Revista Mexicana de Ingeniería Química, Vol. 22, No. 3 (2023), Alim2377


Fermented beverage of Ardisia compressa fruits based on commercial and native yeasts: evaluation of kinetic changes

G. Hernández-Rodríguez, D. Guerra-Ramírez, R. Domínguez-Puerto, I.L. López-Cruz, S. Valle-Guadarrama

https://doi.org/10.24275/rmiq/Alim2377


 

Abstract

The fruits of the genus Ardisia Sw. (Primulaceae) areresources scarcely exploited along the world. An alternative to add value is the preparation of a fermented beverage but, to enhance properties, the use of native yeasts should be evaluated. The objective was to evaluate the use of a commercial strain of Saccharomyces cerevisiae (SC) and a native yeast (NY) during the preparation of a fermented beverage from Ardisia compressa fruits through monitoring the compounds variation. Fermentation processes were conducted and rates of sugar consumption and alcohol production were higher with NY than with SC. The fermented product contained 73.6 and 95.9 g L-1 of alcohol with SC and NY, while total soluble phenols, anthocyanins, and antioxidant activity were 2,367.0 mg L-1, 215.5 mg L-1, and 16,832.0 μmol L-1 with SC, and 2213.0 mg L-1, 287.4 mg L-1, and 18,614.0 μmol L-1 with NY, respectively. The better performance of the native yeast was confirmed through modeling, which explained the variation of yeast concentration, the logarithmic soluble phenols increase, and anthocyanins depletion. Besides, the fermentation with native yeast allowed obtaining better color and better antioxidant properties. The native yeast was a better option to prepare a fermented beverage from A. compressa fruits.

Keywords: Ardisia compressa, Saccharomyces cerevisiae, fermentation, native yeast.

 


