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Abstract
This study aimed to improve the foam mat drying (FMD) process of cornelian cherry pulp. Response surface methodology (RSM)
and artificial neural networks (ANN) were employed to investigate and predict the impact of ultrasound treatment (10-30 min),
whipping (5-15 min, and hot-air temperature (60-80 °C) on selected responses. The results showed that maximum redness value
and total phenolic content, and minimum drying time were obtained when optimum process parameters, 10 min for sonication
time, 15 min for whipping time, and 60 °C for drying temperature, were employed. Analysis of variance (ANOVA) results
indicated that the most important parameter influencing the FMD process of cornelian cherry pulp was the drying temperature.
Furthermore, the statistical comparison of the empirical and predictive results for each response showed that the ANN model has
a better prediction capability than the RSM. The overall findings revealed that the ANN model can be successfully applied in
predicting responses in FMD of valuable fruits.
Keywords: ANOVA, drying temperature, prediction, ultrasound, whipping.

Resumen
El objetivo de este estudio era mejorar el proceso de secado de espuma (FMD) de la pulpa de cereza cornalina. Se emplearon la
metodología de superficie de respuesta (RSM) y las redes neuronales artificiales (ANN) para investigar y predecir el impacto del
tratamiento con ultrasonidos (10-30 min), el batido (5-15 min) y la temperatura del aire caliente (60-80 °C) sobre las respuestas
seleccionadas. Los resultados mostraron que el máximo enrojecimiento y contenido fenólico total y el mínimo tiempo de secado
se obtuvieron cuando se emplearon los parámetros óptimos del proceso, 10 min para el tiempo de sonicación, 15 min para el
tiempo de batido y 60 °C para la temperatura de secado. Los resultados del análisis de la varianza (ANOVA) indicaron que
el parámetro más importante que influye en el proceso de FMD de la pulpa de cereza cornalina es la temperatura de secado.
Además, la comparación estadística de los resultados empíricos y predictivos para cada respuesta mostró que el modelo ANN
tiene una mejor capacidad de predicción que el RSM. Los resultados globales revelaron que el modelo RNA puede aplicarse con
éxito en la predicción de respuestas en la FMD de frutas valiosas.
Palabras clave: ANOVA, temperatura de secado, predicción, ultrasonidos, batido.
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1 Introduction

Cornelian cherry (Cornus mas L.) is a plant species
belonging to the dogwood family, widely grown in
countries such as Armenia, Georgia, Ukraine, Poland,
and Turkey. Recent studies have revealed that this fruit
is rich in bioactive substances including anthocyanins,
flavanols, organic acids, and phenolics (Cosmulescu et
al., 2019). Therefore, it is used in folk medicine for the
treatment of certain diseases and in food processing
to produce value-added products (Dupak et al., 2020).
One of the most important disadvantages of cornelian
cherry fruit is that it cannot maintain its freshness
for a long time after harvesting due to its delicate
texture. For this reason, it is usually further processed
into various products after harvest (Vakula et al.,
2019). Both fresh and dried cornelian cherries are used
to manufacture value-added products including fruit
preserves like jam, jelly, and marmalade, alcoholic
(beer, wine, liqueur, etc.), and non-alcoholic (fruit
juices, extracts, and concentrates, etc.) beverages and
dairy products, including yogurt, cheese, and ice
cream thanks to their functional coloring and flavoring
properties(Parveez Zia & Alibas, 2021).

Drying has been the most widespread technique
of preserving food materials since ancient times. The
drying process reduces the moisture content to 1-5%
and limits enzymatic and microbiological activities.
The hot-air drying method has been extensively
utilized in the food drying industry (Uslu Demir et al.,
2019). Conventional drying reduced the drying time
by increasing the dehydration temperature, but slower
drying and prolonged exposure to oxygen can lead
to the breakdown of bioactive components (Zielinska
et al., 2017). Various dehydration techniques such
as spray drying, tray drying, freeze drying, foam
mat drying (FMD), and microwave drying are used
to produce powdered products by drying fruit and
vegetable juices, pulp, and puree (Varhan et al.,
2019). FMD is a simple and relatively new drying
technique preferred to remove excess moisture from
food materials in order to increase their shelf life
(Brar et al., 2020). FMD is a simple and relatively
new drying technique to remove excess moisture
from fruits and vegetables to extend their shelf life
(Brar et al., 2020). Compared to conventional drying,
it provides faster drying at lower temperatures and
reduces energy consumption, therefore caused to
minimize drying costs. Moreover, the suitability for
food items sensitive to high temperatures and the
potential to preserve bioactive components in the
product during dehydration make FMD a valuable
technique (Benkovic et al., 2019; Khodifad & Kumar,
2020).

The foaming properties of the juice or pulp have
a considerable influence on the drying properties and

thus on the quality characteristics of the powder
produced through the FMD method. Studies have
shown that the interactions between proteins and
other components such as gums, sugars, and salts in
a foam system are important in determining foam
properties (Guldane & Dogan, 2022; Mohanan et al.,
2020). However, recently, researchers have focused
on improving foam properties. In these studies, it
was emphasized that non-thermal processing methods
improve foam quality characteristics including foam
capacity and foam stability (Chen et al., 2019).
Ultrasound affects the physicochemical composition
of proteins and has a significant impact on their
structural properties and thus interfacial behavior such
as foaming and emulsifying (Mirmoghtadaie et al.,
2016; Stefanović et al., 2017). This effect is known
to be associated with cavitation and cavitation-related
changes such as local based high temperature, high
pressure, turbulence, dynamic agitation, and high
shear force. Sonication has been reported to reduce
the surface tension of protein solutions and increase
protein adsorption at the interface between air and
liquid phases, thereby improving foaming properties
(Tan et al., 2015).

Optimization techniques such as response surface
methodology (RSM), Taguchi method, principal
component analysis, and artificial neural networks
(ANN) are extensively utilized in the food industry
to optimize production processes and predict response
variables (Güldane, 2023; Guldane & Dogan, 2022).
RSM is a set of statistical and mathematical
approaches aimed at improving production efficiency
(S̆umić et al., 2016). In this technique, the optimal
production conditions for the response characteristics
are identified by analyzing the data obtained from the
experiments performed based on certain experimental
observations (Guarneros-Flores et al., 2019). Process
optimization can only be achieved if the basic
conditions of selecting the appropriate experimental
design, estimating the response variable, and building
mathematical models that represent the relationship
between production parameters are provided (Bogusz
et al., 2022). Being a relatively recent technique,
The ANN is a deep learning method developed by
simulating the ability of the human brain to solve
a problem (Ameer et al., 2017). Neural networks
are software programs designed to simulate and
represent the relationship between process factors
and targeted outputs. They can model complex, non-
linear relationships directly from raw experimental
data (Silva et al., 2020; Yadav et al., 2017). Limited
research has been conducted on ANN modeling in
the FMD process, including passion fruit (Samyor et
al., 2021) and papaya (Qadri et al., 2020). To date,
no studies have utilized these approaches to optimize
process variables and predict response variables for
the FMD of cornelian cherry. This work aims to
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optimize the FMD process of cornelian cherry pulp
and to predict the impact of process variables,
such as sonication time, whipping time, and drying
temperature, on drying characteristics, color attributes,
and bioactive components using RSM and ANN
models.

