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Abstract
Parameters optimization of emerging electrochemical processes is crucial for improving efficiency and cost. Herein, a procedure
based on the genetic algorithms (GA) search method was proposed to solve the fundamental Cottrell equation. First, a basic
GA background is provided to help students and researchers understand the basic concepts of such evolutional algorithms and
how this can be applied in their field of expertise. Then, the study was conducted considering measured chronoamperometry
data of potassium ferricyanide, as electroactive species, at the platinum working electrode. The number of electrons (n), species
concentration (C), and diffusion coefficient (D) were the three unknown solved variables that were obtained through optimization.
The crossover function and population size effect were deeply studied on the final value of these electrochemical parameters.
The results show that Intermediate and Heuristic crossover stochastic functions had the best performance in solving the multi-
objective function, according to the root mean square error (RMSE) outcome. Thus, it was concluded that GA is a feasible tool
that can be adopted to solve complex and multivariable problems in electrochemistry. Furthermore, it should be highlighted that
GA can be adopted to determine chemical and electrochemical parameters in emerging technologies such as energy conversion
devices.
Keywords: Genetic algorithm, chronoamperometric, Cottrell equation, crossover functions, heuristic.

Resumen
La optimización de los parámetros de los procesos electroquímicos emergentes es crucial para poder mejorar la eficiencia y
los costos. En este trabajo, se propuso un procedimiento basado en el método de búsqueda de algoritmos genéticos (AG) para
resolver la ecuación fundamental de Cottrell. En primer lugar, se proporciona una revisión básica de GA para ayudar a los
estudiantes e investigadores a comprender los conceptos básicos de dicho algoritmo evolutivo y como se pueden aplicar en sus
campos de especialización. Despúes, el estudio se realizó considerando los datos de una medición de cronoamperometría en un
electrodo de platino en ferricianuro de potasio, como especie electroactiva. Las tres variables se obtuvieron a través del proceso
de optimización fueron: el número de electrones (n), concentración de especies (C) y el coeficiente de difusión (D). El efecto de
la función de recombinación y tamaño de población sobre los valores finales de los parámetros electroquímicos fueron estudiados
a detalle. Los resultados mostraron que las funciones de recombinación estocásticas que presentaron el mejor desempeño en la
resolución de la función multiobjetivo fueron la intermedia y heurística, de acuerdo con el resultado del error cuadrático medio
(RMSE). Por lo tanto, se concluyó que un algoritmo genético es una herramienta factible que puede adoptarse para resolver
problemas complejos y multivariables en electroquímica. Además, es importante resaltar que los AG se pueden adoptar para
determinar parámetros químico y electroquímico en tecnologías emergentes como son los dispositivos de conversión de energía.
Palabras clave: algoritmo genético, cronoamperometría, ecuación de Cottrell, función de recombinación, heurístico.
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1 Introduction

Most electrochemical University courses contain
fundamental concepts for determining D values
through a given measured experimental dataset.
Moreover, the majority of electrochemical analysis
tools taught in the classroom consider that at least one
or two variables are known. This is, to some extent,
an academic limitation. Undergraduate and graduate
students should be familiarized with the fundamentals
of chemical and electrochemical engineering issues
with application in the industry sector, where it is
usually almost impossible to know the values of
species concentrations or other variables in advance.
For these reasons, incorporating hot topics and
powerful tools such as GA into University courses
should be amazing. These algorithms are capable of
solving simultaneous equations with several unknown
variables with acceptable computing time and also can
be used for optimization applications.

Diffusion is generally the rate-limiting step in
many electrochemical systems (Wang, et al., 2018).
Therefore, determining D values is needed to fully
understand the redox couple of the electroactive
species (Geng et al., 2022; Saw et al., 2018; Sikeyi et
al., 2021). Furthermore, many techniques have been
proposed to obtain the diffusion coefficient under a
specific framework (Chayambuka et al., 2021; Deng et
al., 2022; Hasegawa et al., 2021). For example, Shao
et al. studied the diffusion characteristics of OH- ions,
an active species participating in different chemical
reactions, by adopting laser-induced fluorescence
at high temperatures. To this end, they used a
planar laser-induced fluorescence laser (ArF, 193
nm) coupled with lenses and mirrors to observe
the released OH- radical from the photochemical
dissociation of water (Shao et al., 2021). The main
disadvantage of this technique is the equipment cost
and the applied high temperatures. On the same
issue, Belgodere et al. reported implementing in situ
Raman microspectroscopy to successfully estimate
the diffusion coefficient of CO2 in aqueous solutions
at room temperature (Belgodere et al., 2015). The
experiments were carried on in fused silica capillaries
with salinity conditions of 0 to 6 mol NaCl per
kilogram of water. D was calculated by numerical
analysis of the measured Raman peaks of CO2 and
H2O. The aforementioned method can be considered
promising regarding its simplicity and short-time
measurements, but it should be mentioned that
materials presenting fluorescence can not be analyzed
by this technique. In this sense, several researchers
have proposed using electrochemical methods to
estimate the diffusion coefficient of analytes (Black,
Zhang, Reid, & Bartlett, 2022; Kim et al., 2021; T.
Q. Nguyen & Breitkopf, 2018). Iranzo et al. proposed

