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Abstract
The Michaelis-Menten (MM) equation is traditionally derived by taking a quasi-steady state assumption (QSSA) for the
intermediate complex or a chemical equilibrium assumption for the transformation of substrate into the intermediate complex.
The validity of these assumptions has been subjected to intense research in recent decades, where the use of tools from singularly
perturbed systems has played a central role. The present work aims to explore an approach to derive the MM equation from a
singular value decomposition (SVD) analysis of the MM kinetics. The idea is to consider singular values as scaling factors to
convert the MM equations into a singularly perturbed system. The results showed that the MM equation can be obtained from the
boundary-layer system for a sufficient separation of the time scale represented by singular values. Such a boundary-layer system
can be interpreted as resulting from a linear combination of the traditional complex QSSA and substrate equilibrium assumption
(SEA). The SVD methodology combined with results from singularly perturbed systems can be used for extended MM kinetics.
To this end, the case of the autocatalytic MM kinetics was considered as a worked example. Numerical examples were used to
illustrate the theoretical findings.
Keywords: Michaelis-Menten; multiscale; singular values.

Resumen
La ecuación de Michaelis-Menten (MM) se deriva tradicionalmente tomando una suposición de estado casi estable (QSSA)
para el complejo intermedio o una suposición de equilibrio químico para la reacción de substrato en complejo. La validez de
estos supuestos ha sido objeto de intensas investigaciones en las últimas décadas, donde el uso de herramientas de sistemas
singularmente perturbados ha jugado un papel central. El presente trabajo tiene como objetivo explorar un enfoque para derivar
la ecuación MM a partir de un análisis de descomposición de valores singulares (SVD) de la cinética MM. La idea es considerar
valores singulares como factores de escala para convertir las ecuaciones MM en un sistema singularmente perturbado. Los
resultados mostraron que la ecuación MM se puede obtener del sistema de capa límite para una separación suficiente de la
escala de tiempo representada por valores singulares. Dicho sistema de capa límite puede interpretarse como resultado de una
combinación lineal del complejo tradicional QSSA y la suposición de equilibrio del sustrato. La metodología SVD combinada
con los resultados de sistemas singularmente perturbados se puede utilizar para la cinética MM extendida. Para ello, se consideró
como ejemplo trabajado el caso de la cinética MM autocatalítica. Se utilizaron ejemplos numéricos para ilustrar los hallazgos
teóricos.
Palabras clave: Michaelis-Menten, multiescala, valores singulares.
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1 Introduction

The Michaelis-Menten (MM) reaction scheme is the
most widely used in biochemistry. It describes the
conversion of a substrate (S ) into a product (P) by the
catalyzing action of an enzyme (E) via an intermediate
binding complex (C). The scheme of the Michaelis-
Menten (MM) kinetics can be represented as follows:

E+S
k1
−−−→ C (1a)

C
k−1
−−−→ E+S (1b)

C
kc
−−−→ E+P (1c)

The first step (1.a) represents the formation of the
complex intermediate from the binding of the enzyme
to the substrate, the second step is the reversibility of
the first step, and the third step is the decomposition
of the complex to form products and reestablish the
enzyme. The parameters k1 and k−1 represent the
rate constants of the forward and backward complex
formation, and the parameter kc represents the rate
constant of the product formation from the complex
intermediate. By departing from the law of mass
action, the dynamical behavior of the species involved
in the MM scheme is governed by the following
differential equations:

dS
dt
= −k1ES + k−1C, S (0) = S 0 (2a)

dE
dt
= −k1ES + (k−1 + kc)C, E(0) = E0 (2b)

dC
dt
= k1ES − (k−1 + kc)C, C(0) = 0 (2c)

dP
dt
= kcC, P(0) = 0 (2d)

Here, for simplicity the same letter was used to denote
the species and the respective concentration. The
above differential equations are not independent since
the following conservation laws are satisfied:

E +C = E0 (3a)
S +C + P = S 0 (3b)

