Revista Mexicana de Ingeniería Química, Vol. 22, No. 3 (2023), Bio23112


Survival of alginate-microencapsulated Lacticaseibacillus paracasei under gastrointestinal conditions in models in vitro and in vivo

C.A. Gómez-Aldapa, J. Castro-Rosas, F.A. Guzmán-Ortiz, O.A. Acevedo-Sandoval, E. Rangel-Vargas, R.N. Falfán-Cortés

https://doi.org/10.24275/rmiq/Bio23112


 

Abstract

The aim of this work was to evaluate the probiotic potential of the strain Lacticaseibacillus paracasei, both free and microencapsulated by ionic gelation, using in vitro and in vivo models. The strain was microencapsulated with different alginate concentrations (1, 2, 3, and 4 %). After encapsulation, the following were evaluated: survival (%), morphology, particle size (µm), zeta potential, resistance to pH and bile salts, and adhesion of free and encapsulated bacteria in CD-1 mice. The highest resistance to simulated pH 2 and bile salt conditions was obtained with 2 % alginate. The microsphere size ranged between 47.43 and 72.56 µm, with zeta potential from –11.7 to –22.00 (Mv) and oval morphology. The quantification results in mice intestines showed that free and encapsulated bacteriaadhered at concentrations of 3 and 6 Log CFU/g (p ≤ 0.05), respectively. L. paracasei is a potential probiotic in the food and pharmaceutical industries.

Keywords: alginate, probiotics, CD-1 mice, microencapsulation, zeta potential.

 