for the first time the adoption of electrochemical
impedance spectroscopy (EIS) to determine the
distributed relaxation time (DRT) in a 50 cm2 Polymer
Electrolyte Membrane Fuel Cell (PEMFC), which is
related to electrochemical and diffusion processes.
A Gauss distribution with a radial basis function
discretized the measured EIS input data (Iranzo et al.,
2021). The authors stated that the obtained data had
a significant value because it can be used to describe
the main drawbacks limiting fuel cell efficiency
qualitatively.

Chronoamperometry (CA) is also an
electrochemical technique widely used to determine
kinetic parameters, including the D value of
electroactive species. This method is more convenient
than EIS because only uses current and voltage signals
instead of frequency and sinusoidal input as is the case
of EIS.

For example, it has been demonstrated that CA
is versatile in characterizing sensors. Moreover, in
recent work, the D valuer of nicotine was calculated
employing the Cottrell equation (Zaki et al., 2022).

i(t) =
nFACD1/2

π1/2 ∗ t1/2
(1)

where i is the measured current (A), F is the Faraday
constant (C mol−1), A is the electrode working area
(cm2), t is the time (s), while n, C and D have already
been defined here above. The calculated values were
too close to those obtained by cycling voltammetry
analysis.

Recently, Jiankang et al. developed a method
to optimize parameters in studying nitrogen gas
crossover and accumulation at the anode of PEMFC
using machine learning methods (Wang et al., 2022).
Firstly, the authors simulated a two-dimensional
steady-state mechanistic PEMFC model in COMSOL
Multiphysics to construct a database of the six
parameters under study. Then, several machine
learning algorithms were trained to solve the multi-
objective equation. As a result, they observed a
reduction in the nitrogen gas crossover coefficient
close to 50%, while the power efficiency was improved
by ca. 20%.

The CA method has also been used to determine
D and the nucleation process of electrodeposited
aluminium in chloroaluminate ionic electrolytes
(Al2Cl7) with the aid of the Cottrell equation (Peng et
al., 2021). Interestingly, the calculated D value could
be used to estimate the density of nucleation centres
based on the model proposed by Gunawardena et al.
(Gunawardena et al., 1982). This way, it was possible
to calculate the grain size of electrodeposited films by
using equation (2):

r =
(

1
πN

)0.5

(2)
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Figure 1. Potassium ferricyanide reaction mechanism in aqueous solvent.

where r is the average grain radius (m), and N is the
density of nucleation centres (m−2).

Ferricyanide or Hexacyano ferrate (III) is a widely
studied molecule in the electrochemical process
for biological and engineering applications (Cheah
& Chernev, 2021). Also, this chemical compound
was used as a stabilizer in electroless copper
electrodeposition in EDTA/THPED. Lu et al. observed
that potassium ferricyanide delays the deposition of
Cu. They stated that this behaviour is due to the
competitive adsorption between ferricyanide and OH-
species (Lu et al., 2019). Interestingly, it has been
demonstrated that highly ordered pyrolytic graphite
compounds could be electrochemically analyzed using
ferricyanide to calculate kinetic parameters and obtain
gravimetric capacitance (Iamprasertkun et al., 2020).
So, ferricyanide has been extensively used, as an
electroactive specie, to elucidate electrochemical
reactions, and D is commonly measured by cyclic
voltammetry or CA.