The analysis of the system (2) focuses on the first
three differential equations since the rate of product
formation can be obtained from the availability of the
complex dynamics. One can use the invariant given
by Eq. (3.a) to reduce the system (2.a)-(2.c) to the
following two expressions:

dS
dt
= −k1E0S + k1CS + k−1C, S (0) = S 0 (4a)

dC
dt
= k1E0S − k1CS − (k−1 + kc)C, C(0) = 0 (4b)

In practice, the concentration of the complex
intermediate C is rarely accessible for measurements.
Since the quantification of the rate of product
generation (Eq. (2.d)) is commonly the task,
one would like to dispose of a mathematical
expression depending only on the measurable
substrate concentration S . Michaelis and Menten
(1913) assumed that the substrate is in instantaneous
chemical equilibrium with the complex, which implies
the following relationship:

k1E0S ≈ k−1C (5)

This assumption, called as substrate equilibrium
assumption (SEA), can be used in Eq. (2.d) to obtain
an approximation for the rate of product generation:

dP
dt
≈

kcE0S
KS + S

(6)

where

KS =
k−1

k1
(7)

is the substrate dissociation equilibrium constant.
Subsequently, Briggs and Haldane (1925) considered
a different way by assuming a quasi-steady-state
assumption (QSSA) on the rate of complex generation,
which states that dC/dt ≈ 0 for large times. In terms of
Eq. (4.b), one has

C ≈
E0S

KM + S
(8)

where

KM =
k−1 + kc

k1
(9)

is the so-called Michaelis constant linked to the
substrate-enzyme affinity. Therefore, the rate of
product generation can be approximated by the well-
known MM equation:

dP
dt
=

kcE0S
KM + S

(10)

It is noted that the QSSA can be reduced to the SEA
when kc≪ k−1, such that KM ≈ KS .

The approximate models given by eqs. (6) and
(10) are simple in structure and for a century they
have found wide acceptance in the physiology and
biochemistry fields, among many others. While the
application of the MM equation was increasing,
theorists hesitated on how to find a justification for
the assumptions (mainly the Briggs and Haldane’s
QSSA) leading to the MM equation. Heineken
et al. (1967) proposed a formal approach based
on singular perturbations by considering the ratio
E0/S 0 as a small parameter. The underlying idea
is that there are two-time scales involved in the
MM dynamics, such that the Tikhonov’s theorem
is valid for obtaining an approximate solution that
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is valid for large times. Reich and Sel’Kov (1974)
and Schauer and Heinrich (1979) advanced on the
singular perturbation analysis of the MM kinetics
by considering more involved expressions for the
singularity parameter (e.g., E0/KM). Segel (1988)
estimated the characteristic time scales for the fast and
slow dynamics and proposed a sufficient condition

E0

KM + S 0
≪ 1 (11)

to guarantee the fulfillment of the QSSA. The
methodology of Segel (1988) is based on the
computation of fast and slow time scales, and so it is
quite flexible for the analysis of more general forms
of the MM kinetics, including the kinetics of suicide
substrates (Burke et al., 1990), zymogen activation
(Eilertsen et al., 2018a), coupled enzyme kinetics
(Eilertsen et al., 2018b) and open Michaelis-Menten
reaction mechanism (Eilertsen et al., 2022). Borghans
et al. (1986) showed that the validity of the QSSA
can be extended by using a coordinate change where
the total substrate concentration S + C is considered
instead of the sole substrate concentration S , and
reported the following condition

KE0

(KM + E0 + S 0)2 ≪ 1 (12)

Here, K = kc/k1. This approach has attracted some
interest and is called as the total QSSA (tQSSA
in short) (Tzafriri and Edelman, 2007). Despite
important theoretical advances, the validity of the
QSSA has been a matter of discussion. Schnell
(2014) provided a critical discussion on the validity
of the QSSA and postulated that a reactant stationary
assumption is the required condition for the validity
of the Michaelis-Menten equation to estimate kinetic
parameters. Patsatzis and Goussis (2019) argued that
the MM equation is not sufficient to describe the
MM kinetics and proposed an algorithmic approach to
compute a MM equation that is valid under multiscale
conditions. They used the computational singular
perturbation (CSP) algorithm to derive a new validity
condition for the MM equation:

E0 −C
KR + S +K

≪ 1 (13)

In this way, the MM equation validity depends on
the (S , C)-trajectory. For instance, for small times
one may have small values of E0 − C and the
above inequality is satisfied. However, for large times
the substrate concentration is so depleted that the
condition (13) is not fulfilled. Recently, Rao and
Heynderickx (2021) provided a critical discussion of
the validity of the MM equation for complex enzyme
kinetic mechanisms.