2 Materials and methods

2.1 Materials

Cornelian cherry fruits were purchased from a local
store situated in Kütahya, Türkiye, and kept at 4 °C
until analysis. Egg white powder and pectin samples
were obtained from Tito, Türkiye. All the other
chemicals and reagents were analytical grades and
supplied by Merck, Germany.

2.2 Methods

2.2.1 Preparation of cornelian cherry pulp

The fruits were separated from the contaminating
substances (stem, rotten fruits, etc.), washed,
transferred to a clean muslin cloth, and removed
the seeds by hand press. The concentrated pulp was
diluted with distilled water and homogenized with
a blender apparatus (Kenwood KM070, UK), and
then the Brix value of the resulting diluted pulp was
adjusted to 10 °Brix. The resulting pulps were stored
in glass bottles at +4 °C until analysis.

2.2.2 Preparation of biopolymer solutions

The egg white (20% (w/v)) and pectin (2% (w/v))
solutions were stirred with a magnetic stirrer at a speed
of 200 rpm until complete hydration was achieved.
The gum solution was continuously stirred overnight,
and the protein solution was stirred for 2 hours before
being stored at +4 °C.

2.2.3 Foaming process

150 g of homogenized fruit pulp was weighed into
a glass beaker, followed by the addition of 50 g of
egg white and 50 g of pectin solutions. The resultant
solution was agitated for 5 min with a magnetic
stirrer at 200 rpm. Then, the pre-foaming solution
was subjected to ultrasound treatment (CALISKAN
LAB ULT 4045, China) for various times (10, 20, and
30 min). The resulting mixture was transferred to a
mixing bowl of a planetary mixer (Kenwood KM070,
England), with the temperature set to 50 °C and the
rotation speed set to the lowest setting. The study
conducted by Ibanoglu & Erçelebi (2007) indicated
that moderate heat treatment of biopolymer solutions
containing egg protein and pectin resulted in higher

foaming capacity compared to those without heat
treatment. Once the pre-foaming solution reached 50
°C, the mixer temperature was adjusted to 25 °C, and
the rotation speed of the planetary mixer (Kenwood
KM070, England) was set to 180 rpm. Finally, the
solution was whipped for various periods of time (5,
10, and 15 min) to obtain cornelian cherry foam.

2.2.4 Drying procedure

The resulting foam was poured onto a rectangular
aluminum tray (width: 10 cm, length: 20 cm, and
height: 2 cm) and uniformly spread to a height of
0.5 cm using a plastic spatula. The sample was then
placed in a laboratory tray drier designed by Çelik
Kardełer Ltd. Com. (Sakarya, Türkiye). The dryer was
equipped with digital controls to adjust and monitor
the temperature and relative humidity. The dryer had a
stainless steels body with external insulation and had
external dimensions of 70 × 55 × 55 cm and internal
dimensions of 40 × 40 × 45 cm. The temperature
control system had a working range of 40-120 ºC,
while the air velocity system had a working range of
0-2 m/s. Each sample was dried at an air velocity of 1
m/s and three hot-air temperatures (60 °C, 70 °C, and
80 °C). Throughout the drying, the tray was weighed
with an electronic scale (Radwag PS 4500, Poland)
at 10 min intervals. The dehydration process was
continued till the target moisture content below 5%
(wet basis (w.b)). The moisture level of dried powders
was measured with an infrared moisture meter (IR-60,
Denver Instrument, Bohemia, NY). The drying time
of the cornelian cherry foam was recorded in min.
After drying, the dehydrated foam was cooled and
scrapped with a spatula, and ground for 1 min using a
coffee grinder. The powders were sieved through a 200
µm mesh sieve, then immediately packaged in high-
density polypropylene bags and sealed to prevent air
diffusion.

2.2.5 RSM modeling

A three-factor three-level BBD was conducted using
Design Expert software (ver. 13.0, Stat-Ease Co.,
Minneapolis, MN, USA). The study investigated the
impact of sonication time (X1= 10-30 min), whipping
time (X2= 5-15 min), and drying temperature (X3=

60-80 °C) on drying time, redness, and TPC. The
experimental design included 15 experiments with
3 replicates at the center point, as shown in Table
1. Experimental runs were randomly performed to
minimize the impact of unexpected changes in the
responses. The three process variables, X1, X2, and
X3 were coded into three levels (+1, 0, and -1) to
represent high, middle, and low values, respectively.
The variables were coded using Eq. (1):

xi =
Xi − X0

∆X
, i = 1,2,3, . . . (1)
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Table 1. The actual and coded levels of process variables, experimental, and predicted results.
Process parameters Experimental results RSM predicted ANN predicted

Run X1 X2 X3 Y1 Y2 Y3 Y1 Y2 Y3 Y1 Y2 Y3

1 20(0) 5(-1) 60(-1) 95 23.73 121.73 90 23.42 120.65 90 23.55 120.65
2 20(0) 10(0) 70(0) 55 22.91 107.71 55.38 22.97 107.22 55 23.35 107.59
3 30(+1) 10(0) 80(+1) 60 22.27 103.64 57.88 22.25 102.78 60 22.27 102.78
4 30(+1) 15(+1) 70(0) 90 23.37 116.22 90 23.42 120.65 90 23.55 118.65
5 10(-1) 10(0) 60(-1) 60 23.26 110.25 58.75 23.24 111.42 60 23.26 111.42
6 10(-1) 5(-1) 70(0) 82 24.88 155.88 79 24.99 155.71 82 24.88 155.1
7 20(0) 10(0) 70(0) 90 25.14 130.12 89.63 24.99 130.61 88.29 25.36 130.61
8 10(-1) 15(+1) 70(0) 80 23.54 131.03 82.13 23.47 131.89 80 23.61 131.89
9 20(0) 15(+1) 80(+1) 60 21.7 115.2 63 21.98 115.37 60 21.7 115.37

10 10(-1) 10(0) 80(+1) 100 23.04 124.77 101.25 23.46 123.59 100 23.04 123.59
11 30(+1) 5(-1) 70(0) 70 24.01 122.01 70.88 24.12 120.07 75.82 24.01 120.07
12 30(+1) 10(0) 60(-1) 70 24.11 113.23 73.38 24.21 111.57 70 24.11 111.57
13 20(0) 15(+1) 60(-1) 85 22.7 101.4 81.63 22.41 101.53 85 22.7 101.53
14 20(0) 5(-1) 80(+1) 85 23.4 124.09 90 23.42 120.65 90 23.55 120.65
15 20(0) 10(0) 70(0) 90 23.23 103.71 89.13 23.03 104.12 90 23.23 104.12

where xi represents the coded value of a process
parameter, Xi refers to the actual value of a process
parameter, X0 is the process parameter of the actual
value at the central point, and ∆X is the step change
value.