Thus, it can be inferred that D can be determined
either by using expensive and often unavailable
equipment or by solving complex equations using
a numerical approach with experimental data as
input. On this matter, research groups worldwide
have shown a growing interest in adopting GAs to
solve non-linear equations with multiple unknown
variables (Gao & Lu, 2021; Li & Zhao, 2021; Song
et al., 2020; Y. Zhang et al., 2020). A prominent
work was developed by Zhu et al., where an EIS
model was recognized via a machine-learning support
vector. The research showed that machine learning
has tremendous potential in electrochemical research
because this approach can efficiently figure out the
values of unknown variables and can be used to
optimize electrochemical parameters as was observed
in (Zhu et al., 2019). Artificial intelligence has
also been adopted to identify degradation parameters
in lithium-ion batteries through experimental EIS
measurements (Zhang et al., 2020). State of charge
and state of health are some of the main battery

parameters studied, which can be obtained by
analyzing the EIS data determined with an equivalent
circuit model (Choi et al., 2020). In this sense,
machine learning has been adopted because it
allows the computation of more than three variables
simultaneously with good precision in a reasonable
time. It should be mentioned that EIS equations
are highly non-linear, and numerical solutions can
also be adopted, but this is highly time-consuming.
According to the aforementioned information, GA
plays a vital role in current days because it can
be implemented in real-world applications such as
the prediction of electrical energy generation from
photovoltaic systems, waste management, trajectory,
scheduling optimization, and so on (Gallego-Martínez
et al., 2022; Lara-Cerecedo et al., 2023; Pourreza
Movahed et al., 2020).

In this work, it is proposed for the first time
the implementation of GA to solve the multi-
objective Cottrell equation considering three unknown
variables: i) n, ii) C, and iii) D. The input of the
functions was the current (i), measured from CA
experiments. To this end, we use the experimental
data of the electrochemical redox process of potassium
ferricyanide at the surface of the Pt working
electrode. From Figure 1 it can be seen that the
potassium ferricyanide (K3Fe(CN) 6 molecule has
three potassium cations and one ferricyanide anion
(Menolasina, 2005). It should be noted that when
potassium ferricyanide is in an aqueous solution, the
bond between the cyanide and potassium is broken
and tends to form octahedrally coordinated [Fe(CN)
6]3− ion. Furthermore, this coordination compound is
easily oxidized by adding a K+ ion to form potassium
ferrocyanide or by adding electrons. In this regard,
experimental chronoamperometry data was used to
study the potential of GA to obtain the electrochemical
parameters.

The algorithm was solved with the aid of the
Matlab software optimization Tool kit. The results
confirmed that machine learning is a powerful tool
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with the capacity to solve variables with great
accuracy in a short time. Thus, this work demonstrated
the versatility of GA to solve electrochemical
equations fed with experimental data, obtaining the
parameters of interest to understand the electrode-
electrolyte phenomena. The main contribution of
this work was the parameter extraction from a
simple and rapid technique using commercially
available software with a Toolbox designed to conduct
optimization tasks. The former is relevant because
practitioners do not need to have special training
in programming and they can focus on proposing
the boundaries for the parameters. Furthermore,
researchers could use homemade electrochemical
boards to conduct cyclic voltammetry and CA tests
to estimate electrochemical parameters. It should
be emphasized that the proposed methodology can
be used to solve other electrochemical problems
such as electrochemical impedance spectroscopy data
extraction, fuel cell data model identification, and so
on. The research questions are: how convenient is
using GA to determine electrochemical parameters
from a chronoamperometric date set? and what are
the benefits of adopting a commercial GA toolbox?.
Herein, the methodology section explained in detail
the procedure implemented to solve the multivariable
Cottrell equation, while the analysis of the obtained
data was discussed in the result section. Finally, future
work was presented in the conclusions section.

2 Theoretical background and
related works

A GA is an optimization and random search technique
based on evolution theory and natural selection,
and this idea was used for the first time by John
Hollan 1970s (Koohestani, 2020; Nguyen et al.,
2022). This approach starts with random individuals or
chromosomes from a population that evolves through
recombination and mutation to produce offspring
which inherit the best parents’ characteristics (Gao &
Lu, 2021; Katoch et al., 2021). Because the offsprings
are better than the parents they have more chances
to survive. This idea was adopted to minimize or
maximize a fitness mathematical function where the
best values are founded by conducting an iterative
process. The fitness function is the function that
uses the best individuals to produce an improved
output. The search space of solutions to achieve the
optimization problem is computed by considering two
main operators: i) crossover and ii) mutation.

The crossover operator takes chromosomes to
produce new offspring by recombining their parents,
expecting an individual with the best characteristics
of their ancestors (Kannan et al., 2010; Maghawry et

al., 2021). Therefore, this operator extracts the best
attributes or information of both parents, resulting
in an enhanced generation that may reduce the
exploration time. There are different types of crossover
such as single-point, two-point, and multi-point
crossover operators and this depends on the number
of points chosen where the genetic material will be
exchanged. For example, in the two-point crossover,
two random points will be selected.

