Revista Mexicana de Ingeniería Química, Vol. 22, No. 3 (2023), Alim23145


Osmotic dehydration of cassava bagasse (Manihot esculenta) and its effect as pretreatment on the efficiency of convective drying

J.G. Serpa-Fajardo, G. Fernández-Lambert, D.F. Narváez-Guerrero, E. Hernández-Ramos, L.C. Sandoval-Herazo

https://doi.org/10.24275/rmiq/Alim23145


 

Abstract

The cassava bagasse is an agroindustrial residue from the cassava starch industry which entails concerning environmental challenges. High moisture content and hydrophilic nature make it difficult to apply conventional drying efficiently. Osmotic dehydration (OD) is evaluated directly in this research, and taken as a pretreatment to convective drying (OD-Drying) of this residue with hypertonic NaCl solutions between 30% and 60% OD and between 5% and 20% in OD-Drying, using rates of 3 to 5 g solution/g sample, with an air velocity of 1.5 m/s and at 40° C. OD alone reduced cassava bagasse moisture  in 67.25 %, while OD-Drying reduced moisture in 86.3 % and drying time  to 41.1 % saving energy up to 51,913.8 kJ when applying OD-Drying. Found results show that OD improves convective drying of cassava bagasse, providing benefits in its post-industrial handling such as mitigation of the environmental problem associated with it, contributing this way to the sustainable development of the starch industry that can also be applied to other agroindustrial residues.

Keywords: Convective drying, cassava bagasse, sustainable development, agroindustry, starch.

 


