Revista Mexicana de Ingeniería Química, Vol. 22, No. 3 (2023), Alim2319


Screening of main factors in microencapsulation of two Bifidobacterium strains by spray drying

A.J. Borrás-Enríquez, J.L. Gonzalez-Escobar, R.E. Delgado-Portales, M.R. Pérez-Barba, M. Moscosa-Santillán

https://doi.org/10.24275/rmiq/Alim2319


 

Abstract

Microencapsulation of Bifidobacterium infantis and Bifidobacterium lactis by spray drying has been studied. This work aimed to screen operational factors affecting the survival percentage, the probiotic powder yield, and activity water. Parameters such as air inlet temperature (AIT), air inlet flow rate (AIF), core material type (CM), core material concentration (CMC), and Lactic Acid Bacteria (LAB) were screened using a Taguchi design of experiments. The results indicated that the most influential parameters on survival percentage were LAB and AIF (p<0.05). On the other hand, all powders exhibited a high concentration of microorganisms (>8 log CFU/gds) and low activity water (aw<0.3), establishing essential features for their use as probiotic powder and stability for their storage. Moreover, the results demonstrated that encapsulation by spray drying using skim milk reconstituted and β-cyclodextrin-Gum arabic effectively increased the survival of Bifidobacterium strains in the gastro-intestinal tract. Therefore, this microencapsulation process could allow better colonization into the intestine for probiotic effects assurance on consumer health.

Keywords: taguchi screening design, spray drying, microencapsulation, Bifidobacterium, cell viability.

 