Meanwhile, the mutation operator modifies the
genes of a single individual to create a new
chromosome (to extend the range of searching) which
is part of the new generation, all this to reduce the
search time. Mutation operators maintain diversity by
introducing variation, which avoids local optimal. The
crossover operator has been reported to be vital in
improving the GA because it minimizes the number
of genotypes in the predefined population (Skobiej &
Jardzioch, 2019). In this regard, researchers have been
developing and proposing several crossover functions
to improve the robustness of the GA. Because
crossover is responsible for creating a new solution
from the recombination of chromosomes, the study of
different crossover proposals is normally found in the
literature to find the best algorithm that satisfies the
stop criteria in a shorter time. For instance, Pinho and
Saraiva analyze the effect of three crossover operators
(one-point, multi-points, and uniform crossover) in
the GA applied in selecting switch allocation in a
power distribution system (Pinho & Saraiva, 2020).
The authors have found that multi-point crossover
does not significantly alter the processing time as the
number of points increases. Instead, an improvement
in the optimization problem has been observed.

The Heuristic crossover operator is another well-
known function widely employed in evolutionary
algorithms. This operator produces an offspring that
is in line with the best parent, and its displacement
depends on the fitness function of two parent
chromosomes, according to the following equation:

offspring = Best parent+ β(best parent−worst parent)
(3)

where β is a random number between 0 and 1.
Muyiwa et al. have studied the effect of the

Heuristic crossover in an evolutionary algorithm
applied for clustering wireless sensor networks
(Oladimeji et al., 2017). The results show that this
operator improves the optimization problem aiming
to reduce and balance energy consumption among
sensors and equipment. Meanwhile, the Laplace
crossover is a function commonly used in real-
coded GA which follows the Laplace probability
distribution (ul Haq et al., 2020). This probabilistic
distribution is also called the double exponential
distribution. Interesting work has been developed by
Mouhamed et al., where Heuristic GA solves a multi-

4 www.rmiq.org



Pech-Rodríguez et al./ Revista Mexicana de Ingeniería Química Vol. 22, No. 2(2023) Sim2387

objective optimization problem. The authors compare
the Heuristic and the two-point crossover operators,
finding that the former performs better (Ouamri &
Azni, 2019).

In this sense, Postolov et al. have implemented
a metaheuristic approach based on the Laplace
crossover to solve the optimization of a short-
term hydro-thermal-solar problem (Postolov et al.,
2022). A pair of offspring have been generated from
their parents by considering a uniformly random
number. The numerical results show that the optimized
parameters increase the feasibility and reduce the
cost of the system. From the literature review, it
can be deduced that this is the first attempt to
use GA to solve the Cottrell equation and in this
way obtain the electrochemical parameters. Although
there are other developed optimization algorithms
this work focuses on studying the GA and the
effect of population size and crossover operator. A
commercially available optimization toolbox (Matlab)
was utilized as a strategy to conduct GA operations;
the latter can motivate practitioners with limited skills
in programming to adopt this methodology to solve
engineering problems in their field.

3 Methodology

The proposed optimization problem for variable
searching consisted in an algorithm that minimizes the
multi-objective function and performs a local optimal
search. A set of chronoamperometric data extracted
from the literature (Pine-Instrument-Company., 2000)
was used to assess the versatility of GA. The data
set is part of the well-known reference guide for
electrochemistry developed by Pine Instrument where
the setup and data analysis of different electrochemical
tests are explained in detail. The selected CA
signal corresponds to the electrochemical reaction of
potassium ferricyanide on the Pt working electrode
surface. The best possible solution was determined by
calculating the error of each model. The optimization
toolbox setup is very friendly and asks about some
terms such as Pareto and crossover fraction. The
first is related to the fraction of elite members to
keep on the Pareto front while the crossover fraction
indicates the parent population fraction involved
during the offspring. To find the best solution, the
iterative GA considered that the fitness individuals or
chromosomes have a crossover fraction of 0.5, while
the Pareto set fraction was set to the same value. This
setup guarantees diversity between each generation
(Hassanat et al., 2019). The selection function was set
to the tournament and mutation was adapt feasible,
generating random adaptative directions for the last
generation.
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Figure 2. Basic flow chart for the GA.