References

  • Adebo, O. A. and Medina-Meza, I. G. (2020). Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: a mini review. Molecules, 25(4), 927. https://doi.org/10.3390/molecules25040927
  • Agbenorhevi, J. K., Alemawor, F., Engmann, F. N. and Aduboffour, S. K. (2019). Quality of miracle berry wine as influenced by pH and inoculum levels. Journal of Food and Nutrition Research, 7(2), 148–154. https://doi.org/10.12691/jfnr-7-2-7
  • Alcazar-Valle, M., Gschaedler, A., Gutierrez-Pulido, H., Arana-Sanchez, A. and Arellano-Plaza, M. (2019). Fermentative capabilities of native yeast strains grown on juices from different Agave species used for tequila and mezcal production. Brazilian Journal of Microbiology, 50(2), 379–388. https://doi.org/10.1007/s42770-019-00049-7
  • Álvarez-Ainza, M. L., Zamora-Quiñonez, K. A., Moreno-Ibarra, G. M. and Acedo-Félix, E. (2015). Genomic diversity of Saccharomyces cerevisiae yeasts associated with alcoholic fermentation of bacanora produced by artisanal methods. Applied Biochemistry and Biotechnology, 175(5), 2668–2676. https://doi.org/10.1007/s12010-014-1469-y
  • Antonio-Narcizo, L. C., Pérez-Pérez, W. D., Tomasini, A., García-Martínez, J. C. and León-Santiestebán, H. H. (2023). Ethanol production from Mexican fruit wastes using a new Saccharomyces cerevisiae strain. Revista Mexicana de Ingeniería Química, 22(1), 1–22. https://doi.org/10.24275/rmiq/Bio2977
  • Bae, H. M., Haile, M. and Kang, W. H. (2022). Evaluation of antioxidant, organic acid, and volatile compounds in coffee pulp wine fermented with native yeasts isolated from coffee cherries. Food Science and Technology International, 28(8), 716–727. https://doi.org/10.1177/10820132211051874
  • Benzie, I. F. F. and Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239, 70–76. https://doi.org/10.1006/abio.1996.0292
  • Berbegal, C., Polo, L., Lizama, V., Álvarez, I., Ferrer, S., Pardo, I. and García-Esparza, M. J. (2023). Influence of native S. cerevisiae strains on the final characteristics of “Pago” garnacha wines from east Spain. Beverages, 9(1), 17. https://doi.org/10.3390/beverages9010017
  • Bimpilas, A., Panagopoulou, M., Tsimogiannis, D. and Oreopoulou, V. (2016). Anthocyanin copigmentation and color of wine: the effect of naturally obtained hydroxycinnamic acids as cofactors. Food Chemistry, 197, 39–46. https://doi.org/10.1016/j.foodchem.2015.10.095
  • Blin, J. A., Hamid, R. A. and Khaza’ai, H. (2021). Bioactive fractions and compound of Ardisia crispa roots exhibit anti-arthritic properties mediated via angiogenesis inhibition in vitro. BMC Complementary Medicine and Therapies, 21(1), 176. https://doi.org/10.1186/s12906-021-03341-y
  • Casassa, L. F. (2017). Flavonoid phenolics in red winemaking. In: Phenolic Compounds - Natural Sources, Importance and Applications (M. Soto-Hernández, M. Palma-Tenangoand M. R. and García-Mateos, eds.). IntechOpen, London, UK. https://doi.org/10.5772/67452
  • Chan, C. H., Yusoff, R. and Ngoh, G.-C. (2014). Modeling and kinetics study of conventional and assisted batch solvent extraction. Chemical Engineering Research and Design, 92(6), 1169–1186. https://doi.org/10.1016/j.cherd.2013.10.001
  • Dellacassa, E., Trenchs, O., Fariña, L., Debernardis, F., Perez, G., Boido, E. and Carrau, F. (2017). Pineapple (Ananas comosus L. Merr.) wine production in Angola: Characterisation of volatile aroma compounds and yeast native flora. International Journal of Food Microbiology, 241, 161–167. https://doi.org/10.1016/j.ijfoodmicro.2016.10.014
  • Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.
  • Estrada-Martínez, R. J., Favela-Torres, E., Soto-Cruz, N. O., Saucedo-Castañeda, G. and Martínez-Valdez, F. J. (2023). Respiro-fermentative metabolism in yeast cultivated in solid-state culture: The Crabtree effect and ethanol production. Revista Mexicana de Ingeniería Química, 22(1), 1–18. https://doi.org/10.24275/rmiq/Bio3025
  • Faniadis, D., Drogoudi, P. D. and Vasilakakis, M. (2010). Effects of cultivar, orchard elevation, and storage on fruit quality characters of sweet cherry (Prunus avium L.). Scientia Horticulturae, 125(3), 301–304. https://doi.org/10.1016/j.scienta.2010.04.013
  • Fernandes, F. A. N., Fonteles, T. V., Rodrigues, S., de Brito, E. S. and Tiwari, B. K. (2020). Ultrasound-assisted extraction of anthocyanins and phenolics from jabuticaba (Myrciaria cauliflora) peel: kinetics and mathematical modeling. Journal of Food Science and Technology, 57(6), 2321–2328. https://doi.org/10.1007/s13197-020-04270-3