The response variables were modeled using
a second-order polynomial equation (Eq. (2)),
commonly used to represent the relationship between
the responses and the process variables (S̆umić et al.,
2016).

Y = β0 +

2∑
i=1

βiXi +

2∑
i=1

βiX2
i +

2∑
i< j=1

βi jXiX j (2)

where Y indicates the dependent variable, Xi
and X j are the production parameters, and the
regression coefficients (b0, bi, bi j, and bii) in the
equation represent the intercept, linear, interaction,
and quadratic terms, respectively. The statistical
analysis was performed using Design Expert software,
which generated three-dimensional surface response
plots based on the polynomial equation derived from
the data. These graphs were used to illustrate the
relationship between the response and the process
variables. The significance of each model was
assessed using analysis of variance (ANOVA), and
the statistical significance of the linear, quadratic,
and interaction terms was analyzed using Fisher’s F-
test and p-values. The accuracy of each model was
evaluated using the coefficient of determination (R2)
value, as well as the lack-of-fit test.

2.2.6 ANN modeling

The Neural Network Toolbox (“nntool") of MATLAB
2015a software was used to perform ANN modeling.
The ANN estimated the non-linear relationship
between FMD parameters and output variables using
the same datasets that were used to develop the
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Fig. 1. Basic structure of the artificial neural network
(ANN) model.

RSM model. A three-layer feed-forward neural
network model was built (Fig. 1) and tested with the
data from a total of 15 experiments. The data was
divided into three sets: training (70%), testing (15%),
and validation (15%). The experimental datasets were
trained using a network architecture that consisted of
an input layer with three neurons (sonication time
(X1), whipping time (X2), and drying temperature
(X3)), an output layer with three neurons (drying time
(Y1), redness (Y2), and TPC (Y3)), and a hidden layer
with a hyperbolic tangent sigmoid activation function
(tansig). Selecting the appropriate number of neurons
in the hidden layer is essential for the prediction
ability of the ANN. In this study, the optimal network
topology (3:n:1) was selected by “trial and error"
(Dhurve et al., 2022). The number of neurons in
the hidden layer varied from 1 to 15 to minimize
the deviations between the predicted and observed
values (Ameer et al., 2017). To train the ANN, the
Levenberg-Marquardt backpropagation method was
used as the learning algorithm. This iterative method
enables to find the minimum of a multivariate function
expressed as the sum of squares of nonlinear real-
valued functions (Calderón-Ramírez et al., 2022). The
developed ANN models were evaluated based on their
mean square error (MSE, Eq. (3)) and correlation
coefficient (R2, Eq. (4)) values, where a lower MSE
and higher R2 indicate a better-fit model. The best-fit
model was determined based on these criteria.
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2.2.7 Analysis of developed models

Both RSM and ANN models were validated by
using various statistical metrics such as MSE, R2,
mean absolute error (MAE), root mean square error
(RMSE), and Chi-square (χ2) (Eqs. (3)-(7)). These
performance measures were used to compare the two
models. A well-fitted model is characterized by lower
MSE, MAE, RMSE, and χ2 values, and higher R2

values (Ajesh Kumar et al., 2022).

MS E =
1
n

n∑
i=1

(yi − ydi)2 (3)

R2 = 1−
∑n

i=1(yi − ydi)2∑n
i=1(yi − ym)2 (4)

MAE =
1
n

n∑
i=1

|(yi − ydi)| (5)

RMS E =

√∑n
i=1(yi − ydi)2

2
(6)

χ2 =

n∑
i=1

(yi − ydi)2

yi
(7)

where n is the number of observations and yi, ydi, and
ym are the observed, predicted, and mean observed
values, respectively.

2.2.8 Analysis

2.2.8.1 Drying time

The drying time for each sample was considered as the
time at which the moisture level of the final product
reached below 5% (w.b).

2.2.8.2 Redness

The redness (a*+) of foam mat-dried cornelian cherry
powder was determined by direct reading with a

colorimeter (3nh, NR60CP, China) and the readings
were reported using the Hunter Lab color scale.

2.2.8.3 Total phenolic content (TPC)

The total phenolic content (TPC) of the powders was
determined according to the modified Folin-Ciocalteu
reagent (FCR) method (Michalska-Ciechanowska et
al., 2020). Briefly, 1 g of powder was mixed with 25
ml of 80% (v/v) methanol, agitated at 400 rpm for
15 min. The mixture was then centrifuged (K242R,
Centurion Scientific, England) for 15 min at 5000 rpm,
and the resulting supernatant was used to determine
the TPC in foam mat-dried samples. 100 µl of the
methanolic extract was mixed with 200 µl of FCR
and 2 ml of distilled water in a test tube, followed
by the addition of 1 ml of NaCO3 solution (20%)
after 3 min. The reaction was allowed to proceed
for 60 min in the dark and the absorbance of the
specimen was measured at 765 nm using a UV/VIS
spectrophotometer (Shimadzu UV-1240, Japan). The
results were expressed as mg GAE/100 g powder dry
matter (DM).

3 Results and discussion

3.1 Model fitting

A series of 15 experiments were conducted
using BBD, involving three levels of process
variables: sonication time, whipping time, and
drying temperature, with the experimental results for
response variables such as drying time, redness, and
TPC shown in Table 1.

