Revista Mexicana de Ingeniería Química, Vol. 22, No. 3 (2023), Alim23148


Process of foam-mat drying of purple rice bran extract and evaluation of product properties

L.T.K. Loan, N.V. Tai

https://doi.org/10.24275/rmiq/Alim23148


 

Abstract

The present study examined the process of foam-mat drying “Câm” purple rice bran extract, including optimization foaming conditions and effect of drying temperatures on the drying behaviours and powder’s qualities. The egg album and xanthan gum at different levels were used as foaming agents, which further optimizied by the response surface methodology. The optmial foam was dried at four levels of temperature (50-80oC). Moisture content was further recorded every 30 minutes. Four common emperical models were applied for predicting the pattern of moisture content. Under the effect of heat treatment, the final qualities of Câm purple rice bran foam-mat dried powder were determined. The results showed that when egg albumin and xanthan gum were used, 12.04% and 0.337% could maximize foam expansion and stability. These conditions could facilitate the efficiency of the drying process. Moreover, among the four models, the Page model showed the best fit for predicting the change in moisture ratio. The effective diffusivity and activation energy were from  6.73 x 10-10 to 1.66 x 10-9 m2/s and 22.72 kJ/mol, respectively. The study also revaled that at temperature of 70ºC, the product could maintain high antioxidants, proper conditions for storage and high acceptance by consumers.

Keywords: foam-mat drying, modelling, antioxidant, kinetics, optimization.

 