  • Flores-García, A., Márquez-Meléndez, R., Salas, E., Ayala-Soto, G., Salmerón, I. and Hernández-Ochoa, L. (2019). Physicochemical and sensory characteristics of a chagalapoli fruit (Ardisia compressa) beverage fermented using Saccharomyces cerevisiae. International Journal of Food Science, 2019, 1–8. https://doi.org/10.1155/2019/9687281
  • Glories, Y. (1984). La couleur des vins rouges. lre partie : les équilibres des anthocyanes et des tanins. OENO One, 18(3), 195. https://doi.org/10.20870/oeno-one.1984.18.3.1751
  • Hernández-Rodríguez, G., Espinosa-Solares, T., Pérez López, A., Salgado-Escobar, I. and Guerra-Ramírez, D. (2019). Antioxidant capacity of capulin (Prunus serotina subsp. capuli (Cav). McVaugh) fruit at different stages of ripening. Ecosistemas y Recursos Agropecuarios, 6(16), 35–44. https://doi.org/10.19136/era.a6n16.1947
  • Islam, M. R., Naima, J., Proma, N. M., Hussain, M. S., Uddin, S. M. N. and Hossain, M. K. (2019). In-vivo and in-vitro evaluation of pharmacological activities of Ardisia solanacea leaf extract. Clinical Phytoscience, 5(32), 2–11. https://doi.org/10.1186/s40816-019-0128-9
  • Joaquín-Cruz, E., Dueñas, M., García-Cruz, L., Salinas-Moreno, Y., Santos-Buelga, C. and García-Salinas, C. (2015). Anthocyanin and phenolic characterization, chemical composition and antioxidant activity of chagalapoli (Ardisia compressa K.) fruit: A tropical source of natural pigments. Food Research International, 70, 151–157. https://doi.org/10.1016/j.foodres.2015.01.033
  • Kumsa, N. A. (2020). Review on the effect of fruit wine quality and fermentation conditions on the quality of wine. Food Science & Nutrition Technology, 5(5), 1–9. https://doi.org/10.23880/fsnt-16000226
  • Lee, J., Robert, W. D. and Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. Journal of AOAC International, 88(5), 1269–1278.
  • Leonarski, E., Guimarães, A. C., Cesca, K. and Poletto, P. (2022). Production process and characteristics of kombucha fermented from alternative raw materials. Food Bioscience, 49, 101841. https://doi.org/10.1016/j.fbio.2022.101841
  • Lingua, M. S., Fabani, M. P., Wunderlin, D. A. and Baroni, M. V. (2016). From grape to wine: changes in phenolic composition and its influence on antioxidant activity. Food Chemistry, 208, 228–238. https://doi.org/10.1016/j.foodchem.2016.04.009
  • Liu, S. (2013). Kinetics, biosystems, sustainability, and reactor design. Elsevier B.V., The Netherlands.
  • Madadi, B., Pazuki, G. and Nasernejad, B. (2013). Partitioning of cefazolin in biocompatible aqueous biphasic systems based on surfactant. Journal of Chemical & Engineering Data, 58(10), 2785–2792. https://doi.org/10.1021/je4004756
  • Mahmoudi, B., Mousavi, Z. E. and Khodaiyan, F. (2021). A functional non-dairy beverage produced from jujube extract using probiotic lactic acid bacteria. Journal of Agricultural Science and Technology, 23(4), 813–824.
  • Manjato, N., Ravololomanana, N. and Razakamalala, R. (2020). Two new species of Ardisia (Primulaceae) from southeastern Madagascar. Novon, A Journal for Botanical Nomenclature, 28(1), 64–73. https://doi.org/10.3417/2019440
  • Martín-Gómez, J., García-Martínez, T., Varo, M. Á., Mérida, J. and Serratosa, M. P. (2021). Phenolic compounds, antioxidant activity and color in the fermentation of mixed blueberry and grape juice with different yeasts. LWT, 146, 111661. https://doi.org/10.1016/j.lwt.2021.111661
  • Miller, K. V., Oberholster, A. and Block, D. E. (2019). Predicting the impact of red winemaking practices using a reactor engineering model. American Journal of Enology and Viticulture, 70(2), 162–168. https://doi.org/10.5344/ajev.2018.18076
  • Navrátilová, M., Beranová, M., Severová, L., Šrédl, K., Svoboda, R. and Abrhám, J. (2020). The impact of climate change on the sugar content of grapes and the sustainability of their production in the Czech Republic. Sustainability, 13(1), 222. https://doi.org/10.3390/su13010222
  • Nuñez-Guerrero, M. E., Páez-Lerma, J. B., Rutiaga-Quiñones, O. M., González-Herrera, S. M. and Soto-Cruz, N. O. (2016). Performance of mixtures of Saccharomyces and non-Saccharomyces native yeasts during alcoholic fermentation of Agave duranguensis juice. Food Microbiology, 54, 91–97. https://doi.org/10.1016/j.fm.2015.10.011
  • Obreque-Slier, E., Peña-Neira, Á., López-Solís, R., Zamora-Marín, F., Ricardo-da Silva, J. M. and Laureano, O. (2010). Comparative study of the phenolic composition of seeds and skins from carménère and cabernet sauvignon grape varieties (Vitis vinifera L.) during ripening. Journal of Agricultural and Food Chemistry, 58(6), 3591–3599. https://doi.org/10.1021/jf904314u