The Cottrell equation was solved by considering
no constraints, and the upper and lower bond for
[n, C and D] were [1, 0.5×10−3, 1×10−6] and [2,
10×10−3,11×10−6], respectively. To determine the
population size effect different random individuals
were used to initiate the algorithm in each trial run. So,
the population size was investigated from 500 to 2500
in accordance to (Sipper et al., 2018). This population
was considered constant throughout the simulation.
Furthermore, the crossover genetic operator was also
changed to study the effect of the optimal search
result. This was done to study the advantages of each
optimization process.

The stopping criteria, when the code reached the
maximum generation number, was set to 600. The
aforementioned value was determined by conducting
a preliminary computing test and was concluded
that 600 generations give sufficient data with
acceptable computing time. It should be mentioned
that generations more than this value are very time-
consuming and there was no significant difference in
the determined error. The robustness of the optimal
solutions where evaluated by the crowding distance
which measures the closeness of an individual to its
neighbors. The simulations were executed with the
commercially available Matlab optimization Tool kit
(Community and technical college license) using a
computer with 16 GB of RAM and a 5 GHz processor.
Because GA is a statistical procedure, the best fitness
values solution in each case was determined by
considering the simulated function’s deviation with
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the experimentally measured curve. Thus, the RMSE
was calculated for each solution. In the case of n,
the chromosomes were set to obtain only integer
values. Figure 2 shows the implemented flow chart
to solve the Cottrell equation using GA in Matlab.
The initial parameters were the problem function
definition, followed by declaring the population size
and the algorithm setting for the crossover function.

4 Results

The Cottrell equation is solved considering three
unknowns: n, C and D. It needs to be highlighted
that in some cases, the user may have knowledge of
the experimental variables, for example, the analyte
concentration. However, to assess the powerfulness of
GA, it is considered here that no information related
to the parameters is available. In other words, the
potassium ferricyanide is considered unknown. For
this purpose, the Cottrell equation is written as a multi-
objective problem as follows:

f1(n,C,D) = 0
f2(n,C,D) = 0
fk(n,C,D) = 0

→


F1 = min(abs( f1(n,C,D) = 0))
F2 = min(abs( f2(n,C,D) = 0))
Fk = min(abs( fk(n,C,D) = 0))

(4)

where k is the last declared function, the algorithm
synchronously calculates all the equations considering
the fitness function (the experimental curve) during
optimization. In other words, the multi-objective
function is created by declaring various equations
considering the current and time values extracted from
the experimental curve. It must be emphasized that
the number of objective function greatly affect the
final response of the GA. Using a small number of
element lead to D and C values with considerable
errors. The full syntax can be seen in the supporting
information document. Also, a brief description of the
Matlab Optimization Toolbox can be consulted in this
document.

The error of each computed case is calculated
by using the general machine learning error function

(Wang et al., 2021):

RMS E =

√∑N
i=1( f (n,C,D,X))2

N
(5)

where x denotes the solution, and i is the number of
data points in the experimental curve. The code for
the evaluated function has been written in Matlab as
follows:

Function y=Cottrell(x)
F=96485
A=0.1963
%Iex= declare the experimental value of
the current at a certain time
%t= declare time
y(1)=min(abs((A.*x(1).*F.*x(2).*
sqrt(x(3)))./(sqrt(pi.*t))-Iex));
...
y(i)= min(abs((A.*x(1).*F.*x(2).*
sqrt(x(3)))./(sqrt(pi.*ti))-Iexi))

Table 1 summarizes the average simulated values
for the three electrochemical parameters estimated
from the Cottrell Equation. It can be noticed that a
small population size has a negative impact on all
the implemented crossover functions. Implementing
a small population obviously leads to a rapid loss of
genetic diversity compared to a large one, because
individuals have more chances to mate with close
relatives. The latter may result in a population
extension presented as a local optimum. Hassanat et
al. have conducted a deeper study regarding the effect
of population size on the optimization of the traveling
salesperson problem (Hassanat et al., 2019). They
studied three populations: i) small, ii) moderate, and
iii) large. The authors conclude that large populations
provide diversity that ultimately guarantees global
optima. They also found a significant mutation
rate when a small population is implemented and
vice versa in large populations. It is important to
remember that in some cases, large population sizes
do not improve accuracy but significantly impact the
computational time (Roeva et al., 2013).

Table 1. GA algorithm parameters and average convergence using different approaches.