References

  • Byakika, S., Mukisa, I.M., Byaruhanga, Y.B. and Muyanja, C. (2019). A review of criteria and methods for evaluating the probiotic potential of microorganisms. Food Reviews International 35, 427-466. https://doi.org/10.1080/87559129.2019.1584815
  • Castro-Rosas, J., Gómez‐Aldapa, C.A., Chávez-Urbiola, E.A., Hernández-Bautista, M., Rodríguez-Marín, M.L., Cabrera-Canales, Z.E. and Falfán-Cortés, R.N. (2021). Characterisation, storage viabilit, and application of microspheres with Lactobacillus paracasei obtained by the extrusion technique. International Journal of Food Science & Technology 56, 1809-1817. https://doi.org/10.1111/ijfs.14807
  • Champagne, C.P., Ross, R.P., Saarela, M., Hansen, K.F. and Charalampopoulos, D. (2011). Recommendations for the viability assessment of probiotics as concentrated cultures and in food matrices. International Journal of Food Microbiology 149, 185–193. https://doi.org/10.1016/j.ijfoodmicro.2011.07.005
  • Chun, H., Kim, C.H. and Cho, Y.H. (2014). Microencapsulation of Lactobacillus plantarum DKL 109 using external ionic gelation method. Korean Journal for Food Science of Animal Resources 34, 692. https://doi.org/10.5851/kosfa.2014.34.5.692
  • Comaposada, J., Gou, P., Marcos, B., & Arnau, J. (2015). Physical properties of sodium alginate solutions and edible wet calcium alginate coatings. LWT-Food Science and Technology 64, 212-219. https://doi.org/10.1016/j.lwt.2015.05.043
  • Cook, M.T., Tzortzis, G., Charalampopoulos, D. and Khutoryanskiy, V.V. (2012). Microencapsulation of probiotics for gastrointestinal delivery. Journal of Controlled Release 162, 56-67. https://doi.org/10.1016/j.jconrel.2012.06.003
  • De Melo-Pereira, G.V., De Oliveira, C.B., Júnior A.I.M., Thomaz-Soccol, V. and Soccol, C.R. (2018). How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances 36, 2060-2076. https://doi.org/10.1016/j.biotechadv.2018.09.003
  • Ding, X., Li, D., Xu, Y., Wang, Y., Liang, S., Xie, L., ... & Fu, A. (2023). Carboxymethyl konjac glucomannan-chitosan complex nanogels stabilized emulsions incorporated into alginate as microcapsule matrix for intestinal-targeted delivery of probiotics: In vivo and in vitro studies. International Journal of Biological Macromolecules 126931. https://doi.org/10.1016/j.ijbiomac.2023.126931
  • Duary, R.K., Rajput, Y.S., Batish, V.K., Grover, S., (2011). Assessing the adhesion of putative indigenous probiotic Lactobacilli to human colonic epithelial cells. Indian Journal of Medical Research 134, 664–671.  https://doi.org/10.4103/0971-5916.90992
  • Escamilla-Montes, R., Cruz-Cervantes, M. M., Diarte-Plata, G., Granados-Alcantar, S., Luna-González, A., Álvarez-Ruíz, P., and Vega-Carranza, A. S. (2023). Isolation, characterization, application, and effect of bacteria with probiotic potential from the prawn Macrobrachium tenellum in Guasave, Sinaloa, Mexico. Latin American Journal of Aquatic Research 51, 570-586. https://doi.org/10.3856/vol51-issue4-fulltext-3004
  • Falfán-Cortés, R.N., Mora-Peñaflor, N., Gómez-Aldapa, C.A., Rangel-Vargas, E., Acevedo-Sandoval., O. A. Franco-Fernández, M.J. and Castro-Rosas J. (2022). Characterization and evaluation of the probiotic potential in vitro and in situ of Lacticaseibacillus paracasei isolated from tenate cheese. Journal of Food Protection 85, 112-121. https://doi.org/10.4315/JFP-21-021
  • FAO/WHO (Food and Agricultural Organization of the United Nations and World Health Organization) (2002). Guidelines for the Evaluation of Probiotics in Food. Joint FAO/WHOWorking Group Report on Drafting Guidelines for the Evaluation of Probiotics in Food. London Ontario (CA); Available: http://fanus.com.ar/posgrado/10-09-25/fao%20probiotics.pdf
  • Funami, T., Fang, Y., Noda, S., Ishihara, S., Nakauma, M., Draget, K. I., ... & Phillips, G. O. (2009). Rheological properties of sodium alginate in an aqueous system during gelation in relation to supermolecular structures and Ca2+ binding. Food Hydrocolloids 23(7), 1746-1755. https://doi.org/10.1016/j.foodhyd.2009.02.014