The QSSA is a well-accepted approach for
computing reduced-order models of reacting kinetics.

In the case of the MM mechanism, the QSSA has
offered a simple route to compute reduced-order
models that can be used in practice. However, the
notion that the QSSA should be applied to the
intermediate complex is still unclear. The present
study aims to provide a generalization of the QSSA
based on singular value decomposition (SVD) and
singular perturbation analysis (Hoppensteadt, 1974) of
the MM kinetics. The task is to show that the MM
kinetics can be approximated by a MM equation under
sufficient separation of scaling factors obtained from
SVD.

2 SVD analysis of the MM
kinetics

The system (4) has a particular structure that can be
exploited to analyze the multiscale dynamics of the
substrate and complex concentrations. To this end, it
is convenient to normalize the substrate and complex
concentrations. Following Heineken et al. (1967), the
substrate and complex concentrations are normalized
by the initial conditions S 0 and E0, respectively. The
dimensionless variables are given by

x ≡
S
S 0

(14a)

y ≡
C
E0

(14b)

Then, the system (4) can be expressed as follows:

dx
dt
= −k1E0x+ k1E0xy+ k−1

(
E0

S 0

)
y, x(0) = 1

(15a)
dy
dt
= k1S 0x− k1S 0xy− (k−1 + kc)y, y(0) = 0 (15b)

In matrix form, one has
dx
dt

dy
dt

 =
(
−k1E0 k1E0 k−1

(E0
S 0

)
k1S 0 −k1S 0 −(k−1 + kc)

) x
xy
y

 (16)

Importantly, all the elements of the matrix

M ≡
(
−k1E0 k1E0 k−1

(E0
S 0

)
k1S 0 −k1S 0 −(k−1 + kc)

)
(17)

have the same units; namely, t−1, such that all
operations (e.g., sums of elements) involving the
elements of the matrix M will be consistent with
physical units. The matrix M can be considered as an
operator that maps the vector of rate functions

F(x,y) =

 x
xy
y

 (18)
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in the vector of reaction rates

r(x,y) ≡


dx
dt

dy
dt

 (19)

That is, M : F(x,y) → r(x,y). In this way, the matrix
M transforms the information carried out by the rate
functions F(x,y) in the reaction rates r(x,y). In the
following, we will consider SVD of the matrix M to
assess the strength and directions of the information
transformation of the reaction kinetics. The SVD of
the matrix M implies that the transformation r(x,y) =
MF(x,y) can be rewritten as

r(x,y) = UΣVT F(x,y) (20)

where U and V are respectively 2 × 2 and 3 × 3
orthonormal matrices corresponding to the left and
the right eigenvectors of the matrix M and Σ =
diag(σ1,σ2) is a 2×3 with σ1 ≥ σ2 being the singular
values. Orthonormality implies that U−1 = UT , such
that Eq. (20) can be written as

UT r(x,y) = ΣVT F(x,y) (21)

In terms of the differential equations (15), one has the
following expressions:

u11
dx
dt
+ u21

dy
dt
= σ1(v11x+ v21xy+ v31y) (22a)

u12
dx
dt
+ u22

dy
dt
= σ2(v12x+ v22xy+ v32y) (22b)