Crossover function Population size n C (1×10−3, mol cm−3) D (1×10−6, cm2 s−1) RMSE (1×10−3)

Intermediate 500 1 3.061±0.192 5.872±0.643 1.6113±0.0185
1000 1 2.911±0.051 6.494±0.181 1.6112±0.0427
1500 1 2.684±0.074 7.641±0.285 1.6112±0.0181
2000 1 2.713±0.122 7.476±0.443 1.6112±0.0323
2500 1 2.740±0.115 7.333±0.465 1.6112±0.0324

Heuristic 500 1 3.728±0.167 3.962±0.393 1.6112±0.0435
1000 1 2.659±0.101 8.162±0.365 1.6112±0.0323
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1500 1 2.872±0.080 6.672±0.1833 1.6112±0.0122
2000 1 2.763±0.075 7.208±0.253 1.6112±0.0034
2500 1 2.610±0.019 8.299±0.0163 1.6112±0.0248

Laplace 500 1 3.098± 0.173 5.735± 0.603 1.6112±0.0185
1000 1 2.856± 0.018 6.748± 0.192 1.6112±0.0028
1500 1 2.369±0.104 9.806±0.710 1.6112±0.0181
2000 1 2.735±0.075 7.357±0.671 1.6112±0.0039
2500 1 3.701±0.361 4.018±0.717 1.6112±0.0063

According to the calculated RMSE the
intermediate crossover function delivers the lowest
performance when the population size is set to 500.
Intermediate crossover creates children as a random
weighted average from their parents, as indicated by
the following equation (Hakimi et al., 2016):

offspring = parent1+ rand ∗ ratio(parent2− parent1)
(6)

where x denotes the solution, and i is the number of
data points in the experimental curve.

So, under a small population, this operator
loses diversity, resulting in convergence in the
local optima. On the other hand, Heuristic and
Laplace crossover show better performance, attributed
to their versatility in choosing the best springs.
Moreover, all the obtained solutions fit well with
the experimental curve with a non-significant error.
Some explanation of this phenomenon is that GA
can search for multiple solutions to optimize the
problem. Since this work considers three unknown
variables, GA provides accurate solutions. The
obtained optimized electrochemical model has been
compared with the values reported in the Pine
Instrument reference guide for electrochemistry
(Pine-Instrument-Company., 2000). The mentioned
document uses two electrochemical techniques
to extract the electrochemical parameters: cyclic
voltammetry and chronoamperometry. First, the
species concentration was calculated from the analysis
of a set of cyclic voltammetric measured at different
scan rates. Then, the D coefficient was obtained by
substituting the C value and the determined slope
from the Cottrell plot in the rearranged equation 1.
The comparison was achieved by using the simulated
data to construct the chronoamperometric curve and
the experimental one (see Figure 3). The curve can be
divided into three regions that correspond to transient
(I), quasi-transient (II), and stable behaviour (III).

As can be seen, the calculated values match
well with the experimental curve of the potassium
ferricyanide reaction at the Pt surface. Only a small
shift is observed in region I due to the contribution of
non-Faradaic currents. So, it is highly recommended
that the determination of electrochemical parameters
by GA is achieved considering the fitting function that
corresponds to regions II and III. Actually, this has

 

Manuscrito sometido a la Revista Mexicana de Ingeniería Química                  12 
 

The obtained optimized electrochemical model has been compared with the values reported 347 
in the Pine Instrument reference guide for electrochemistry (Pine-Instrument-Company., 348 
2000). The mentioned document uses two electrochemical techniques to extract the 349 
electrochemical parameters: cyclic voltammetry and chronoamperometry. First, the species 350 
concentration was calculated from the analysis of a set of cyclic voltammetric measured at 351 
different scan rates. Then, the D coefficient was obtained by substituting the C value and the 352 
determined slope from the Cottrell plot in the rearranged equation 1. The comparison was 353 
achieved by using the simulated data to construct the chronoamperometric curve and the 354 
experimental one (see Figure 3). The curve can be divided into three regions that correspond 355 
to transient (I), quasi-transient (II), and stable behaviour (III). 356 

 357 

Figure 3. Validation of the calculated data with the experimental chronoamperogram. 358 

 359 

As can be seen, the calculated values match well with the experimental curve of the 360 
potassium ferricyanide reaction at the Pt surface. Only a small shift is observed in region I 361 
due to the contribution of non-Faradaic currents. So, it is highly recommended that the 362 
determination of electrochemical parameters by GA is achieved considering the fitting 363 
function that corresponds to regions II and III. Actually, this has been a topic of discussion, 364 
and some authors propose using double-potential step chronoamperograms as a feasible 365 
approach to incorporate the contribution of the diffusion coefficient of the substrate and the 366 
products during the evaluation of an electrode process (Hyk, Nowicka, & Stojek, 2002; 367 
Ikeuchi & Kanakubo, 2000).  368 

Figure 3. Validation of the calculated data with the
experimental chronoamperogram.

been a topic of discussion, and some authors propose
using double-potential step chronoamperograms as a
feasible approach to incorporate the contribution of the
diffusion coefficient of the substrate and the products
during the evaluation of an electrode process (Hyk et
al., 2002; Ikeuchi & Kanakubo, 2000).