References

  • Andreou, V., Thanou, I., Giannoglou, M., Giannakourou, M.C., & Katsaros, G. (2021). Dried figs quality improvement and process energy savings by combinatory application of osmotic pretreatment and conventional air drying. Foods 10(8), 18-46. doi:10.3390/foods10081846
  • AOAC (1997). Official methods of the Association of Official Methods of Analysis. 16th edition. Arlington.
  • Assis, F., Morais, R., & Morais, A. (2017). Osmotic dehydration with sorbitol combined with hot air convective drying of apple cubes. Journal of Food Science and Technology 54(10), 3152-3160. doi:10.1007/s13197-017-2751-0
  • Bai, X., Campagnoli, M., Butot, S., Putallaz, T., Michot, L., & Zuber, S. (2020). Inactivation by osmotic dehydration and air drying of Salmonella, Shiga toxin-producing Escherichia coli, Listeria monocytogenes, hepatitis A virus and selected surrogates on blueberries. International Journal of Food Microbiology 320, 10852. doi: 10.1016/j.ijfoodmicro.2020.108522
  • Bantle, M., & Eikevik, T. (2014) A study of the energy efficiency of convective drying systems assisted by ultrasound in the production of clipfish. Journal of Clean Production 65, 217-223. doi: 10.1016/j.jclepro.2013.07.016
  • Bchir, B., Sebii, H., Danthine, S., Blecker, C., Besbes, S., Attia H., & Bouaziz, M. (2021). Efficiency of osmotic dehydration of pomegranate seeds in polyols solutions using response surface methodology. Horticulturae 7(9), 268. doi:10.3390/horticulturae7090268
  • Bera, D., & Roy, L. (2015). Osmotic dehydration of litchi using sucrose solution: effect of mass transfer. Journal of Food Process Technology 6(7), 62-69. DOI: 10.4172/2157-7110.1000462
  • Borja-Málaga, M., Jiménez-Ochoa, A., Medina-de Miranda, E., Escobedo-Vargas, F. (2022). Effect of drying on the extraction yield of Luma chequen (Molina) A. Gray essential oil. Revista Mexicana de Ingeniería Química 21(2), Proc2623. https://doi.org/10.24275/rmiq/Proc2623
  • Bussolo de Souza, C., Melliana, J., Isay, S., Schols, H., & Venema, K. (2018). Characterization and in vitro digestibility of by-products from Brazilian food industry: Cassava bagasse, orange bagasse and passion fruit peel. Bioactive Carbohydrates and Dietary Fibre 16, 90-99. doi: 10.1016/j.bcdf.2018.08.001
  • Çağlayan, D., & Barutçu, I. (2018). Effects of ultrasound-assisted osmotic dehydration as a pretreatment and finish drying methods on the quality of pumpkin slices. Journal of Food Process Preservation 42(9), e13679. doi:10.1111/jfpp.13679
  • Chavan, U., & Amarowicz, R. (2012). Osmotic dehydration process for preservation of fruits and vegetables. Journal of Food Research 1(2). doi:10.5539/jfr. v1n2p202
  • CIAT. (2022). In Colombia, the first digital catalog of cassava varieties from Cauca is launched. International Center for Tropical Agriculture. Available at: https://www.agronet.gov.co/Noticias/Paginas/En-Colombia,-se-lanza-el-primer-cat%C3%A1logo-digital-de-variedades-de-yuca-del-Cauca.aspx. Accessed April 4, 2022
  • Contreras, K., Arrieta, P., Salcedo, J., & Cervera, M. (2016). Cassava bran dehydration by combined methods. Vitae 23, (Supl.1), s231-s235. Accessed: September 6, 2022. https://www.proquest.com/docview/1783660297?pq-origsite=gscholar&fromopenview=true
  • Da Costa Ribeiro, A., Aguiar-Oliveira, E., & Maldonado, R. (2016). Optimization of osmotic dehydration of pear followed by conventional drying and their sensory quality. LWT - Food Science and Technology 72, 407-415. doi: 10.1016/j.lwt.2016.04.062
  • Dermesonlouoglou, E., Chalkia, A., & Taoukis, P. (2018). Application of osmotic dehydration to improve the quality of dried goji berry. Journal of Food Engineering 232, 36-43. doi: 10.1016/j.jfoodeng.2018.03.012
  • Deshmukh, S., Gabhane, S., & Deshmukh, D. (2021). Osmotic dehydration of carrot strips and modelling. Journal of Physics Conference Series 1913(1), 012093. doi:10.1088/1742-6596/1913/1/012093
  • Domínguez‐Niño, A., Salgado‐Sandoval, O., López‐Vidaña, E., César‐Munguía, A., Pilatowsky‐Figueroa, I., & García‐Valladares, O. (2021). Influence of process variables on the drying kinetics and color properties of pear slices (Pyrus communis). Color Research and Applications 46(5), 1128-1141. doi:10.1002/col.22625
  • Escaramboni, B., Fernández Núñez, E, Carvalho, A., & de Oliva Neto, P. (2018). Ethanol biosynthesis by fast hydrolysis of cassava bagasse using fungal amylases produced in optimized conditions. Industrial Crops Production 112, 368-377. doi: 10.1016/j.indcrop.2017.12.004
  • Eyerson, K., & Ankrah, E. (1975). Composition of Foods Commonly Used in Ghana. Food research institute-Ghana.
  • Feng, Y., Yu, X., Yagoub, A. E. A., et al. (2019). Vacuum pretreatment coupled to ultrasound assisted osmotic dehydration as a novel method for garlic slices dehydration. Ultrasonics Sonochemistry 50, 363-372. doi:10.1016/j.ultsonch.2018.09.038