References

  • Adhikari, B., Howes, T., Lecomte, D., & Bhandari, B. R. (2005). A glass transition temperature approach for the prediction of the surface stickiness of a drying droplet during spray drying. Powder Technology, 149(2-3), 168-179. https://doi.org/10.1016/j.powtec.2004.11.007
  • Anandharamakrishnan, C. & Ishwarya, S.P. Encapsulation of bioactive ingredients by spray drying. In Spray Drying Techniques for Food Ingredient Encapsulation; Anandharamakrishnan, C. & Ishwarya, S.P., Eds.; John Wiley & Sons Ltd: Chicago, IL, USA, 2015; pp. 156–179.             https://doi.org/10.1002/9781118863985.ch7
  • Anandharamakrishnan, C., Gimbun, J., Stapley, A. G. F., & Rielly, C. D. (2010). A study of particle histories during spray drying using computational fluid dynamic simulations. Drying Technology, 28(5), 566–576. https://doi.org/10.1080/07373931003787918
  • Ananta, E., Volkert, M., & Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal, 15(4), 399-409. https://doi.org/10.1016/j.idairyj.2004.08.004
  • Argyri, A. A., Zoumpopoulou, G., Karatzas, K. A. G., Tsakalidou, E., Nychas, G. J. E., Panagou, E. Z., & Tassou, C. C. (2013). Selection of potential probiotic lactic acid bacteria from fermented olives by in vitro tests. Food microbiology, 33(2), 282-291. https://doi.org/10.1016/j.fm.2012.10.005
  • Arslan-Tontul, S., & Erbas, M. (2017). Single and double layered microencapsulation of probiotics by spray drying and spray chilling. LWT-Food Science and Technology, 81, 160-169. https://doi.org/10.1016/j.lwt.2017.03.060
  • Barbosa-Cánovas, G. V., Ortega-Rivas, E., Juliano, P., & Yan, H. (2005). Food powders: physical properties, processing, and functionality. New York: Kluwer Academic/Plenum Publishers, 19-54. https://doi.org/10.1007/0-387-27613-0
  • Collado, M. C., & Sanz, Y. (2006). Method for direct selection of potentially probiotic Bifidobacterium strains from human feces based on their acid-adaptation ability. Journal of Microbiological Methods, 66(3), 560-563. https://doi.org/10.1016/j.mimet.2006.01.007
  • Cai, Y. Z., & Corke, H. (2000). Production and properties of spray‐dried Amaranthus betacyanin pigments. Journal of Food Science, 65(7), 1248-1252. https://doi.org/10.1111/j.1365-2621.2000.tb10273.x
  • Corcoran, B. M., Stanton, C., Fitzgerald, G., & Ross, R. P. (2008). Life under stress: the probiotic stress response and how it may be manipulated. Current Pharmaceutical Design, 14(14), 1382-1399. http://doi.org/10.2174/138161208784480225
  • Cortés-Rodriguez, M., Gil-González, J. H., & Ortega-Toro, R. (2022). Influence of the feed composition and the spray drying process on the quality of a powdered mixture of blackberry (Rubus glaucus Benth). Revista Mexicana de Ingeniería Química, 21(3), 1-17. https://doi.org/10.24275/rmiq/Alim2855
  • Dimitrellou, D., Kandylis, P., Petrović, T., Dimitrijević-Branković, S., Lević, S., Nedović, V., & Kourkoutas, Y. (2016). Survival of spray dried microencapsulated Lactobacillus casei ATCC 393 in simulated gastrointestinal conditions and fermented milk. LWT-Food Science and Technology, 71, 169-174. https://doi.org/10.1016/j.lwt.2016.03.007
  • Doleyres, Y., & Lacroix, C. J. I. D. J. (2005). Technologies with free and immobilized cells for probiotic Bifidobacteria production and protection. International Dairy Journal, 15(10), 973-988. https://doi.org/10.1016/j.idairyj.2004.11.014
  • Fang, Z., & Bhandari, B. (2010). Encapsulation of polyphenols–a review. Trends in Food Science & Technology, 21(10), 510-523. https://doi.org/10.1016/j.tifs.2010.08.003
  • Fang, Y., Rogers, S., Selomulya, C., & Chen, X. D. (2012). Functionality of milk protein concentrate: Effect of spray drying temperature. Biochemical Engineering Journal, 62, 101-105. https://doi.org/10.1016/j.bej.2011.05.007
  • FAO/WHO, Report on joint FAO/WHO Working Group. (2002). Guidelines for the evaluation of probiotics in food: report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotics in food. World Health Organization and Food and Agriculture Organization of the United Nations, Rome, Italy. https://www.mhlw.go.jp/file/05-Shingikai-11121000-Iyakushokuhinkyoku-Soumuka/0000197343.pdf.
  • Fritzen-Freire, C. B., Prudêncio, E. S., Pinto, S. S., Muñoz, I. B., & Amboni, R. D. (2013). Effect of microencapsulation on survival of Bifidobacterium BB-12 exposed to simulated gastrointestinal conditions and heat treatments. LWT-Food Science and Technology, 50(1), 39-44. https://doi.org/10.1016/j.lwt.2012.07.037
  • Fu, N., Woo, M. W., & Chen, X. D. (2011). Colloidal transport phenomena of milk components during convective droplet drying. Colloids and Surfaces B: Biointerfaces, 87(2), 255–266. https://doi.org/10.1016/j.colsurfb.2011.05.026