  • Portugal, C. B., de Silva, A. P., Bortoletto, A. M. and Alcarde, A. R. (2017). How native yeasts may influence the chemical profile of the Brazilian spirit, cachaça? Food Research International, 91, 18–25. https://doi.org/10.1016/j.foodres.2016.11.022
  • POWO. (2023). Plants of the World Online. Royal Botanic Gardens, Kew. Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/
  • Rai, A. K. and Anu Appaiah, K. A. (2014). Application of native yeast from garcinia (Garcinia xanthochumus) for the preparation of fermented beverage: Changes in biochemical and antioxidant properties. Food Bioscience, 5, 101–107. https://doi.org/10.1016/j.fbio.2013.11.008
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M. and Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Ribéreau-Gayon, P., Dubourdieu, D., Do Neche, B. and Lonvaud, A. (2021). Handbook of Enology. Volume 1: The Microbiology of Wine and Vinifications (Third edit.). John Wiley & Sons, Ltd., New York, USA.
  • Romero, O. C., Gómez, S. M., de la Rosa, Torres, C., Puertas-Mejia, M. A. and Rojano, B. (2016). Phenol and anthocyanin content and correlation with the antioxidant capacity of Syzygium cumini (L.) Skeels (jambolan). Revista Cubana de Plantas Medicinales, 21(1), 63–70.
  • Ruta, L. L. and Farcasanu, I. C. (2019). Anthocyanins and anthocyanin-derived products in yeast-fermented beverages. Antioxidants, 8(6), 182. https://doi.org/10.3390/antiox8060182
  • Salgado-Escobar, I., Hernández-Rodríguez, G., Suárez-López, Y. del C., Mancera-Ugarte, M. J. and Guerra-Ramírez, D. (2020). Eficacia de métodos de desinfección y los efectos sobre las propiedades nutracéuticas en cilantro y fresa. Revista Mexicana de Ciencias Agrícolas, 11(2), 327–337. https://doi.org/10.29312/remexca.v11i2.1892
  • Sayyad, S. F., Chaudhari, S. R. and Panda, B. P. (2015). Quantitative determination of ethanol in arishta by using uv-visible spectrophotometer. Pharmaceutical and Biological Evaluations, 2(5), 204–207.
  • Setford, P. C., Jeffery, D. W., Grbin, P. R. and Muhlack, R. A. (2019). Mathematical modelling of anthocyanin mass transfer to predict extraction in simulated red wine fermentation scenarios. Food Research International, 121, 705–713. https://doi.org/10.1016/j.foodres.2018.12.044
  • Setford, P., Jeffery, D., Grbin, P. and Muhlack, R. (2018). Mass transfer of anthocyanins during extraction from pre-fermentative grape solids under simulated fermentation conditions: effect of convective conditions. Molecules, 24(1), 73. https://doi.org/10.3390/molecules24010073
  • Shahidi, F. and Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18, 757–781. https://doi.org/10.1016/j.jff.2015.01.047
  • Singleton, V. L. and Rossi, J. J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
  • Sun, B., Neves, A. C., Fernandes, T. A., Fernandes, A. L., Mateus, N., De Freitas, V., Leandro, C. and Spranger, M. I. (2011). Evolution of phenolic composition of red wine during vinification and storage and its contribution to wine sensory properties and antioxidant activity. Journal of Agricultural and Food Chemistry, 59(12), 6550–6557. https://doi.org/10.1021/jf201383e
  • The Mathworks Inc. (2008). Optimization ToolboxTM 4 User’s Guide. Natick, Natick, Massachusetts, USA.
  • Vázquez-Sánchez, A. Y., Aguilar-Zárate, P., Muñiz-Márquez, D. B., Wong-Paz, J. E., Rojas, R., Ascacio-Valdés, J. A. and Martínez-Ávila, G. C. G. (2019). Effect of ultrasound treatment on the extraction of antioxidants from Ardisia compressa Kunth fruits and identification of phytochemicals by HPLC-ESI-MS. Heliyon, 5(12), e03058. https://doi.org/10.1016/j.heliyon.2019.e03058
  • Wang, L., Sun, X., Li, F., Yu, D., Liu, X., Huang, W. and Zhan, J. (2015). Dynamic changes in phenolic compounds, colour and antioxidant activity of mulberry wine during alcoholic fermentation. Journal of Functional Foods, 18, 254–265. https://doi.org/10.1016/j.jff.2015.07.013
  • Wang, M. L., Wei, X., Shi, Y. C. and Kong, D. X. (2014). Growth and photosynthetic characteristics of Ardisia corymbifera var. tuberifera in bionic wild cultivation. Journal of Chinese Medicinal Materials, 37(10), 1721–1724.
  • Zhang, G., Chen, W., Chen, W. and Chen, H. (2018). Improving the quality of matured coconut (Cocos nucifera Linn.) water by low alcoholic fermentation with Saccharomyces cerevisiae: antioxidant and volatile profiles. Journal of Food Science and Technology, 55(3), 964–976. https://doi.org/10.1007/s13197-017-3004-y