  • Ferreira, J. P. L., Castro, D. S. de, Moreira, I. dos S., Silva, W. P. da, Figueirêdo, R. M. F. de, & Queiroz, A. J. de M. (2020). Convective drying kinetics of osmotically pretreated papaya cubes. Revista Brasileira de Engenharia Agrícola e Ambiental 24(3), 200-208. doi:10.1590/1807-1929/agriambi.v24n3p200-208
  • Fiorda, F. A., Soares, M. S., da Silva, F. A., de Moura, C. M. A., & Grossmann, M. V. E. (2015). Physical quality of snacks and technological properties of pre-gelatinized flours formulated with cassava starch and dehydrated cassava bagasse as a function of extrusion variables. LWT - Food Science and Technology 62(2), 1112-1119. doi:10.1016/j.lwt.2015.02.030
  • Florencia, V., López, O. V., & García, M. A. (2020). Exploitation of by-products from cassava and ahipa starch extraction as filler of thermoplastic corn starch. Composites Part B: Engineering 182, 107653. doi:10.1016/j.compositesb.2019.107653
  • García, C. C., Mauro, M. A., & Kimura, M. (2007). Kinetics of osmotic dehydration and air-drying of pumpkin. Journal of Food Engineering 82, 284-291.
  • García, M., Salcedo, J., & Hernandez, E. (2016). Viscoelasticity in bakery doughs formulated with wheat flour and cassava bran. Vitae 23, 250-254.
  • García Mahecha, M., Cortes Rodríguez, M., & Sandoval E.R. (2010). Evaluation of parsley drying applying osmotic dehydration techniques as pretreatment. Revista Facultad Nacional de Agronomía Medellín 63(2), 5693-5705.
  • García Paternina, M., Cardona Arbeláez, A. A., & García Mogollón, C. A. (2020). Diagnosis of the management of cassava bran in the department of Sucre. In: Innovation in the Caribbean Region of Colombia: Theoretical Contributions and Good Practices. Editorial CECAR. doi:10.21892/9789585547858.9
  • García-Noguera, J., Oliveira, F. I. P., Gallão, M. I., Weller, C. L., Rodrigues, S., & Fernandes, F. A. N. (2010). Ultrasound-assisted osmotic dehydration of strawberries: Effect of pretreatment time and ultrasonic frequency. Drying Technology 28(2), 294-303. doi:10.1080/07373930903530402
  • Geankoplis, C. J. (1998). Transport Processes and Unit Operations (3rd ed.). Continental. P.617.
  • Ghanem Romdhane, N., Djendoubi, N., Bonazzi, C., Kechaou, N., & Boudhrioua Mihoubi, N. (2016). Effect of combined air-drying-osmotic dehydration on kinetics of techno-functional properties, color and total phenol contents of lemon (Citrus limon. v. lunari) peels. International Journal of Food Engineering 12(6), 515-525. doi:10.1515/ijfe-2015-0252
  • Grasso, S. (2020). Extruded snacks from industrial by-products: A review. Trends in Food Science & Technology 99, 284-294. doi:10.1016/j.tifs.2020.03.012
  • Grzelak-Błaszczyk, K., Grzegorzewska, M., & Klewicki, R. (2021). Retention of flavonols in onions after osmotic dehydration. LWT 150, 112067. doi:10.1016/j.lwt.2021.112067
  • Gutiérrez-Salomón, A. L., Hernández-Hernández, H. M., & Jaimez-Ordaz, J. (2021). Effect of osmotic and convective dehydration on the physicochemical, functional and sensory properties of Opuntia joconostle. Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI 9(17), 31-38. doi:10.29057/icbi.v9i17.6339
  • Julca-Huarnizo, L., Vasquez-Torres, F., & Robles-Ruiz, J. (2019). Osmotic dehydration of mamey (Mammea americana L.) and its effect on the physicochemical and organoleptic characteristics. Functional Food Science and Technology Journal 1(1), 19-33. http://revistas.unprg.edu.pe/openjournal/index.php/cytaf/article/view/530
  • Kaur, K., Kumar, S., & Alam, M. S. (2014). Air drying kinetics and quality characteristics of oyster mushroom (Pleurotus ostreatus) influenced by osmotic dehydration. Agricultural Engineering International: CIGR Journal 16(3), 214-222. Retrieved from https://cigrjournal.org/index.php/Ejounral/article/view/2831
  • Kaushal, P., & Sharma, H. K. (2016). Osmo-convective dehydration kinetics of jackfruit (Artocarpus heterophyllus). Journal of the Saudi Society of Agricultural Sciences 15(2), 118-126. doi:10.1016/j.jssas.2014.08.001
  • Keller, M., Ambrosio, E., de Oliveira, V. M., et al. (2020). Polyurethane foams synthesis with cassava waste for biodiesel removal from water bodies. Bioresource Technology Reports, 10, 100396. doi:10.1016/j.biteb.2020.100396
  • Kowalski, S. J., & Szadzińska, J. (2014). Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chemical Engineering and Processing: Process Intensification 82, 65-70. doi:10.1016/j.cep.2014.05.006
  • Liu, L., Chen, J., Lim, P. E., & Wei, D. (2018). Enhanced single cell oil production by mixed culture of Chlorella pyrenoidosa and Rhodotorula glutinis using cassava bagasse hydrolysate as carbon source. Bioresource Technology 255, 140-148. doi:10.1016/j.biortech.2018.01.114