References

  • Arab, F., Alemzadeh, I., & Maghsoudi, V. (2011). Determination of antioxidant component and activity of rice bran extract. Scientia Iranica, 18(6), 1402-1406. https://doi.org/10.1016/j.scient.2011.09.014
  • Badmus, U. O., Taggart, M. A., & Boyd, K. G. (2019). The effect of different drying methods on certain nutritionally important chemical constituents in edible brown seaweeds. Journal of Applied Phycology, 31(6), 3883-3897. http://doi.org/10.1007/s10811-019-01846-1
  • Crank, J. (1979). The mathematics of diffusion. Oxford university press.
  • Dehghannya, J., Pourahmad, M., Ghanbarzadeh, B., & Ghaffari, H. (2018). Influence of foam thickness on production of lime juice powder during foam-mat drying: Experimental and numerical investigation. Powder Technology, 328, 470-484. https://doi.org/10.1016/j.powtec.2018.01.034
  • Diaconeasa, Z., Iuhas, C. I., Ayvaz, H., Mortas, M., Farcaş, A., Mihai, M., Danciu, C., & Stanilă, A. (2023). Anthocyanins from Agro-Industrial Food Waste: Geographical Approach and Methods of Recovery—A Review. Plants, 12(1), 74. https://doi.org/10.3390/plants12010074
  • Farid, E., Mounir, S., Talaat, E., Elnemr, S., & Siliha, H. (2022). Effect of foaming parameters on the physical and phytochemical properties of tomato powder. Food Sci Biotechnol, 31(11), 1423-1431. 10.1007/s10068-022-01125-9
  • Franco, T. S., Perussello, C. A., Ellendersen, L. d. S. N., & Masson, M. L. (2015). Foam mat drying of yacon juice: Experimental analysis and computer simulation. Journal of Food Engineering, 158, 48-57. https://doi.org/10.1016/j.jfoodeng.2015.02.030
  • Güldane, M. (2023). Optimizing foam mat drying process for cornelian cherry pulp using response surface methodology and artificial neural networks. Revista Mexicana de Ingeniería Química, 22(3), Alim2386. https://doi.org/10.24275/rmiq/Alim2386
  • Hardy, Z., & Jideani, V. A. (2017). Foam-mat drying technology: A review. Crit Rev Food Sci Nutr, 57(12), 2560-2572. 10.1080/10408398.2015.1020359
  • Huang, Y. P., & Lai, H. M. (2016). Bioactive compounds and antioxidative activity of colored rice bran. Journal of Food and Drug Analysis, 24(3), 564-574. https://doi.org/10.1016/j.jfda.2016.01.004
  • Jeevarathinam, G., Pandiselvam, R., Pandiarajan, T., Preetha, P., Krishnakumar, T., Balakrishnan, M., Thirupathi, V., Ganapathy, S., & Amirtham, D. (2022). Design, development, and drying kinetics of infrared‐assisted hot air dryer for turmeric slices. Journal of Food Process Engineering, 45(6), e13876.
  • Kanha, N., Regenstein, J. M., & Laokuldilok, T. (2022). Optimization of process parameters for foam mat drying of black rice bran anthocyanin and comparison with spray- and freeze-dried powders. Drying Technology, 40(3), 581-594. 10.1080/07373937.2020.1819824
  • Le Loan, T. K., Thuy, N. M., Le Tri, Q., & Sunghoon, P. (2021). Characterization of gluten-free rice bread prepared using a combination of potato tuber and ramie leaf enzymes. Food Science and Biotechnology, 30(4), 521-529. https://doi.org/10.1007/s10068-021-00891-2
  • Le, T. K. L., Ha, M. Q., Tran, N. M. C., Nguyen, T. Q. N., & Ngo, V. T. (2022). Impact of cooking and drying conditions on the quality of instant brown rice cultivated in Vietnam. The International Conference on Sustainable Agriculture for Food Safety, Tien Giang University, Vietnam.
  • Le, T. K. L., & Nguyen, M. T. (2019). Optimization of germination process of “Cam” brown rice by response surface methodology and evaluation of germinated rice quality. Food Research, 4, 459-467. https://doi.org/10.26656/fr.2017.4(2).307.1
  • Loan, L. T. K., Minh, Q. H., Minh, T. N., Nhung, N. T., Xuan, T. D., Duong, V. X., Trung, K. H., Minh, L. H. N., Khanh, T. D., & Thu Ha, T. T. (2023a). Optimization of protein extraction from "Cam" rice bran by response surface methodology. Journal of Experimental Biology and Agricultural Sciences, 11(2), 290-296. https://doi.org/10.18006/2023.11(2).290.296
  • Loan, L. T. K., Tai, N. V., & Thuy, N. M. (2023b). Microwave-assisted extraction of “Cẩm” purple rice bran polyphenol: A kinetic study. Acta Scientiarum Polonorum Technologia Alimentaria, In press.