Table 2. ANOVA results for the RSM model.
Source Drying time (Y1) Redness (Y2) TPC (Y3)

F-value p-value F-value p-value F-value p-value

Model 15.1 0.004* 26.87 < 10−4* 38.97 0.0004*
X1: Sonication time 2.39 0.183 4.76 0.0607 2.12 0.205
X2: Whipping time 16.76 0.0094* 58.52 < 10−4* 51.42 0.0008*
X3: Drying temperature 81.68 0.0003* 78.18 < 10−4* 178.8 < 10−4*
X1 X2 0.2983 0.6084 0.6962 0.4283 3.99 0.1022
X1 X3 0.2983 0.6084 18.8 0.0025* 0.3236 0.594
X2 X3 3.87 0.1064 0.2619 0.6226 42.18 0.0013*
X1 X1 10.59 0.0226* - - 43.19 0.0012*
X2 X2 2.16 0.2017 - - 0.5761 0.4821
X3 X3 21.33 0.0057* - - 23.06 0.0049*
Lack-of-fit 0.73 0.6221 1.83 0.394 0.1205 0.9401
R2 0.9645 0.9527 0.9859
* p < 0.05.
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To evaluate the adequacy of the model, descriptive
statistics such as the coefficient of determination
(R2) were examined, along with a lack-of-fit test
that compares the disparities between the actual and
predicted values to determine whether the relevant
regression model fits the data. ANOVA data in Table 2
demonstrated that the proposed regression models are
statistically significant for all responses, as evidenced
by high F-values and low p-values (p < 0.05). A higher
F-value and a p-value below 0.05 are considered
desirable in model evaluation. The R2 also provides
information about the fitness of the generated models
(Werede et al., 2021), with a higher R2 value (R2

> 0.80) generally indicating a reliable regression
model (Meyabadi & Dadashian, 2012). Based on Table
3, the R2 values of the drying time, redness, and
TPC models are all above 0.90, indicating a strong
correlation between the observed and predicted values.
Furthermore, the lack-of-fit tests conducted on all
response models suggest that there are no significant
differences between the predicted and observed results
(p > 0.05).

3.2 Effect of process variables on drying
time (Y1)

The impact of sonication time (X1), whipping time
(X2), and drying temperature (X3) on the drying
characteristics of cornelian cherry pulp powders were
studied, and the experimental findings for drying time
are provided in Table 1. Drying time ranged from 55
to 100 min, indicating its dependence on the process
parameters. The shortest drying time was observed at
a sonication time of 10 min, a whipping time of 10
min, and a drying temperature of 80 °C, while the
longest drying time was recorded at a sonication time
of 20 min, the whipping time of 5 min, and drying
temperature of 60 °C (Table 1). As seen, an increase
in the drying temperature from 60 to 80 °C resulted in
a decrease of about 63% in drying time.

The ANOVA results in Table 2 show the statistical
significance of the linear, interaction, and quadratic
terms. Whipping time (X2) and drying temperature
(X3) were found to have a substantial influence on
drying time, but sonication time (X1) had no effect.
However, all interaction terms were shown to have
no impact on drying time (p > 0.05). Furthermore,
Table 2 demonstrated that the quadratic effect of
whipping time (X2 X2) was not significant, whereas
the quadratic effects of sonication time (X1 X1) and
drying temperature (X3 X3) had a meaningful impact
on drying time (p < 0.05). The quadratic equation
(Eq. (8)), which includes the significant terms for the
effects of process variables on drying time, is given as
follows:

Drying time(Y1) =90− 6.625X2 − 14.625X3 − 7.75X2
1

− 11X2
3 (8)

The response surface graphs (Fig. 2a-c) depicted the
influence of process variables, namely sonication time
(X1), whipping time (X2), and drying temperature
(X3), on drying characteristics. Fig. 2a demonstrated
that drying time decreased with an increase in
whipping time at a constant sonication time (20
min). Notably, a substantial reduction (∼20%) in
drying time could be observed when whipping time
increased from 5 min to 15 min. Increased whipping
time enhanced the stability and foamability of the
cornelian cherry foams, leading to a higher foaming
capacity (data not shown). Mechanical whipping
led to more air being entrapped in the continuous
phase as the bubbles (Salahi et al., 2015). Moreover,
an increment in whipping time resulted in the
formation of smaller bubbles, which evenly distribute
throughout the foam. Additionally, the stability could
be increased by improving the viscoelastic properties
of the interfacial lamella surrounding these bubbles
(Ptaszek et al., 2014). Therefore, increasing the
amount of air in the foam led to a widening of the
effective area for the drying air and therefore to
a faster diffusion of moisture in the structure. The
quadratic effect of sonication time had a negative
role in shortening the drying time (Eq. (8)). On the
other hand, Fig. 2b shows that drying time increased
with increasing sonication time from 10 to 20 min
and then declined after reaching the middle level at
a constant whipping time (10 min). This behavior
may be attributed to the effect of sonication on
the functionality of biopolymers. In foam systems,
proteins can interact with other components to form
aggregates with varying functional properties. The
size of these aggregates can influence foaming
capacity and foam stability (Mirmoghtadaie et al.,
2016). These characteristics could be improved by
adjusting the particle size with ultrasound treatment
(Martínez-Padilla et al., 2015). Longer sonication
times resulted in small-sized aggregates, leading to
improved foaming properties (Stefanović et al., 2017).
In this study, shorter drying times were achieved
after 20 min of ultrasound treatment due to enhanced
foaming properties. However, the effect of ultrasound
treatment on drying time was found to be insignificant
(p > 0.05) (Table 2). Fig. 2c demonstrated that the
drying time for cornelian cherry foams decreased
with an increase in drying temperature at a constant
sonication time (20 min). This was attributed to
the fact that higher drying temperatures reduced
the internal resistance to water migration within the
product. The relationship between drying temperature
and vapor pressure gradient, molecular agitation,
and the rate of water evaporation directly affected
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increment in whipping time resulted in the formation of smaller bubbles, which evenly 292 
distribute throughout the foam. Additionally, the stability could be increased by improving 293 
the viscoelastic properties of the interfacial lamella surrounding these bubbles (Ptaszek et al., 294 
2014). Therefore, increasing the amount of air in the foam led to a widening of the effective 295 
area for the drying air and therefore to a faster diffusion of moisture in the structure. The 296 
quadratic effect of sonication time had a negative role in shortening the drying time (Eq. (8)).  297 
On the other hand, Fig. 2b shows that drying time increased with increasing sonication time 298 
from 10 to 20 min and then declined after reaching the middle level at a constant whipping 299 
time (10 min). This behavior may be attributed to the effect of sonication on the functionality 300 
of biopolymers. In foam systems, proteins can interact with other components to form 301 
aggregates with varying functional properties. The size of these aggregates can influence 302 
foaming capacity and foam stability (Mirmoghtadaie et al., 2016). These characteristics could 303 
be improved by adjusting the particle size with ultrasound treatment (Martínez-Padilla et al., 304 
2015). Longer sonication times resulted in small-sized aggregates, leading to improved 305 
foaming properties (Stefanović et al., 2017). In this study, shorter drying times were achieved 306 
after 20 min of ultrasound treatment due to enhanced foaming properties. However, the effect 307 
of ultrasound treatment on drying time was found to be insignificant (p > 0.05) (Table 2). 308 
Fig. 2c demonstrated that the drying time for cornelian cherry foams decreased with an 309 
increase in drying temperature at a constant sonication time (20 min). This was attributed to 310 
the fact that higher drying temperatures reduced the internal resistance to water migration 311 
within the product. The relationship between drying temperature and vapor pressure gradient, 312 
molecular agitation, and the rate of water evaporation directly affected the drying process 313 
(Macedo et al., 2021). As the dehydration temperature increased, water evaporated more 314 
rapidly from the foamy structure, resulting in shorter drying times (Zheng et al., 2011). 315 
Similar trends have been observed in studies on collard green powder (Borges et al., 2022) 316 
and magenta leaves powder (Thuy et al., 2022). It is worth noting that there was no significant 317 
decrease in drying time when the temperature increased from 60 °C to 70 °C, while higher 318 
temperatures (> 70 °C) significantly increased the drying rate. Overall, the response surface 319 
graphs (Fig. 2 a-c) highlighted the complex relationships between the process variables and 320 
drying characteristics, emphasizing the importance of whipping time, sonication time, and 321 
drying temperature in optimizing the drying process of cornelian cherry foams. 322 