  • Gebara, C., Chaves, K.S., Ribeiro, M.C.E., Souza, F.N., Grosso, C.R. and Gigante, M.L. (2013). Viability of Lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Research International 51, 872-878.  https://doi.org/10.1016/j.foodres.2013.02.008
  • Hernández-López, Z., Rangel-Vargas, E., Castro-Rosas, J., Gómez-Aldapa, C.A., Cadena-Ramírez, A., Acevedo-Sandoval, O. A., Gordillo-Martínez, A.J. and Falfán-Cortés, R.N. (2018). Optimization of a spray-drying process for the production of maximally viable microencapsulated Lactobacillus pentosus using a mixture of starch-pulque as wall material. LWT - Food Science and Technology 95, 216-222. https://doi.org/10.1016/j.lwt.2018.04.075
  • Holkem, A.T., Raddatz, G.C., Barin, J.S., Flores, É.M.M., Muller, E.I., Codevilla, C.F. and De Menezes, C.R. (2017). Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT - Food Science and Technology 76, 216-221. https://doi.org/10.1016/j.lwt.2016.07.013
  • Jiménez-Villeda, B.E., Falfán-Cortés, R.N., Rangel-Vargas, E., Santos-López, E.M., Gómez-Aldapa, C.A., Torres-Vitela, M. and Castro-Rosas, J. (2023). Synbiotic Encapsulation: A Trend towards Increasing Viability and Probiotic Effect. Journal of Food Processing and Preservation 2023 1-20.  https://doi.org/10.1155/2023/7057462
  • Kociubinski, G., Pérez, P., and De Antoni, G. (1999). Screening of bile resistance and bile precipitation in lactic acid bacteria and bifidobacteria. Journal of food protection 62(8), 905-912. https://doi.org/10.4315/0362-028X-62.8.905
  • Kučan, M., Gobin, I., Markov, K., Momčilović, D.J. and Frece, J. (2012). Testing the adhesion and colonization ability of Lactobacillus plantarum strain S1 to the mice intestinal epithelium. International Journal of Scientific Engineering and Research 6, 23-28.
  • Kurozawa, L.E. and Hubinger, M.D. (2017). Hydrophilic food compounds encapsulation by ionic gelation. Current Opinion in Food Science 15, 50–55. https://doi.org/10.1016/j.cofs.2017.06.004
  • Le, B. M., Daniel, N., Varin, T.V., Naimi, S., Demers‐Mathieu, V., Pilon, G., and Marette, A. (2019). In vivo screening of multiple bacterial strains identifies Lactobacillus rhamnosus Lb102 and Bifidobacterium animalis ssp. lactis Bf141 as probiotics that improve metabolic disorders in a mouse model of obesity. The FASEB Journal 33, 4921-4935. https://doi.org/10.1096/fj.201801672R
  • Lee, Y., Ho, P.S., Low, C,S,, Arvilommi, H. and Salminen, S. (2004). Permanent colonization by Lactobacillus casei is hindered by the low rate of cell division in mouse gut. Applied and Environmental Microbiology 70, 670-674. https://doi.org/10.1128/AEM.70.2.670-674.2004
  • Mahmoud, M., Abdallah, N.A., E-Shafei, K., Tawfik, N.F. and El-Sayed, H.S. (2020). Survivability of alginate-microencapsulated Lactobacillus plantarum during storage, simulated food processing and gastrointestinal conditions. Heliyon 6, e03541 https://doi.org/10.1016/j.heliyon.2020.e03541
  • Martín, M.J., Lara-Villoslada, F., Ruiz, M.A. and Morales, M.E. (2015). Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innovative Food Science and Emerging Technologies 27, 15–25. https://doi.org/10.1016/j.ifset.2014.09.010
  • Mombelli, B. and Gismondo, M.R. (2000). The use of probiotics in medical practice. International Journal of Antimicrobial Agents 16, 531-536. https://doi.org/10.1016/S0924-8579(00)00322-8
  • Nambiar, R.B., Sellamuthu, P.S., Perumal, A.B. (2018). Development of milk chocolate supplemented with microencapsulated Lactobacillus plantarum HM47 and to determine the safety in a Swiss albino mice model. Food Control 94, 300-306. https://doi.org/10.1016/j.foodcont.2018.07.024
  • Ouwehand, A.C. and Salminen, S. (2003). In vitro adhesion assays for probiotics and their in vivo relevance: a review. Microbial Ecology in Health and Disease 15, 175-184. https://doi.org/10.1080/08910600310019886