  • Loan, L. T. K., Thuy, N. M., & Tai, N. V. (2023c). Mathematical and artificial neural network modeling of hot air-drying kinetics of instant “Câm” brown rice. Food Science and Technology, 43, e027623. https://doi.org/10.1590/fst.027623
  • Loan, L. T. K., Vinh, B. T., & Tai, N. V. (2024). Recent important insight into nutraceuticals potential of pigmented rice cultivars: A promising ingredient for future food. Journal of Applied Biology & Biotechnology, In press.
  • Martínez-Padilla, L. P., García-Rivera, J. L., Romero-Arreola, V., & Casas-Alencáster, N. B. (2015). Effects of xanthan gum rheology on the foaming properties of whey protein concentrate. Journal of Food Engineering, 156, 22-30. https://doi.org/10.1016/j.jfoodeng.2015.01.018
  • Ngo, T. V., Kusumawardani, S., Kunyanee, K., & Luangsakul, N. (2022). Polyphenol-Modified Starches and Their Applications in the Food Industry: Recent Updates and Future Directions. Foods, 11(21), 3384. https://doi.org/10.3390/foods11213384
  • Rajkumar, P., Kailappan, R., Viswanathan, R., Raghavan, G. S. V., & Ratti, C. (2007). Foam Mat Drying of Alphonso Mango Pulp. Drying Technology, 25(2), 357-365. 10.1080/07373930601120126
  • Ratti, C., & Kudra, T. (2006). Drying of Foamed Biological Materials: Opportunities and Challenges. Drying Technology, 24(9), 1101-1108. 10.1080/07373930600778213
  • Sangamithra, A., Sivakumar, V., John, S. G., & Kannan, K. (2015). Foam mat drying of food materials: A review. Journal of food processing and preservation, 39(6), 3165-3174.
  • Sarkar, A., Hossain, M. W., Alam, M., Biswas, R., Roy, M., & Haque, M. I. (2023). Drying conditions and varietal impacts on physicochemical, antioxidant and functional properties of onion powder. Journal of Agriculture and Food Research, 12, 100578. https://doi.org/10.1016/j.jafr.2023.100578
  • Sarpong, F., Yu, X., Zhou, C., Amenorfe, L. P., Bai, J., Wu, B., & Ma, H. (2018). The kinetics and thermodynamics study of bioactive compounds and antioxidant degradation of dried banana (Musa ssp.) slices using controlled humidity convective air drying. Journal of Food Measurement and Characterization, 12(3), 1935-1946. 10.1007/s11694-018-9809-1
  • Sifat, S. A. D., Trisha, A. T., Huda, N., Zzaman, W., & Julmohammad, N. (2021). Response Surface Approach to Optimize the Conditions of Foam Mat Drying of Plum in relation to the Physical-Chemical and Antioxidant Properties of Plum Powder. International Journal of Food Science, 2021, 3681807. 10.1155/2021/3681807
  • Singhal, S., Rasane, P., Kaur, S., Singh, J., & Gupta, N. (2020). Thermal degradation kinetics of bioactive compounds in button mushroom (Agaricus bisporus) during tray drying process. Journal of Food Process Engineering, 43(12), e13555. https://doi.org/10.1111/jfpe.13555
  • Snoussi, A., Essaidi, I., Ben Haj Koubaier, H., Zrelli, H., Alsafari, I., Živoslav, T., Mihailovic, J., Khan, M., El Omri, A., Ćirković Veličković, T., & Bouzouita, N. (2021). Drying methodology effect on the phenolic content, antioxidant activity of Myrtus communis L. leaves ethanol extracts and soybean oil oxidative stability. BMC Chemistry, 15(1), 31. 10.1186/s13065-021-00753-2
  • Süfer, Ö., Pandiselvam, R., & Kaya, Y. Y. (2023). Drying kinetics, powder properties, and bioactive components of bitter orange (Citrus aurantium L.) dried by microwave-assisted foam-mat approach. Biomass Conversion and Biorefinery. 10.1007/s13399-023-04477-2
  • Sun, Y., Hayakawa, S., Chuamanochan, M., Fujimoto, M., Innun, A., & Izumori, K. (2006). Antioxidant effects of Maillard reaction products obtained from ovalbumin and different D-aldohexoses. Biosci Biotechnol Biochem, 70(3), 598-605. 10.1271/bbb.70.598
  • Tai, N. V., Linh, M. N., & Thuy, N. M. (2021). Modeling of thin layer drying characteristics of “Xiem” banana peel cultivated at U Minh district, Ca Mau province, Vietnam. Food Research, 5(5), 244-249. http://doi.org/10.26656/fr.2017.5(5).180