323 
Fig. 2. Response surface plots for drying time (ST (min): sonication time; WT (min): 324 
whipping time; DT (°C): drying temperature). 325 
 326 

Fig. 2. Response surface plots for drying time (ST (min): sonication time; WT (min): whipping time; DT (°C):
drying temperature).
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 3.3. Effect of process variables on redness (Y2) 327 

The variations in redness associated with the process variables are depicted in Table 1. The 328 
average values of redness varied between 21.69 and 25.14. The statistical analysis in Table 329 
2 revealed that the linear terms of whipping time and drying temperature, as well as the 330 
interaction terms of sonication time and drying temperature, had a meaningful (p < 0.05) 331 
impact on the redness of the cornelian cherry powders. However, the linear term of sonication 332 
time (X1) and the interaction terms of sonication time and whipping time (X1X2) and 333 
whipping time and drying temperature (X2X3) did not alter the color of the fruit powders. To 334 
describe the association between the process parameters and observed results, a second-order 335 
polynomial equation with interaction terms was developed using multiple regression analysis 336 
of the experimental data (Bozaci, 2019). Thus, the mathematical relation between redness 337 
(Y2) and process factors (X1, X2, and X3) can be expressed using Equation (9). 338 

𝑅𝑒𝑑𝑛𝑒𝑠𝑠	(𝑌&) = 23.42 + 0.70𝑋& − 0.81𝑋1 − 0.56𝑋(𝑋1																																																									(9)	339 

The influence of process variables on the color attributes of cornelian cherry foam powder 340 
was investigated. Three-dimensional surface plots (Fig. 3a-c) were generated to illustrate the 341 
correlation between sonication time (X1), whipping time (X2), and drying temperature(X3). 342 
The contour plots displayed that drying temperature was the most important variable for the 343 
redness of the cornelian cherry powder. The finding was also supported by ANOVA results 344 
in Table 2. Furthermore, the coefficient value for drying temperature in Eq (9) was the 345 
highest, indicating its dominant role in determining the redness of the powder. Based on the 346 
experimental data, increasing the drying temperature from 60 to 80 °C led to a 13% decrease 347 
in redness value (from 24.87 to 21.69) for cornelian cherry powders (Table 1). Fig. 3c further 348 
demonstrated that redness (a*) decreased with increasing hot-air temperature, primarily due 349 
to the thermal degradation of anthocyanins, which are responsible for the red color of the 350 
powder (Parveez Zia & Alibas, 2021). Similar observations on anthocyanin reduction with 351 
increasing temperature have been reported in foam mat-dried blueberry powder (Gao et al., 352 
2022) and cornelian cherry drying (Aktas & Tontul, 2021).  353 

 354 

Fig. 3. Response surface plots for redness (ST (min): sonication time; WT (min): whipping 355 
time; DT (°C): drying temperature). 356 

Whipping time also played a significant role in determining redness (Eq. (9)). As depicted 357 
in Fig. 3a, the redness value increased with the mechanical whipping of cornelian cherry 358 
foams at a constant drying temperature (70 °C). Increasing whipping time from 5 to 15 min 359 
resulted in an increase in redness value from 21.69 to 25.14, respectively (Table 1). This 360 

Fig. 3. Response surface plots for redness (ST (min): sonication time; WT (min): whipping time; DT (°C): drying
temperature).

the drying process (Macedo et al., 2021). As the
dehydration temperature increased, water evaporated
more rapidly from the foamy structure, resulting in
shorter drying times (Zheng et al., 2011). Similar
trends have been observed in studies on collard
green powder (Borges et al., 2022) and magenta
leaves powder (Thuy et al., 2022). It is worth
noting that there was no significant decrease in
drying time when the temperature increased from
60 °C to 70 °C, while higher temperatures (> 70
°C) significantly increased the drying rate. Overall,
the response surface graphs (Fig. 2 a-c) highlighted
the complex relationships between the process
variables and drying characteristics, emphasizing the
importance of whipping time, sonication time, and
drying temperature in optimizing the drying process
of cornelian cherry foams.

3.3 Effect of process variables on redness
(Y2)

The variations in redness associated with the process
variables are depicted in Table 1. The average values
of redness varied between 21.69 and 25.14. The
statistical analysis in Table 2 revealed that the linear
terms of whipping time and drying temperature, as

well as the interaction terms of sonication time and
drying temperature, had a meaningful (p < 0.05)
impact on the redness of the cornelian cherry powders.
However, the linear term of sonication time (X1)
and the interaction terms of sonication time and
whipping time (X1 X2) and whipping time and drying
temperature (X2 X3) did not alter the color of the
fruit powders. To describe the association between the
process parameters and observed results, a second-
order polynomial equation with interaction terms
was developed using multiple regression analysis
of the experimental data (Bozaci, 2019). Thus,
the mathematical relation between redness (Y2) and
process factors (X1, X2, and X3) can be expressed
using Equation (9).

Redness (Y2) = 23.42+ 0.70X2 − 0.81X3 − 0.56X1X3
(9)

The influence of process variables on the color
attributes of cornelian cherry foam powder was
investigated. Three-dimensional surface plots (Fig. 3a-
c) were generated to illustrate the correlation between
sonication time (X1), whipping time (X2), and drying
temperature (X3). The contour plots displayed that
drying temperature was the most important variable
for the redness of the cornelian cherry powder. The
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finding was also supported by ANOVA results in
Table 2. Furthermore, the coefficient value for drying
temperature in Eq (9) was the highest, indicating
its dominant role in determining the redness of the
powder. Based on the experimental data, increasing
the drying temperature from 60 to 80 °C led to
a 13% decrease in redness value (from 24.87 to
21.69) for cornelian cherry powders (Table 1). Fig.
3c further demonstrated that redness (a*) decreased
with increasing hot-air temperature, primarily due
to the thermal degradation of anthocyanins, which
are responsible for the red color of the powder
(Parveez Zia & Alibas, 2021). Similar observations
on anthocyanin reduction with increasing temperature
have been reported in foam mat-dried blueberry
powder (Gao et al., 2022) and cornelian cherry drying
(Aktas & Tontul, 2021).

