolution of alkaline minerals such as potassium
feldspar and albite. Overall, the radar plots highlight the
variations in each region of groundwater composition of 14
physicochemical-microbiological parameters and 8 major
ions.
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Fig. 7. Radar diagrams of normalized concentrations of 14 physicochemical-microbiological parameters and 8 major ions,
namely: alkalinity (Alk), conductivity (Cond), total dissolved solids (TDS), fluorides (F), water hardness (WH), fecal coliforms
(FC), nitrate-nitrogen (NO3-N), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), lead (Pb), manganese (Mn), iron
(Fe), Ca, Mg, Na, K, SO4, Cl, HCO3, and CO3. The 1,068 monitoring sites were grouped by region. All variables were
normalized within the range of 0 to 1, ensuring consistent scaling and comparability.

3.2 Water nomenclature from WCSystem
program

Chemical compositions of 1,068 sites from Mexico were
analyzed using the WCSystem program to infer the water
nomenclature. Each of the five models implemented in this
program provides the nomenclature as both basic and hybrid
water classification types. However, before showing the
results obtained from the water classification, a brief analysis
of the variables used by the models was conducted. It is
important to note that the CO3 concentrations were imputed

using a probable lower limit of detection (0.0005 mM),
since it was not reported by the National Water Commission
of Mexico (CONAGUA, 2022). Fig. 8 shows a box plot
of concentrations (in mM) for Ca, Mg, Na, K, SO4, Cl,
and HCO3 (mM) grouped by groundwater quality level and
categorized by regions in Mexico. For all regions, sites
with good water quality exhibited lower concentration of
all the parameters compared to sites with regular and poor
quality. This analysis provides insights into the variations in
the major ions concentrations among different groundwater
quality levels and regions in Mexico.

www.rmiq.org 9
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Fig. 8. Box plots of concentrations of Ca, Mg, Na, K, SO4, Cl, and HCO3 (mM) grouped by groundwater quality level and
categorized by hydrological-administrative regions of Mexico.
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Fig. 9. Water types of 1,068 monitoring sites of Mexico sampled in 2020 by CONAGUA (2022). a) Map of basic nomenclature
obtained by the VL model; b) Histogram of water types obtained by the VL model grouped by the water quality of the sites.

3.2.1 Basic water types

Fig. 9a shows a map of the basic water types provided by the
VL model (as described in the “Development methodology
of water classification models” section). The majority of
samples (82%) were classified into three predominant
classes (Table 1): Na HCO3 (47%), Na Cl (18%), and
Ca HCO3 (17%). Additionally, six minority classes were
identified (Table 1): Na SO4 (5%), Ca Cl (5%), Ca SO4
(4%), Mg HCO3 (1.7%), Mg Cl (1.5%), Mg SO4 (0.3%).

Fig. 9b presents a histogram of the basic nomenclature
obtained by the VL model, grouped by water quality.

Regarding the water quality of these 1,068 groundwater
sites, 41, 23, and 36% were classified as good, regular, and
poor quality, respectively. In general, these water types are
distributed in all types of water quality. The predominant
class, Na HCO3 has fewer sites classified as regular quality
compared to good and poor quality. Meanwhile, the third-
class Ca HCO3 has slightly more sites classified as good
quality compared to the other types of quality. The minority
class, Mg SO4, was only observed in the regular water
quality set. This analysis provides an overview of the basic
water types and their distribution across different water
quality levels.

www.rmiq.org 11
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3.2.2 Basic+hybrid water types

Each of the five models encapsulated into the WCSystem
program offers “basic+hybrid" water types that can provide
valuable insights into important environmental processes.
However, we focus only on the VL model to simplify the
“basic + hybrid" nomenclature results. In summary, the VL
model classified 94% of the sites into the following 10 basic
and hybrid types, each comprising at least 10 sites: Na HCO3
(44%), Na Cl (16%), Ca HCO3 (15%), Ca Cl (4%), Na
SO4 (4%), Ca SO4 (4%), Ca-Na HCO3 or Na-Ca HCO3
(3%), Na Cl-HCO3 or Na HCO3-Cl (2%), Mg Cl (1%),
Mg HCO3 (1%). Additionally, 17 minority classes were
identified (Table 1). This analysis highlights the distribution

of water types “basic+hybrid", providing an understanding
of the dominant types as well as the presence of minority
classes in Mexican groundwater.