  • Fu, N., & Chen, X. D. (2011). Towards a maximal cell survival in convective thermal drying processes. Food Research International, 44(5), 1127-1149. https://doi.org/10.1016/j.foodres.2011.03.053  
  • Gharsallaoui, A., Roudaut, G., Chambin, O., Voilley, A., & Saurel, R. (2007). Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Research International, 40(9), 1107-1121. https://doi.org/10.1016/j.foodres.2007.07.004
  • Guillén-Velázquez, P., Cantú-Lozano, D., Rascón-Díaz, M.P., Jiménez-Fernández, M., Luna-solano, G. (2022) Swelling, erosion and physicochemical characteristics of plum powder tablets obtained by spray drying. Revista Mexicana de Ingeniería Química, 21(3): 1-15. https://doi.org/10.24275/rmiq/Alim2867
  • Holzapfel, W. H., Haberer, P., Geisen, R., Björkroth, J., & Schillinger, U. (2001). Taxonomy and important features of probiotic microorganisms in food and nutrition. The American Journal of Clinical Nutrition, 73(2), 365s-373s. https://doi.org/10.1093/ajcn/73.2.365s
  • Heidebach, T., Först, P., & Kulozik, U. (2009). Transglutaminase-induced caseinate gelation for the microencapsulation of probiotic cells. International Dairy Journal19(2), 77-84. https://doi.org/10.1016/j.idairyj.2008.08.003
  • Ibrahim, S. A., & Carr, J. P. (2006). Viability of bifidobacteria in commercial yogurt products in North Carolina during refrigerated storage. International Journal of Dairy Technology59(4), 272-277. https://doi.org/10.1111/j.1471-0307.2006.00282.x
  • Jin, Y., & Chen, X. D. (2009). Numerical study of the drying process of different sized particles in an industrial-scale spray dryer. Drying Technology, 27(3), 371-381. https://doi.org/10.1080/07373930802682957
  • Kim, E. H. J., Chen, X. D., & Pearce, D. (2009). Surface composition of industrial spray-dried milk powders. 2. Effects of spray drying conditions on the surface composition. Journal of Food Engineering, 94(2), 169-181. https://doi.org/10.1016/j.jfoodeng.2008.10.020
  • Lian, W. C., Hsiao, H. C., & Chou, C. C. (2002). Survival of Bifidobacteria after spray-drying. International Journal of Food Microbiology, 74(1-2), 79-86. https://doi.org/10.1016/S0168-1605(01)00733-4
  • Lin, W. H., Hwang, C. F., Chen, L. W., & Tsen, H. Y. (2006). Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiology, 23(1), 74-81. https://doi.org/10.1016/j.fm.2005.01.013
  • Lucas, J., Ralaivao, M., Estevinho, B. N., & Rocha, F. (2020). A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. Powder Technology, 362, 428-435. https://doi.org/10.1016/j.powtec.2019.11.095
  • Maciel, G. M., Chaves, K. S., Grosso, C. R. F., & Gigante, M. L. (2014). Microencapsulation of Lactobacillus acidophilus La-5 by spray-drying using sweet whey and skim milk as encapsulating materials. Journal of Dairy Science, 97(4), 1991-1998. https://doi.org/10.3168/jds.2013-7463
  • Matsumoto, M., Ohishi, H., & Benno, Y. (2004). H+-ATPase activity in Bifidobacterium with special reference to acid tolerance. International Journal of Food Microbiology, 93(1), 109-113. https://doi.org/10.1016/j.ijfoodmicro.2003.10.009
  • Maus, J. E., & Ingham, S. C. (2003). Employment of stressful conditions during culture production to enhance subsequent cold‐and acid‐tolerance of Bifidobacteria. Journal of Applied Microbiology, 95(1), 146-154. https://doi.org/10.1046/j.1365-2672.2003.01954.x
  • Millqvist-Fureby, A., Elofsson, U., & Bergenståhl, B. (2001). Surface composition of spray-dried milk protein-stabilized emulsions in relation to pre-heat treatment of proteins. Colloids and Surfaces B: Biointerfaces, 21(1-3), 47-58. https://doi.org/10.1016/S0927-7765(01)00183-7
  • Moreira, M. T. C., Martins, E., Perrone, Í. T., de Freitas, R., Queiroz, L. S., & de Carvalho, A. F. (2021). Challenges associated with spray drying of lactic acid bacteria: Understanding cell viability loss. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3267-3283. https://doi.org/10.1111/1541-4337.12774
  • Okuro, P. K., Thomazini, M., Balieiro, J. C., Liberal, R. D., & Fávaro-Trindade, C. S. (2013). Co-encapsulation of Lactobacillus acidophilus with inulin or polydextrose in solid lipid microparticles provides protection and improves stability. Food Research International, 53(1), 96-103. https://doi.org/10.1016/j.foodres.2013.03.042
  • Pandey, K. R., Naik, S. R., & Vakil, B. V. (2015). Probiotics, prebiotics and synbiotics-a review. Journal of Food Science and Technology, 52, 7577-7587. htpps//doi.org/10.1007/s13197-015-1921-1