Whipping time also played a significant role in
determining redness (Eq. (9)). As depicted in Fig.
3a, the redness value increased with the mechanical
whipping of cornelian cherry foams at a constant
drying temperature (70 °C). Increasing whipping time
from 5 to 15 min resulted in an increase in redness
value from 21.69 to 25.14, respectively (Table 1).
This enhancement in redness could be attributed to
the improved foam properties, leading to an increased
moisture diffusion rate throughout the drying process
(Santos et al., 2022). The incorporation of air bubbles
during the whipping process increased the foam
porosity and thus facilitated moisture removal during
drying (Osama et al., 2022).

The interaction term of sonication time and drying
temperature (X1 X3) had a negative impact on the
color of the cornelian cherry powders (Eq. (9)). Fig. 3b
demonstrated that the redness of the sample powders
decreased with increasing drying temperatures and
decreasing sonication times at a constant whipping
time (10 min). This decline could be attributed to the
degradation of anthocyanins at higher temperatures
and the limited release of color pigments due to
the short-term application of ultrasound (Salacheep
et al., 2020). However, the highest (25.14) and the
lowest (22.91) values of redness for the powders were
obtained when the drying temperature and sonication
time were selected as 60 °C for 30 min and 80 °C for
10 min, respectively (Table 1).

3.4 Effect of process variables on total
phenolic content (Y3)

Experimental results for TPC (Y3) of cornelian
cherry foam powder under different FMD conditions,
including sonication time (X1), whipping time (X2),
and drying temperature (X3) are presented in Table
1. The TPC values ranged from 101.39 to 155.88 mg
GAE/100 g powder DM, indicating their dependence
on the process variables. The highest TPC was

obtained at a sonication time of 20 min, a whipping
time of 15 min, and a drying temperature of 60 °C,
while the lowest TPC was observed at a sonication
time of 10 min, a whipping time of 5 min, and drying
temperature of 70 °C. The ANOVA results revealed
significant linear effects of whipping time (X2) and
drying temperature (X3) on the bioactive content of
cornelian cherry powder. Additionally, a statistically
significant interaction between whipping time and
drying temperature (X2 X3) and the quadratic effects
of sonication time (X1 X1) and drying temperature
(X3 X3) were observed (Table 2). A mathematical
model describing the TPC of cornelian cherry foam
powder, after excluding the insignificant terms, can be
represented by Equation (10).

T PC(Y3) =120.68+ 7.04X2 − 13.13X3 − 9.02X2X3

− 9.50X2
1 + 6.94X2

3 (10)

The impact of sonication time (X1), whipping time
(X2), and drying temperature (X3) on the TPC of
cornelian cherry powder was analyzed using three-
dimensional surface plots (Fig. 4a-c). The findings
revealed that drying temperature had the most
profound influence on TPC, as determined by Eq. (10).
The linear and quadratic terms of drying temperature
demonstrated that increasing hot-air temperature from
60 to 70 °C led to a reduction in TPC, whereas
further increasing the temperature resulted in an
increase in phenolic compounds. Similar findings were
observed in the TPC variation of foam mat dried
peaches (Brar et al., 2020) and hot-air convective dried
blueberries (Zielinska et al., 2017). The increase in
drying temperature may contribute to the formation
of new phenolic compounds through the degradation
of complex ones and/or reduce the loss of available
phenolics by minimizing their exposure time to
oxygen (Zielinska et al., 2017).

Whipping time also had a notable impact on
TPC, as indicated by Eq. (10). Fig. 4a demonstrated
that increasing the whipping time at a constant
drying temperature (70 °C) caused an increase in
TPC. The positive regression coefficient for whipping
time (X2) in Eq. (10) suggested that lower drying
temperatures amplified the positive linear effect of
the whipping time on TPC, probably due to reduced
degradation of phenolic compounds. At a constant
sonication time (20 min), Fig. 4c further showed that
a significant negative interaction between whipping
time and drying temperature could lead to a substantial
improvement of about 35% in the TPC of cornelian
cherry powder.

The quadratic effect of sonication time was found
to be negatively correlated with TPC. Increasing
ultrasound application from 10 to 20 min led to an
increment in TPC, but further extending sonication
time to 30 min significantly decreased TPC content.
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constant sonication time (20 min), Fig. 4c further showed that a significant negative 405 
interaction between whipping time and drying temperature could lead to a substantial 406 
improvement of about 35% in the TPC of cornelian cherry powder.  407 

The quadratic effect of sonication time was found to be negatively correlated with TPC.  408 
Increasing ultrasound application from 10 to 20 min led to an increment in TPC, but further 409 
extending sonication time to 30 min significantly decreased TPC content. This reduction 410 
could be attributed to a local increase in temperature caused by longer ultrasound treatment, 411 
leading to the degradation and structural destruction of phenolic components (Salacheep et 412 
al., 2020). Overall, the findings highlight the significant influence of drying temperature (X3), 413 
whipping time (X2), and sonication time (X1) on the TPC of cornelian cherry powder, with 414 
specific interactions and quadratic effects playing important roles in determining the 415 
bioactive compounds.  416 

 417 

Fig. 4. Response surface plots for TPC (ST (min): sonication time; WT (min): whipping 418 
time; DT (°C): drying temperature). 419 

3.5. Process optimization 420 

The optimization of FMD conditions for cornelian cherry involved selecting the maximum 421 
redness value and TPC, and the minimum drying temperature as criteria. The desirability 422 
approach was employed for the numerical optimization of FMD conditions and to estimate 423 
the predicted responses. Through Design Expert software, with a desirability of 0.778, the 424 
optimal values for sonication, whipping time, and drying temperature were determined as 10 425 
min, 15 min, and 60 °C, respectively. The resulting foam mat dried cornelian cherry powder 426 
produced under these conditions is presented in Fig. 5.  The response values for optimal 427 
powder were predicted by the RSM model as 69 min for drying time, 24.34 for redness, and 428 
149.63 mg GAE/100 g powder DM for TPC. These predicted values were also 429 
experimentally validated with three replications. The obtained results for drying time, 430 
redness, and TPC were 70 ± 0.00 min, 23.25 ± 0.06, and 145.33 ± 2.80 mg GAE/100 g 431 
powder DM, respectively. As a point, no statistical difference was observed between the 432 
predicted and experimentally validated response results at a 95% confidence interval.  433 

The ANOVA results presented in Table 2 played a crucial role in the validation of the 434 
response surface models. The statistical analysis revealed that the drying time, redness, and 435 
TPC models were adequately accurate with higher R2 (R2 > 0.95) and lack of fit (p > 0.05) 436 
values. These results demonstrated that RSM is a suitable and effective approach for 437 
optimizing the FMD process of cornelian cherry foam. 438 

Fig. 4. Response surface plots for TPC (ST (min): sonication time; WT (min): whipping time; DT (°C): drying
temperature).