3.3 Multivariate data visualization using t-
SNE algorithm

The multivariate data visualization utilized the t-distributed
stochastic neighbor embedding (t-SNE) algorithm. This
statistical technique, proposed by Van der Maaten and
Hinton (2008), is designed to visualize high-dimensional
data sets by reducing the number of dimensions while
preserving the similarity relationships between observations.

Table 1. Summary frequency table of basic and hybrid water types obtained by the VL model grouped by
hydrological-administrative regions.

Water nomenclature Hydrological-administrative regions

I II III IV V VI VII VIII IX X XI XII XIII Total

Basic

Na -HCO3 17 43 40 24 130 128 18 23 33 9 4 13 24 506
Na -Cl 64 19 6 4 7 10 6 9 1 7 1 4 49 187
Ca -HCO3 3 20 15 14 45 12 14 1 21 3 10 11 13 182
Na -SO4 - 3 - 12 29 4 5 - 2 1 - - 2 58
Ca -Cl 5 6 1 1 0 5 1 1 3 1 - - 27 51
Ca -SO4 - 3 - 9 17 1 9 - 2 - 1 4 1 47
Mg -HCO3 - - - 1 1 5 - - 7 - - 2 2 18
Mg - Cl - - - - - 5 - 4 - - - - 7 16
Mg - SO4 - - - - 3 - - - - - - - - 3

Hybrid+basic

Na HCO3 14 41 35 22 128 124 18 20 29 9 4 13 18 475
Na Cl 63 17 5 4 6 9 5 7 1 7 1 3 42 170
Ca HCO3 1 19 13 12 39 10 13 1 18 3 9 10 12 160
Ca Cl 5 6 1 1 - 4 1 1 3 1 - - 24 47
Na SO4 - 3 - 8 24 3 5 - 1 1 - - 1 46
Ca SO4 - 2 - 8 13 - 9 - 2 - 1 3 1 39
Ca-Na HCO3 or Na-Ca HCO3 2 3 6 1 4 6 1 - 3 - 1 1 - 28
Na Cl-HCO3 or Na HCO3-Cl 4 - 1 - - 1 1 4 - - - 1 9 21
Mg Cl - - - - - 3 - 1 1 - - - 6 11
Mg HCO3 - - - - 1 5 - - 2 - - 2 1 11
Na SO4-HCO3 or Na HCO3-SO4 - - - 2 5 - - - 1 - - - - 8
Ca-Na Cl or Na-Ca Cl - 1 - - - 1 - - - - - - 5 7
Ca-Na SO4 or Na-Ca SO4 - - - 3 3 - - - - - - - - 6
Ca HCO3-SO4 or Ca SO4-HCO3 - 1 - 1 3 1 - - - - - - - 6
Mg-Na Cl - - - - - 2 - 3 - - - - 1 6
Mg-Na HCO3 or Na-Mg HCO3 - - - - - - - - 4 - - - 1 5
Na Cl-SO4 or Na SO4-Cl - 1 - 1 1 1 - - - - - - 1 5
Ca-Mg HCO3 or Mg-Ca HCO3 - - 1 - - - - - 2 - - - - 3
Ca Cl-HCO3 or Ca HCO3-Cl - - - - - - - - 2 - - - 1 3
Ca-Na HCO3-Cl or Na-Ca HCO3-Cl - - - - - - - - - - - - 2 2
Ca-Na SO4-Cl or Na-Ca SO4-Cl - - - 1 1 - - - - - - - - 2
Mg SO4 - - - - 2 - - - - - - - - 2
Ca SO4-Cl - - - - - - - - - - - 1 - 1
Mg-Na SO4 - - - - 1 - - - - - - - - 1
Mg HCO3-SO4 - - - 1 - - - - - - - - - 1
Na-Ca HCO3-SO4 - - - - 1 - - - - - - - - 1
Na HCO3-Cl - - - - - - - 1 - - - - - 1

I: Península de Baja California; II: Noroeste; III: Pacífico Norte; IV: Río Bravo; V: Cuencas Centrales del Norte; VI: Lerma
Santiago Pacífico; VII: Golfo Norte; VIII: Aguas del Valle De México; IX: Balsas; X: Golfo Centro; XI: Pacífico Sur; XII:
Frontera Sur; XIII: Península de Yucatán.
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Figure 10. 2D visualization of monitoring sites using the t-
SNE method (Van der Maaten and Hinton, 2008). The color
of the symbol represents the basic water type obtained by
the VL model and the symbol type presents the water quality
determined.