  • Pereyra-Castro, S. C., Alamilla-Beltrán, L., Villalobos-Castillejos, F., Porras-Saavedra, J., Pérez-Pérez, V., Gutiérrez-López, G. F., & Jiménez-Aparicio, A. R. (2018). Microfluidization and atomization pressure during microencapsulation process: Microstructure, hygroscopicity, dissolution, and flow properties. LWT-Food Science and Technology, 96, 378-385. https://doi.org/10.1016/j.lwt.2018.05.042
  • Picot, A., & Lacroix, C. (2004). Encapsulation of bifidobacteria in whey protein-based microcapsules and survival in simulated gastrointestinal conditions and in yoghurt. International Dairy Journal, 14(6), 505-515. https://doi.org/10.1016/j.idairyj.2003.10.008
  • Reddy, K. B. P. K., Madhu, A. N., & Prapulla, S. G. (2009). Comparative survival and evaluation of functional probiotic properties of spray‐dried lactic acid bacteria. International Journal of Dairy Technology, 62(2), 240-248. https://doi.org/10.1111/j.1471-0307.2009.00480.x
  • Riaz, Q. U. A., & Masud, T. (2013). Recent trends and applications of encapsulating materials for probiotic stability. Critical Reviews in Food Science and Nutrition, 53(3), 231-244. https://doi.org/10.1080/10408398.2010.524953
  • Sakata, S., Kitahara, M., Sakamoto, M., Hayashi, H., Fukuyama, M., & Benno, Y. (2002). Unification of Bifidobacterium infantis and Bifidobacterium suis as Bifidobacterium longum. International Journal of Systematic and Evolutionary Microbiology, 52(6), 1945-1951. https://doi.org/10.1099/00207713-52-6-1945
  • Samona, A., Robinson, R. K., & Marakis, S. (1996). Acid production by bifidobacteria and yoghurt bacteria during fermentation and storage of milk. Food Microbiology, 13(4), 275-280. https://doi.org/10.1006/fmic.1996.0033
  • Sánchez, B., Ruiz, L., de los Reyes-Gavilan, C. G., & Margolles, A. (2008). Proteomics of stress response in Bifidobacterium. Frontiers in Bioscience-Landmark, 13(18), 6905-6919. https://doi.org/ 10.2741/3198
  • Sarao, L. K., & Arora, M. (2017). Probiotics, prebiotics, and microencapsulation: A review. Critical Reviews in Food Science and Nutrition, 57(2), 344-371. https://doi.org/10.1080/10408398.2014.887055
  • Simpson, P. J., Stanton, C., Fitzgerald, G. F., & Ross, R. P. (2005). Intrinsic tolerance of Bifidobacterium species to heat and oxygen and survival following spray drying and storage. Journal of Applied Microbiology, 99(3), 493-501. https://doi.org/10.1111/j.1365-2672.2005.02648.x
  • Tonon, R. V., Brabet, C., Pallet, D., Brat, P., & Hubinger, M. D. (2009). Physicochemical and morphological characterisation of açai (Euterpe oleraceae Mart.) powder produced with different carrier agents. International Journal of Food Science & Technology, 44(10), 1950-1958. https://doi.org/10.1111/j.1365-2621.2009.02012.x
  • Tran, T. T. H., Jaskulski, M., & Tsotsas, E. (2017). Reduction of a model for single droplet drying and application to CFD of skim milk spray drying. Drying Technology, 35(13), 1571–1583. https://doi.org/10.1080/07373937.2016.1263204
  • Ventura, M., Canchaya, C., Zink, R., Fitzgerald, G. F., & Van Sinderen, D. (2004). Characterization of the groEL and groES loci in Bifidobacterium breve UCC 2003: genetic, transcriptional, and phylogenetic analyses. Applied and Environmental Microbiology, 70(10), 6197-6209. https://doi.org/10.1128/AEM.70.10.6197-6209.2004
  • Viernstein, H., Raffalt, J., & Polheim, D. (2005). Stabilization of Probiotic Microorganisms: An overview of the techniques and some commercially available products. Applications of Cell Immobilization Biotechnology, 439-453. https://doi.org/10.1007/1-4020-3363-X_25
  • Wang, F., & Mutukumira, A. N. (2022). Microencapsulation of Limosilactobacillus reuteri DPC16 by spray drying using different encapsulation wall materials. Journal of Food Processing and Preservation, 46(10), e16880. https://doi.org/10.1111/jfpp.16880
  • Wei, Y., Woo, M. W., Selomulya, C., Wu, W. D., Xiao, J., & Chen, X. D. (2019). Numerical simulation of mono-disperse droplet spray dryer under the influence of nozzle motion. Powder Technology, 355, 93–105. https://doi.org/10.1016/j.powtec.2019.07.017
  • Ying, D., Sun, J., Sanguansri, L., Weerakkody, R., & Augustin, M. A. (2012). Enhanced survival of spray-dried microencapsulated Lactobacillus rhamnosus GG in the presence of glucose. Journal of Food Engineering, 109(3), 597-602. https://doi.org/10.1016/j.jfoodeng.2011.10.017
  • Zuidam, N.J., & Shimoni, E. (2010). Overview of Microencapsulates for Use in Food Products or Processes and Methods to Make Them. In: Zuidam, N., Nedovic, V. (eds) Encapsulation Technologies for Active Food Ingredients and Food Processing. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1008-0_2