  • Quiroz, J.Q., Velazquez, V., Corrales-Garcia, L.L., Torres, J.D., Delgado, E., Ciro., G. (2020). Use of plant proteins as microencapsulating agents of bioactive compounds extracted from annatto seeds (Bixa orellana L.). Antioxidants 9, 4–6. https://doi:10.3390/antiox9040310
  • Rajam, R., and Anandharamakrishnan, C. (2015). Spray freeze drying method for microencapsulation of Lactobacillus plantarum. Journal of Food Engineering 166, 95-103. https://doi.org/10.1016/j.jfoodeng.2015.05.029
  • Ramos, C.L., Thorsen, L., Schwan, R.F., Jespersen, L. (2013). Strain-Specific Probiotics Properties of Lactobacillus Fermentum, Lactobacillus Plantarum and Lactobacillus Brevis Isolates from Brazilian Food Products. Food Microbiology 36, 22–29. https://doi:10.1016/j.fm.2013.03.010
  • Rodrigues, J.B., Leitão, N.J., Chaves, K.S., Gigante, M.L., Portella, M.C., Grosso, C.R. (2014). High protein microparticles produced by ionic gelation containing Lactobacillus acidophilus for feeding pacu larvae. Food Research International 63:25-32. https://doi.org/10.1016/j.foodres.2014.02.005
  • Sandoval-Castilla, O., Lobato-Calleros, C., García-Galindo, H.S., Alvarez-Ramírez, J., and Vernon-Carter, E.J. (2010). Textural properties of alginate–pectin beads and survivability of entrapped Lb. casei in simulated gastrointestinal conditions and in yoghurt. Food Research International 43, 111-117. https://doi:10.1016/j.foodres.2009.09.010
  • Tello, F., Falfan-Cortés, R. N., Martínez-Bustos, F., da Silva, V. M., Hubinger, M. D., and Grosso, C. (2015). Alginate and pectin-based particles coated with globular proteins: Production, characterization and anti-oxidative properties. Food Hydrocolloids 43, 670-678. https://doi.org/10.1016/j.foodhyd.2014.07.029
  • Saxami, G., Ypsilantis, P., Sidira, M., Simopoulos, C., Kourkoutas, Y., Galanis, A. (2012). Distinct adhesion of probiotic strain Lactobacillus casei ATCC 393 to rat intestinal mucosa. Anaerobe 18, 417-420. https://doi:10.1016/j.anaerobe.2012.04.002
  • Servin, A.L. and Coconnier, M.H. (2003). Adhesion of probiotic strains to the intestinal mucosa and interaction with pathogens. Best Practice & Research Clinical Gastroenterology 17, 741-754. https://doi:10.1016/s1521-6918(03)00052-0
  • Shi, L.E., Li, Z.H., Li, D.T., Xu, M., Chen, H.Y., Zhang, Z.L., Tang, Z.X. (2013). Encapsulation of probiotic Lactobacillus bulgaricus in alginate–milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. Journal of Food Engineering 117, 99-104. https://doi.org/10.1016/j.jfoodeng.2013.02.012
  • Solanki, H.K., Pawar, D.D., Shah, D.A., Prajapati, V.D., Jani, G.K., Mulla, A.M., Thakar, P.M. (2013). Development of microencapsulation delivery system for long-term preservation of probiotics as biotherapeutics agent. BioMed Research International 1-13. https://doi:10.1155/2013/620719
  • Voo, W., Ravindra, P., Tey, B., Chan, E. (2011). Comparison of alginate and pectin based beads for production of poultry probiotic cells. Journal of Bioscience and Bioengineering 111, 294–299. https://doi:10.1016/j.jbiosc.2010.11.010
  • Wang, X., Gao, S., Yun, S., Zhang, M., Peng, L., Li, Y. and Zhou, Y. (2022). Microencapsulating alginate-based polymers for probiotics delivery systems and their application. Pharmaceuticals 15, 644. https://doi.org/10.3390/ph15050644
  • Yao, M., Xie, J., Du, H., McClements, D.J., Xiao, H., Li, L. (2020). Progress in microencapsulation of probiotics: A review. Comprehensive Reviews in Food Science and Food Safety 19, 857-874. https://doi.org/10.1111/1541-4337.12532
  • You, J.O., Park, S.B., Park, H.Y., Haam, S., Chung, C.H., and Kim, W.S. (2001). Preparation of regular sized Ca-alginate microspheres using membrane emulsification method. Journal of Microencapsulation 18, 521-532. https://doi.org/10.1080/02652040010018128
  • Zou, Q., Zhao, J., Liu, X., Tian, F., Zhang, H.P., Zhang, H., Chen, W. (2011). Microencapsulation of Bifidobacterium bifidum F‐35 in reinforced alginate microspheres prepared by emulsification/internal gelation. International Journal of Food Science & Technology   46, 1672-1678. https://doi.org/10.1111/j.1365-2621.2011.02685.x