This reduction could be attributed to a local
increase in temperature caused by longer ultrasound
treatment, leading to the degradation and structural
destruction of phenolic components (Salacheep et al.,
2020). Overall, the findings highlight the significant
influence of drying temperature (X3), whipping time
(X2), and sonication time (X1) on the TPC of cornelian
cherry powder, with specific interactions and quadratic
effects playing important roles in determining the
bioactive compounds.

3.5 Process optimization

The optimization of FMD conditions for cornelian
cherry involved selecting the maximum redness value
and TPC, and the minimum drying temperature as
criteria. The desirability approach was employed for
the numerical optimization of FMD conditions and
to estimate the predicted responses. Through Design
Expert software, with a desirability of 0.778, the
optimal values for sonication, whipping time, and
drying temperature were determined as 10 min, 15
min, and 60 °C, respectively. The resulting foam
mat dried cornelian cherry powder produced under
these conditions is presented in Fig. 5. The response
values for optimal powder were predicted by the
RSM model as 69 min for drying time, 24.34 for
redness, and 149.63 mg GAE/100 g powder DM for
TPC. These predicted values were also experimentally
validated with three replications. The obtained results
for drying time, redness, and TPC were 70 ± 0.00
min, 23.25 ± 0.06, and 145.33 ± 2.80 mg GAE/100
g powder DM, respectively. As a point, no statistical
difference was observed between the predicted and
experimentally validated response results at a 95%
confidence interval.

The ANOVA results presented in Table 2 played
a crucial role in the validation of the response
surface models. The statistical analysis revealed that
the drying time, redness, and TPC models were
adequately accurate with higher R2 (R2 > 0.95)
and lack of fit (p > 0.05) values. These results
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 439 

Fig. 5. Foam mat dried cornelian cherry powder produced at optimal conditions. 440 

3.6. ANN modeling 441 

ANN has been widely applied in solving engineering problems in recent years due to its self-442 
learning and inference capabilities, allowing the ANN model to process random data and 443 
non-linear data. Malakar et al. (2022) used ANN to predict several responses, such as solid 444 
gain, weight loss, rehydration ratio, drying rate, and allicin content of garlic slices dried at an 445 
infrared drier. The values predicted by the ANN were close to the experimental results. 446 
Another study by Sharma et al. (2022) utilized ANN as an alternative to RSM to predict the 447 
cooking time, cooking losses, and water absorption ratio of fortified rice kernels. They found 448 
a close relationship between experimental findings and the values predicted by neural 449 
networks. Furthermore, moisture diffusion through cocoyam slices was successfully modeled 450 
using the ANN model (Onu et al., 2021). Additionally, Anastácio et al. (2016) employed 451 
ANN for modeling the extraction process of phenolics from sweet potato peels, successfully 452 
predicting the TPC, ABTS, and DPPH of the extracts. These studies have demonstrated the 453 
successful application of the ANN model in the prediction of response variables.  454 

 455 

Fig. 6. ANN diagram for TPC response 456 

ANN modeling was used to describe a non-linear correlation between process factors and 457 
targeted responses. A feed-forward backpropagation algorithm and topology optimization 458 
protocol were used to achieve this. The model was constructed using empirical datasets from 459 
the BBD matrix and consisted of one input layer with three neurons for sonication time, 460 
whipping time, and drying temperature, one hidden layer, and one output layer with three 461 

Fig. 5. Foam mat dried cornelian cherry powder
produced at optimal conditions.

demonstrated that RSM is a suitable and effective
approach for optimizing the FMD process of cornelian
cherry foam.

3.6 ANN modeling

ANN has been widely applied in solving engineering
problems in recent years due to its self-learning and
inference capabilities, allowing the ANN model to
process random data and non-linear data. Malakar et
al. (2022) used ANN to predict several responses, such
as solid gain, weight loss, rehydration ratio, drying
rate, and allicin content of garlic slices dried at an
infrared drier. The values predicted by the ANN were
close to the experimental results. Another study by
Sharma et al. (2022) utilized ANN as an alternative
to RSM to predict the cooking time, cooking losses,
and water absorption ratio of fortified rice kernels.
They found a close relationship between experimental
findings and the values predicted by neural networks.
Furthermore, moisture diffusion through cocoyam
slices was successfully modeled using the ANN model
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Fig. 6. ANN diagram for TPC response.

(Onu et al., 2021). Additionally, Anastácio et al.
(2016) employed ANN for modeling the extraction
process of phenolics from sweet potato peels,
successfully predicting the TPC, ABTS, and DPPH
of the extracts. These studies have demonstrated the
successful application of the ANN model in the
prediction of response variables.

ANN modeling was used to describe a non-
linear correlation between process factors and targeted
responses. A feed-forward backpropagation algorithm
and topology optimization protocol were used to
achieve this. The model was constructed using
empirical datasets from the BBD matrix and consisted
of one input layer with three neurons for sonication
time, whipping time, and drying temperature, one
hidden layer, and one output layer with three neurons
for drying time, redness, and TPC. The tansig and
purelin functions were used to connect the input
and hidden layers and the hidden and output layer,
respectively. The input layer received experimental
data for a specific response variable and transmitted
it to the hidden layer, which contained the optimal
number of neurons. Data were processed with varied
weights in these networks before being received by
the output layer and transmitted to an external receiver
(Nakhaei et al., 2017).

In this study, the dataset consisting of 15
experimental runs for each response was divided into
three subsets: training (11 sets), validation (2 sets),
and testing (2 sets). Levenberg-Marquardt algorithm
was used to train the dataset using ANN (Yadav et
al., 2017). For each response, the number of neurons
in the hidden layer was determined statistically based
on the lowest MSE and the highest R2 values, which
indicated the accuracy of the predictions made by
the neural networks. Statistical results in Table 3
showed that the optimal number of neurons in the
hidden layer was determined as 9, 9, and 7 for drying
time, redness, and TPC responses, respectively. The
general ANN topology for the TPC response is shown
in Fig. 6. The MSE values for the optimal ANN
topologies were calculated as 7.3409, 0.0693, and
0.6104 for the responses, respectively. In addition, the
corresponding R2 values are also higher than 0.98
(0.9841, 0.9971, and 0.9837, respectively), indicating
a strong agreement between the observed results and
the values predicted by the ANN (Table 1).