  • Liu, Y., Wu, J., Chong, C., & Miao, S. (2014). Ultrasound assisted osmotic dehydration as pretreatment for hot-air drying of carrot. Food Science and Technology Research 20(1), 31-41. doi:10.3136/fstr.20.31
  • Martínez, E. (2005). Frequent errors in the interpretation of the coefficient of linear determination. Escurialens Legal and Economic Yearbook, 315-332.
  • Massolo, J. F., Ortiz, C., Concellon, A., & Vicente, A. (2020). Influence of the dehydration method on the quality of round zucchini snacks [Cucurbita maxima var. Zapallito (Carr.) Millán)]. Revista de la Facultad de Agronomía 119(1), 045. doi:10.24215/16699513e045
  • Masztalerz, K., Lech, K., Wojdyło, A., Nowicka, P., Michalska-Ciechanowska, A., & Figiel, A. (2021). The impact of the osmotic dehydration process and its parameters on the mass transfer and quality of dried apples. Drying Technology 39(8), 1074-1086. doi:10.1080/07373937.2020.1741607
  • Mendes, G. R. L., Freitas, C. H. de, Scaglioni, P. T., Schmidt, C. G., & Furlong, E. B. (2013). Condições para desidratação osmótica de laranjas e as propriedades funcionais do produto. Revista Brasileira de Engenharia Agrícola e Ambiental 17(11), 1210-1216. doi:10.1590/S1415-43662013001100012
  • Moreira, R., Chenlo, F., Chaguri, L., & Vázquez, G. (2011). Air drying and colour characteristics of chestnuts pre-submitted to osmotic dehydration with sodium chloride. Food and Bioproducts Processing 89(2), 109-115. doi:10.1016/j.fbp.2010.03.013
  • Mujic, I., Bavcon Kralj, M., Jokić, S., et al. (2014). Characterisation of volatiles in dried white varieties figs (Ficus carica L.). Journal of Food Science and Technology 51(9), 1837-1846. doi:10.1007/s13197-012-0740-x
  • Muñiz-Becerá, S., Méndez-Lagunas, L. L., Rodríguez-Ramírez, J., Sandoval-Torres, S., López-Ortíz, A., & Barriada-Bernal, L. G. (2022). Modeling of solute transport inside plant tissue during osmotic dehydration of apple. Drying Technology 40(2), 387-400. doi:10.1080/07373937.2020.1798994
  • Novales, A. (2010). Regression analysis. In: Department of Quantitative Economics. Complutense University of Madrid, Spain.
  • Paternina, A., Salcedo, J., Contreras, K., & García, M. (2016). Characterization and desorption isotherm modeling of cassava bagasse (Manihot esculenta Crantz). In: Starch/Stärke 1-8. DOI:10.1002/star.201600020
  • Polachini, T. C., Mulet, A., Cárcel, J. A., & Telis-Romero, J. (2019). Rheology of acid suspensions containing cassava bagasse: Effect of biomass loading, acid content and temperature. Powder Technology 354, 271-280. doi:10.1016/j.powtec.2019.05.086
  • Romero de Armas, R., Alcívar Acosta, E., & Alpízar Muni, J. (2017). Cassava bran as a partial substitute for corn in the diet of fattening pigs. La Técnica: Revista de las Agrociencias 54. doi:10.33936/la técnica. v0i0.974
  • Salcedo-Mendoza, M., Contreras-Lozano, J. G., García-López, K., & Fernández-Quintero, A. (2016). Modeling of the drying kinetics of cassava bran (Manihot esculenta Crantz). Revista Mexicana de Ingeniería Química 15(3), 883-891.  http://rmiq.org/iqfvp/Pdfs/Vol.%2015,%20No.%203/Alim10/Alim10.html
  • Serpa-Fajardo, J., Narváez-Guerrero, D., Serpa-Padilla, C., Hernández-Ramos, E., & Fernández-Lambert, G. (2022). Assessment of parameters to apply osmotic dehydration as pretreatment for improving the efficiency of convective drying of Cassava bagasse. Applied Sciences 12, 12101. https://doi.org/10.3390/app122312101
  • Sharma, M., & Dash, K. K. (2019). Effect of ultrasonic vacuum pretreatment on mass transfer kinetics during osmotic dehydration of black jamun fruit. Ultrasonics Sonochemistry 58, 104693. doi:10.1016/j.ultsonch.2019.104693
  • Sutar, P. P., & Prasad, S. (2011). Optimization of osmotic dehydration of carrots under atmospheric and pulsed microwave vacuum conditions. Drying Technology 29(3), 371-380. doi:10.1080/07373937.2010.497955
  • Taşova, M., Polatcı, H., & Gökdoğan, O. (2022). Effect of osmotic dehydration pre-treatments on physicochemical and energy parameters of Kosia (Nashi) pear slices dried in a convective oven. Journal of Food Process Preservation. doi:10.1111/jfpp.16945
  • Thuy, N. M., Tham, N. T., Minh, V. Q., Vu, P. T., & Tai, N. van. (2021). Evaluation of water loss and solute uptake during osmotic treatment of white radishes (Raphanus sativus L.) in salt-sucrose solution. Plant Science Today. doi:10.14719/pst.1422
  • Thuy, N. M., Giau, T. N., Tai, N.V., Minh, V.Q. (2023). Drying kinetics and mathematical modeling of dried macaroni supplemented with Gac aril. Revista Mexicana de Ingeniería Química 22 (3), Alim23103. https://doi.org/10.24275/rmiq/Alim23103
  • Vargas Corredor, Y. A., & Pérez Pérez, L. I. (2018). Use of agro-industrial waste to improve the quality of the environment. Revista Facultad de Ciencias Básicas 59-72. doi:10.18359/rfcb.3108
  • WolframAlpha LLC. (2009). URL: www.wolframalpha.com