Reports in the literature show that D of potassium
ferricyanide, calculated from experimental data,
can be in the 6.0 ×10−6 to 8 ×10−6 cm2 s−1

interval, depending mainly on the experimental
electrochemical test (Pine-Instrument-Company.,
2000). For example, a comparison of D values
determined from experimental cyclic voltammetry and
CA measurements has resulted in 6.057 and 8.19 cm2

s−1, respectively. Theoretical data demonstrate that
most scenarios with the different crossover functions
produce D values within the experimental range
indicated here. It is to be noted that trial runs with
small population sizes display values lower than such
range. This behavior has been attributed elsewhere to
the lack of individuals that could start mating to form
a new optimal generation (Bărbulescu et al., 2021;
Hassanat et al., 2019). Interestingly, when a large
population is implemented, the crossover Laplace
algorithm shows poor performance in the estimated
values. This algorithm is based on the density function
Laplace distribution and comprises the location (a)
and scale parameters (b), see equation 7. Here the
γ coefficient is calculated according to a random
number denoted by u. If u is equal or less than 0.5
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then γ = a+ b ∗ log(u), else γ = a− b ∗ log(u).

offspring = parent1+ γ(parent1− parent2) (7)

When a large population is used, parents are expected
to be more random and this is also negatively affected
by the γ coefficient which also depends on a random
u number, which results in shifted offspring (Katoch
et al., 2021; Wang et al., 2019). This phenomenon
was also deeply discussed by Kusum et al. who stated
that the large b values produce offspring far from
their parents (Deep & Thakur, 2007). Considering the
aforementioned drawbacks and having in mind the
Laplace crossover has many parameters Zhang et al.
(2020) proposed an improved Laplacian algorithm that
improves exploitation and convergence speed.

Figure 4 displays the simulated curve, for
potassium ferricyanide reaction, by considering the
n, D and C values of 1, 8.19 ×10−6 cm2 s−1, 2.55
mmol L−1, respectively (Pine-Instrument-Company.,
2000). Using the parameters from the literature, it
can be observed that the simulated curve also has a
displacement in the region I. This feature confirms the
fact that the best fitting can be obtained considering
regions II and III. This outcome is rather evident,
considering that it is almost impossible to know the
electrochemical behavior in the transient response.

Considering the parameters’ values obtained using
the proposed GA, it can be confirmed that the
redox couple for ferricyanide occurs by the transfer
of one electron. The chemical reaction is achieved
according to the following equation (Guo et al., 2019;
Iamprasertkun et al., 2020):

[Fe(CN)6]3− + e−→ [Fe(CN)6]4− (8)

The ferricyanide anion is adsorbed at the Pt surface,
and a single electron is added to reduce the molecule
at Fe(CN)4−

6 (see Figure S1). The latter causes iron
changes its valence state from 3+ to 4+, showing a
reversible process with a formal potential close to
400 mV vs. the standard hydrogen electrode. Thus,
it can be seen that GA can also be used to explain
chemical or electrochemical reactions. For example,
Charles and coworkers used GA to elucidate chemical
reaction networks using species concentration data
from batch reactions (Hii et al., 2014) while Reiser
et al. use GA to determine chemical reactions in
plasma-assisted methane conversion (Reiser et al.,
2021). Ferricyanide is commonly implemented as a
redox mediator because it exhibits a homogeneous
one-electron redox process. From equation 8 and
Figure 1 it is evident that the interaction of electrolyte
cation species with ferricyanide can slow the chemical
process.
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Figure 4. Experimental and simulated curves were
plotted considering the reported values of n = 1,
D = 8.19 × 10−6 cm2 s−1, and C = 2.55 × 10−3 mol
L−1(Pine-Instrument-Company., 2000).