Table 3. Optimal network topologies and their

corresponding statistical results.

Response Network topology MSE R2

(3:n:1)

Drying time 9/3/01 7.3409 0.9841
Redness 9/3/01 0.0693 0.9971

TPC 7/3/01 0.6104 0.9837

3.7 Comparison of RSM and ANN models

A comparison was made between the estimation
ability and prediction accuracy of RSM and ANN
modeling approaches. The experimental data and also
predicted values for the drying time, redness, and
TPC obtained from both RSM and ANN models
are tabulated in Table 1. It is evident from the
overall results that, the predictions performed by the
ANN model exhibit a significantly higher degree of
agreement with the observed values, compared to the
predictions provided by the RSM model. However,
statistical characteristics such as MSE, R2, MAE,
RMSE, and χ2 were used to evaluate and compare the
model values, and the results are tabulated in Table 4.

It was observed that there were slight differences
in the relevant response values obtained through ANN
and RSM models. However, the ANN model exhibited
higher accuracy in fitting the diverse data points
compared to the RSM model. The superiority of the
ANN model was evident from its higher R2 value
and lower values of MSE, MAE, RMSE, and χ2.
These results aligned with the conclusions drawn
from previous studies on drying processes, which also
highlighted the improved predictive capability of the
ANN model (Malakar et al., 2022; Samyor et al.,
2021). This advantage of the ANN model could be
attributed to its ability to handle nonlinear systems,
while the RSM model was more suitable for solving
second-order polynomial regression problems (Kumar
et al., 2022).

Conclusions

In this study, the foam mat drying process for
cornelian cherry pulp was modeled and optimized.
The influences of sonication time, whipping time,
and drying temperature on the drying time, redness,
and total phenolic content (TPC) were investigated.
A response surface methodology based on a Box-
Behnken design was employed to determine the
optimal process conditions that maximize the redness
and TPC while minimizing drying time. The RSM
model successfully predicted the responses under
optimal conditions, showing good agreement with the
experimental results. On the other hand, the ANN
model demonstrated superior predictive performance
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Table 4. Statistical comparison of the results predicted by RSM and ANN models.

Response Response surface methodology (RSM) Artificial neural networks (ANN)
parameters MSE R2 MAE RMSE χ2 MSE R2 MAE RMSE χ2

Drying time 6.9833 0.9645 2.133 2.6426 1.3108 5.8042 0.9705 1.2 2.4092 1.078
Redness 0.0364 0.9517 0.1479 0.1909 0.0237 0.0222 0.9706 0.0825 0.149 0.0143
TPC 2.9433 0.9839 1.2331 1.7156 0.372 2.0526 0.9888 1.1157 1.4327 0.0423

compared to RSM. For all response variables,
the ANN model exhibited higher determination
coefficient (R2) values and lower mean squared error
(MSE), root mean squared error (RMSE), mean
absolute error (MAE), and chi-square (χ2) values.
These findings contribute to the advancement of
knowledge in modeling the foam mat drying process
for commercially valuable fruits, emphasizing the
potential of the ANN model in achieving accurate
predictions for industrial applications.
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A., & Pavlić, B. (2019). Screening, influence
analysis and optimization of ultrasound-assisted
extraction parameters of cornelian cherries
(Cornus mas L.). Journal of Food Processing
and Preservation 43(12), 1-14. https://doi.
org/10.1111/jfpp.14226

Varhan, E., Elmas, F., & Koç, M. (2019). Foam
mat drying of fig fruit: Optimization of foam
composition and physicochemical properties
of fig powder. Journal of Food Process
Engineering 42(4), 1-13. https://doi.org/
10.1111/jfpe.13022

Werede, E., Jabasingh, S. A., Demsash, H. D., Jaya,
N., & Gebrehiwot, G. (2021). Eco-friendly
cotton fabric dyeing using a green, sustainable
natural dye from Gunda Gundo (Citrus
sinensis) orange peels. Biomass Conversion
and Biorefinery 13(6), 5219-5234. https:
//doi.org/10.1007/s13399-021-01550-6

Yadav, A. M., Nikkam, S., Gajbhiye, P., & Tyeb,
M. H. (2017). Modeling and optimization of
coal oil agglomeration using response surface
methodology and artificial neural network
approaches. International Journal of Mineral
Processing 163, 55-63. https://doi.org/
10.1016/j.minpro.2017.04.009

Zheng, X.-Z., Liu, C.-H., & Zhou, H. (2011).
Optimization of parameters for microwave-
assisted foam mat drying of blackcurrant pulp.
Drying Technology 29(2), 230-238. https://
doi.org/10.1080/07373937.2010.484112

Zielinska, M., Ropelewska, E., & Markowski, M.
(2017). Thermophysical properties of raw, hot-
air and microwave-vacuum dried cranberry
fruits (Vaccinium macrocarpon). Lwt 85, 204-
211. https://doi.org/10.1016/j.lwt.
2017.07.016

14 www.rmiq.org

https://doi.org/10.1016/j.foodchem.2016.02.109
https://doi.org/10.1016/j.foodchem.2016.02.109
https://doi.org/10.1016/j.foodchem.2016.02.109
https://doi.org/10.1016/j.idairyj.2014.09.013
https://doi.org/10.1016/j.idairyj.2014.09.013
https://doi.org/10.3390/horticulturae8060546
https://doi.org/10.3390/horticulturae8060546
https://doi.org/10.1007/s11694-019-00124-5
https://doi.org/10.1007/s11694-019-00124-5
https://doi.org/10.1111/jfpp.14226
https://doi.org/10.1111/jfpp.14226
https://doi.org/10.1111/jfpe.13022
https://doi.org/10.1111/jfpe.13022
https://doi.org/10.1007/s13399-021-01550-6
https://doi.org/10.1007/s13399-021-01550-6
https://doi.org/10.1016/j.minpro.2017.04.009
https://doi.org/10.1016/j.minpro.2017.04.009
https://doi.org/10.1080/07373937.2010.484112
https://doi.org/10.1080/07373937.2010.484112
https://doi.org/10.1016/j.lwt.2017.07.016
https://doi.org/10.1016/j.lwt.2017.07.016

	Introduction
	Materials and methods
	Materials
	Methods

	Results and discussion
	Model fitting
	Effect of process variables on drying time (Y1)
	Effect of process variables on redness (Y2)
	Effect of process variables on total phenolic content (Y3)
	Process optimization
	ANN modeling
	Comparison of RSM and ANN models