The t-SNE algorithm aims to keep similar observations
close to each other and dissimilar observations apart in
the reduced-dimensional space. In this study, t-SNE was
applied to reduce the dimensionality of the data (chemical
concentrations of major elements and contaminants), and
visualize it in a 2D plot. The result of this algorithm
is presented in Fig. 10, where the color of the symbols
represents the type of basic water determined by the
VL model, and the type of symbol presents the water
quality. As seen in this 2D visualization obtained by t-SNE
algorithm, the sites were grouped according to their water
nomenclature. The predominant class observed in the plot is
Na HCO3, followed by the Na Cl and Ca HCO3 classes. This
visualization provides insights into the clustering patterns
and relationships between different water types and water
quality.

3.4 Detailed analysis of Pacífico Sur
hydrological-administrative region

In this section, we present the case study of the Pacífico
Sur region to analyze in detail the water types provided by
both the VL model and the Hill-Piper diagram. This region
consists of groundwater 5 sites located in Guerrero state
and 11 located in Oaxaca state. The chemical composition
(mM) and results of water classification are presented
in Table 2. To provide a graphical representation of the
chemical composition of these 16 groundwater samples,
Figure 11 is presented. Furthermore, the Hill-Piper diagram
generated using the CCWater program (Pérez-Espinosa et
al., 2019) is used to analyze the distribution of the sites
within four distinct zones (Fig. 12 and Table 2): (i) zone
5: this zone includes 9 samples with carbonate hardness >
50%; (ii) zone 7: this zone includes 2 samples with Non-
Carbonate alkali > 50%; (iii) zone 6: this zone includes
1 sample with non-carbonate hardness > 50%; and, (iv)
ambiguous zone 9: this zone includes 1 sample that does
not exhibit a cation-anion pair exceeding 50% dominance.

Figure 11. Concentration (mM) diagram of 16 groundwater
sites from Pacífico Sur hydrological-administrative region.

Figure 12. Hill-Piper ternary diagram of 16 groundwater
sites from Pacífico Sur hydrological-administrative region.

The water nomenclature determined by the VL model is
distributed across four water types: Ca HCO3 (9 samples),
Na HCO3 (4 sites), Ca SO4 (1 sample); Ca-Na HCO3 (1
sample); and Na Cl (1 sample).

Finally, to address groundwater contamination in
Mexico, here are some strategies that could be applied
in collaboration among government entities, local
communities, industries, and farmers: (i) apply strict
regulations on industrial and agricultural activities near
groundwater aquifers to prevent contamination; (ii)
regulate and closely monitor the use of chemicals and
toxic substances in industrial, agricultural, and domestic
activities, as well as implement quality standards to regulate
discharges; (iii) build and maintain effective wastewater
treatment plants in urban areas, and promote responsible
management practices at the domestic and community
levels; (iv) educate the population about proper water
management, and appropriate waste disposal methods;
(v) develop monitoring programs that regularly assess
groundwater quality and address contamination promptly;

www.rmiq.org 13
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Table 2. Application of the VL model and Hill-Piper diagram for the nomenclature of the groundwater sites from Pacífico Sur
hydrological-administrative region (CONAGUA, 2022).

Sample Chemical composition (mM) Hill-Piper diagram Water nomenclature
Ca Mg Na K SO4 Cl HCO3 CO3 %Cl+SO4 %HCO3 %Na+K %Ca+Mg Class* Basic+Hybrid