It should be mentioned that ferricyanide-based
electrolytes have been widely used as a standard test to
study the electrochemical properties of nanomaterials.
For example, Lamprasertkun conducted systematic
studies to understand the electrochemistry of highly
ordered pyrolytic graphites (Iamprasertkun et al.,
2020). This group observed a better reversible
process for the ferricyanide at high concentrations
and dependence of the diffusion coefficient with the
concentration. They reported that the D of ferricyanide
at the interval of 0.5 to 5 mol L−1 is in the
range of 2.49×10−6 and 7.87×10−6 cm2s−1. Similar
D values were also reported in the literature for
related electroactive solutes, and the authors stated
that the electrochemical process is achieved by one-
electron (Guo et al., 2019). Thus, these results provide
fundamental insight into the extensive applicability of
GA approach in chemical engineering problems.

Figure 5 compares the computed curve (using the
calculated CA parameters from the GA results) and
the experimental one. The graph only presents the
computed plot of the proposed algorithms with the
smallest RMSE. Results from the set of experiments
show that the Heuristic crossover operator delivers
the best performance in terms of fitting with the
experimental data. The best performance not only
means better fitting. It also represents the ability
of this algorithm to maintain the average RMSE at
low values regardless of the size of the population
used. As can be seen in almost all cases, the
performance of the Heuristic operator is better
than the other proposed methods. In other words,
the crossover Heuristic function allows parameter
estimation with high precision in a short time.
Actually, the modelled curve from the Heuristic
crossover surpasses the performance of the curve
computed by using the parameter values estimated
by reference (Pine-Instrument-Company., 2000). This
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fact is an outstanding result considering that the
multi-objective optimization problem involves three
unknown variables.

According to equation (3), the Heuristic crossover
is completely different from the intermediate and
Laplace operators because the beta parameter
multiplies both the factor and the subtraction process
of genes from their parents. This provides relevant
advantages for the Heuristic operator because it allows
for keeping diversity over the whole timeline.

Due to the versatility of Heuristic crossover
function in selecting elite individuals, this operator
has been widely proposed to modify and study new
evolutionary algorithms. For example, Rezaeipanah
et al. (2021) adopted a hybrid parallel GA to solve
timetabling problems. The study shows the advantages
of such a crossover algorithm over the uniform and
local search functions.

From the results of this work, it can be observed
that the crossover operator plays a vital role in the
solution of multi-objective optimization problems,
and a novel function proposal can reduce the time
computing without compromising the accuracy of the
results. For instance, a recent work proposed a hybrid
GA that uses adjusted and random-order crossover
operators to search for the optimal solution in less
computational time (Hvattum, 2022). From the above-
mentioned discussions, it can be inferred that GA can
be applied to several chemical and electrochemical
processes either to extract unknown variables or to
optimize the most important ones (Hii et al., 2014;
Reiser et al., 2021). The main drawback of this process
is the obtention of the mathematical equation or the
model that explain the behavior of the phenomena
under study.

Conclusions

The present work introduced students to the
implementation of a GA using commercially available
software to solve the multi-objective Cottrell equation
considering three unknown variables: n, C and
D. Potassium ferricyanide compound was used as
electroactive species, and the CA curve was used to
estimate the electrochemical parameters.

To this purpose, the effect of population size
and crossover function was studied, focusing on the
feasibility of estimating the parameters of interest.
The simulation results showed that almost all the trial
runs satisfied the expected values (values reported
in the Pine Instrument guide). It was observed
that population size is a critical factor in the
solution of the optimization problem. Moreover,
the Heuristic crossover function showed the best
performance in terms of fitting for the estimation
of parameters. Regarding the research questions it
can be concluded that GA is a convenient strategy
to determine electrochemical parameters by solving
the mathematical equation iteratively and the use of
commercial Toolbox permits the practitioner to focus
on proposing the boundaries and then data analysis.

Future work includes developing open-access
GA codes with an emphasis on the resolution of
electrochemical parameters and proposing a user-
friendly configuration. Although the Matlab Toolbox
works nicely this can be improved by incorporating
novel algorithms related to crossover and mutation
operators. Besides, statistical analysis might be very
convenient to consider.

One limitation of this work could be that
practitioners need to know about the physical
parameters of the experiments. The main advantage of
machine learning was found to be that it is possible
to use a large span when upper and low boundaries
are declared, compared with numeric methods. But
this can be a problem because some optimal solutions
might not have real meaning. Although this is a
disadvantage of the GA, in real-world applications
the users normally know their process and the
expected values. For example, if we are dealing with
electrochemical impedance spectroscopy parameters
identification in batteries the boundaries can be chosen
according to the shape of the Nyquist plot.

It should be mentioned that the proposed
methodology can be applied to solve other engineering
problems such as electrochemical impedance
spectroscopy parameters estimation, identification
of fuel cell model parameters, and other real-world
and hot-topic applications such as batteries and
electrolyzers.
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