  • Tai, V. N., Kunyanee, K., & Luangsakul, N. (2023). Insights into Recent Updates on Factors and Technologies that Modulate the Glycemic Index of Rice and Its Products. Foods, 12.
  • Tapia, M. S., Alzamora, S. M., & Chirife, J. (2020). Effects of Water Activity (a w ) on Microbial Stability as a Hurdle in Food Preservation. In Water Activity in Foods (pp. 323-355). https://doi.org/https://doi.org/10.1002/9781118765982.ch14
  • Thuy, N. M., Chi, N. T. D., Huyen, T. H. B., & Tai, N. V. (2020a). Orange-fleshed sweet potato grown in Viet Nam as a potential source for making noodles. Food Research, 4(3), 712-721. http://doi.org/10.26656/fr.2017.4(3).390
  • Thuy, N. M., Ha, H. T. N., & Tai, N. V. (2022a). Lactic Acid Fermentation of Radish and Cucumber in Rice Bran Bed. Agriculturae Conspectus Scientificus, 87(3), 245-252. https://doi.org/10.17306/J.AFS.0944
  • Thuy, N. M., Hiep, L. H., Tai, N. V., Huong, H. T. T., & Minh, V. Q. (2022b). Impact of drying temperatures on drying behaviours, energy consumption and quality of purple sweet potato flour. Acta Scientiarum Polonorum Technologia Alimentaria, 21(4), 379-387. https://doi.org/10.17306/J.AFS.2022.1061
  • Thuy, N. M., Minh, V. Q., Ha, H. T. N., & Tai, N. V. (2021). Impact of different thin layer drying temperatures on the drying time and quality of butterfly pea flowers. Food Research, 5, 197-203. http://doi.org/10.26656/fr.2017.5(6).328
  • Thuy, N. M., Nhu, P. H., Tai, N. V., & Minh, V. Q. (2022c). Extraction Optimization of Crocin from Gardenia (Gardenia jasminoides Ellis)Fruits Using Response Surface Methodology and Quality Evaluation of Foam-Mat Dried Powder. Horticulturae, 8(12), 1199. http://doi.org/10.3390/horticulturae8121199
  • Thuy, N. M., Phung, L. B., Tai, N. V., & Minh, V. Q. (2023). Impact of foaming conditions on quality for foam-mat drying of Butterfly pea flower by multiple regression analysis. Plant Science Today, 10(2), 51-57. https://doi.org/10.14719/pst.1913
  • Thuy, N. M., Tien, V. Q., Tuyen, N. N., Giau, T. N., Minh, V. Q., & Tai, N. V. (2022d). Optimization of Mulberry Extract Foam-Mat Drying Process Parameters. Molecules, 27(23), 8570. http://doi.org/10.3390/molecules27238570
  • Thuy, N. M., Tien, V. Q., Van Tai, N., & Minh, V. Q. (2022e). Effect of Foaming Conditions on Foam Properties and Drying Behavior of Powder from Magenta (Peristropheroxburghiana) Leaves Extracts. Horticulturae, 8(6), 546. http://doi.org/10.3390/horticulturae8060546
  • Thuy, N. M., Tuyen, N. T. M., Thanh, N. V., & Tai, N. V. (2020b). Evaluation of freeze-drying conditions on the process kinetics and physicochemical properties of purple shallot. Food Research, 4(5), 1630-1636. https://doi.org/10.26656/fr.2017.4(5).246
  • Tlatelpa-Becerro, A., Rico-Martínez, R., Cárdenas-Manríquez, M., Urquiza, G., Castro-Gómez, L., Alarcón-Hernández, F., Torres, C., & Montiel, E. (2022). Drying kinetics of Cecina from Yecapixtla using a forced flow indirect solar dryer. Revista Mexicana de Ingeniería Química, 21(2), Alim2750.
  • Van Tai, N., Linh, M. N., & Thuy, N. M. (2021). Optimization of extraction conditions of phytochemical compounds in “Xiem” banana peel powder using response surface methodology. Journal of Applied Biology and Biotechnology, 9(6), 56-62. http://doi.org/10.7324/JABB.2021.9607
  • Van Tai, N., Minh, V. Q., & Thuy, N. M. (2023). Food processing waste in Vietnam: Utilization and prospects in food industry for sustainability development. Journal of microbiology, biotechnology and food sciences, e9926. https://doi.org/10.55251/jmbfs.9926
  • Waramit, P., Krittacom, B., & Luampon, R. (2022). Experimental Investigation to Evaluate the Effective Moisture Diffusivity and Activation Energy of Cassava (Manihot Esculenta) under Convective Drying. Applied Science and Engineering Progress, 15(4), 5518-5518.
  • Zhang, Y., Li, Y., Ren, X., Zhang, X., Wu, Z., & Liu, L. (2023). The positive correlation of antioxidant activity and prebiotic effect about oat phenolic compounds. Food Chemistry, 402, 134231. https://doi.org/10.1016/j.foodchem.2022.134231