1 DLGUE1338 2.65 0.81 1.75 0.08 0.50 1.36 5.83 0.00 24 76 35 65 Zone 5 Ca HCO3
2 DLGUE1337 2.81 0.59 1.94 0.06 0.65 1.36 5.72 0.00 26 74 37 63 Zone 5 Ca HCO3
3 DLGUE1248 1.77 1.25 2.45 0.04 2.09 1.09 3.61 0.005 47 53 45 55 Zone 5 Na HCO3
4 DLGUE1213 2.41 1.32 4.83 0.17 2.01 3.00 2.48 0.41 67 33 57 43 Zone 7 Na Cl
5 DLGUE1353 0.85 0.39 1.44 0.05 0.41 0.47 2.29 0.005 28 72 54 46 Zone 9 Na HCO3
6 OCPSU4859 0.82 0.34 0.77 0.06 0.17 0.25 2.10 0.005 17 83 42 58 Zone 5 Ca-Na HCO3
7 OCPSU4865 2.34 1.38 0.55 0.07 1.81 0.52 4.74 0.005 33 67 14 86 Zone 5 Ca HCO3
8 OCPSU4700 1.68 0.97 0.91 0.03 0.31 0.25 2.86 0.47 17 83 26 74 Zone 5 Ca HCO3
9 OCPSU4693 2.59 1.33 1.52 0.09 2.51 0.60 0.005 0.005 100 0 29 71 Zone 6 Ca SO4
10 OCPSU4868 1.22 1.09 0.54 0.10 0.19 0.25 3.93 0.67 10 90 22 78 Zone 5 Ca HCO3
11 OCPSU6522 2.50 0.81 1.92 0.01 0.42 0.45 4.34 0.83 17 83 37 63 Zone 5 Ca HCO3
12 OCPSU6175 2.21 0.90 1.80 0.03 0.22 0.25 3.85 0.50 11 89 37 63 Zone 5 Ca HCO3
13 OCPSU6176 1.17 0.74 0.92 0.46 1.51 0.71 2.62 0.33 46 54 42 58 Zone 5 Ca HCO3
14 OCPSU6173 1.92 1.13 2.10 0.70 1.29 0.25 4.34 0.17 26 74 48 52 Zone 5 Na HCO3
15 OCPSU6179 2.17 0.89 1.38 0.05 1.25 0.25 3.20 0.33 32 68 32 68 Zone 5 Ca HCO3
16 OCPSU4710 2.95 0.65 5.24 0.35 3.62 2.51 6.01 0.005 50 50 61 39 Zone 7 Na HCO3

*Zone 5: carbonate hardness > 50% (alkaline earths and weak acids dominate); zone 6: non-carbonate hardness > 50% (alkaline earths and dominant weak acids); zone
7: Non-carbonate alkali > 50% (alkalis and strong acids dominate); zone 9: ambiguous, no cation-anion pair > 50%. Note that the letter of the ions with the highest
concentration in mM is presented in bold and underlined, which is consistent with the water type identified by the VL model.

annual sampling is insufficient, therefore, the sampling
frequency should be increased especially in areas that
exceeded the permissible limits of contamination defined by
Mexican regulations.

In this context, Aguilar-Vilchis et al. (2023)
demonstrated the biochemical use of Lerma River sediments
for methane production and elimination organic pollutants in
wastewater, which contributes to environmental remediation.
Additionally, Canul-Chan et al. (2023) conducted a study
on the biodegradation of crude oil and demonstrated its
potential for effectively removing organic pollutants in
wastewater.

Conclusions

Five models (7-hlr, Castboost, VL, VP, VR) for water
classification are available for free through the WCSystem
program. All these new models offer the possibility of
detecting various basic and hybrid water types based
on probabilities. These models outperform conventional
approaches, such as the Hill-Piper diagram, that only
provides four types (5, 6, 7 and 8 zones) and an
ambiguous area (zone 9). Thus, we recommend that this
new multidimensional scheme should replace the use of Hill-
Piper ternary diagrams.

WCSystem accurately estimated the basic and hybrid
water nomenclature for 1,068 groundwater sites in México.
A half of the sites are concentrated in Centrales del Norte,
Lerma Santiago Pacífico, and Península de Yucatán regions.

According to water quality categorization by
CONAGUA, 41%, 23%, and 36% of the monitoring
sites were classified as good, regular, and poor quality,
respectively. The sites with good water quality exhibited
lower concentrations of Ca, Mg, Na, K, SO4, Cl, and HCO3
compared to sites with regular and poor water quality.

In general, all regions showed high concentrations of
HCO3, Ca and Na, while high concentrations of Cl were
observed in only three regions (Aguas del Valle de México,
Golfo Centro, Península de Baja California and Península
de Yucatán).

The recommended VL model classified 82% of the sites
into three predominant basic classes (47% Na HCO3; 18%
Na Cl; and 17% Ca HCO3). Furthermore, for basic+hybrid
water types, the VL model classified 94% of the sites into
10 basic and combined hybrid classes, each with at least
10 sites. This demonstrates that groundwater in Mexico has
high concentrations of Na and Ca cations, and HCO3, SO4,
and Cl anions.

Additionally, t-SNE algorithm effectively grouped the
monitoring sites according to their water nomenclature,
where the predominant class was Na HCO3, followed by the
Na Cl and Ca HCO3 classes.

Additionally, all regions exhibited at least one
physicochemical-microbiological parameter that did not
comply with the current regulations in Mexico. Therefore,
it is necessary to apply environmental sanitation strategies
to achieve a quality and safe water resource for human
health. In future work we will carry out this analysis at the
aquifer level to develop better environmental improvement
strategies.
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