Where ui j i, j = 1,2 are the elements of the matrix
U and vi j;i = 1,2,3 ; j = 1,2 are the elements of
the matrix V. In this representation, u11x + u21y and
u12x + u22y can be seen as pseudo-species resulting
from the linear combination of the real species, while
the parameters σ1v11, σ1v21, σ1v31, σ2v12, σ2v22 and
σ2v32 can be interpreted as pseudo-rate constants.
Since the elements of the matrix M have units of
1/time and the matrices U and V are orthonormal (i.e.,
the norm of the columns is normalized to one), the
singular values have units of 1/time. In this way, the
inverse of the singular values σ1 and σ2 can be seen
as characteristic time scales obtained from SVD of
the matrix M. Thus, the singular values σ1 and σ2
factoring the right-hand sides of Eq. (22) can be seen
as characteristic scaling factors that weight the impact
of the reaction functions F(x,y) in the reaction rates
r(x,y). Consider the following parameter:

ε =
σ2

σ1
(23)

where the singular values are positive and σ1 ≥ σ2,
then one has that 0 < ε ≤ 1. In this way, the system
(22) can be expressed as follows:

ε

(
u11

dx
dt
+ u21

dy
dt

)
= σ2(v11x+ v21xy+ v31y) (24a)

u12
dx
dt
+ u22

dy
dt
= σ2(v12x+ v22xy+ v32y) (24b)

Suppose that ε ≪ 1. Then, the differential system
given by Eq. (24) can be analyzed as a singularly
perturbed system with ε acting as the perturbation
parameter (Hoppensteadt, 1974). The fast (i.e.,
reduced) system is obtained by taking the fast time
variable

t f ast =
t
ε

(25)

to give

u11
dx

dt f ast
+ u21

dy
dt f ast

= σ1(v11x+ v21xy+ v31y)

(26a)

u12
dx

dt f ast
+ u22

dy
dt f ast

= εσ2(v12x+ v22xy+ v32y)

(26b)

and allowing ε→ 0 to obtain

u11
dx

dt f ast
+ u21

dy
dt f ast

= σ1(v11x+ v21xy+ v31y)

(27a)

u12
dx

dt f ast
+ u22

dy
dt f ast

= 0 (27b)

Fraser (1988) has pointed out that model reduction of
the MM kinetics is synonymous with approximating
the model dynamics on an invariant manifold. In
this sense, Eq. (27.b) can be integrated to give an
expression for the fast fiber (Zagarakis et al., 2004):

φ f ast(x,y) = u12(x− 1)+ u22y (28)

That is, for short times the trajectories of the MM
kinetics are constrained to evolve on the fast fiber
φ f ast(x,y). It is noted that the fast fiber represents a
straight line with slope u12/u22 in the plane (x,y). On
the other hand, the slow (i.e., boundary-layer) system
is obtained from Eq. (24) by allowing ε→ 0; namely,

σ2(v11x+ v21xy+ v31y) = 0 (29a)

u12
dx
dt
+ u22

dy
dt
= σ2(v12x+ v22xy+ v32y) (29b)

Then, the slow manifold is given by

φslow(x,y) = v11x+ v21xy+ v31y (30)

Interestingly, the fast fiber is given by a linear
combination of the reaction rates r(x,y), whilst the
slow fibers (Eq. (27.b)) by a linear combination of
the rate functions F(x,y). A system trajectory in the
phase plane (x(t), y(t)) converges to the slow manifold
(30) for large times. In this way, Eq. (30) corresponds
to a family of σ-isoclines (Calder and Siegel, 2008),
which have the characteristic of being tangent to the
trajectories at the equilibrium point.

4 www.rmiq.org
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Eq. (30) leads to the following relationship that is
satisfied for large times:

y = −

( v11
v21

)
x( v31

v21

)
+ x

(31)

Since dp/dt = kcC, S = S 0x and C = E0y, one has
that the expression for the slow manifold (30) can
be written as a relationship between substrate and
complex concentrations:

C = −
E0

(
v11
v21

)
S( v31

v21

)
S 0 + S

(32)

which implies that the rate of product generation for
large times can be approximated by

dP
dt
= −

kcE0
( v11

v21

)
S( v31

v21

)
S 0 + S

(33)

This expression has the structure of a MM equation
where

Vmax = −kcE0

(
v11

v21

)
(34a)

Ka f f ≡
v31

v21
S 0 (34b)

play the role of the maximum velocity and the
substrate affinity constant. In this way, by necessity,
one has the ratio v11/v21 < 0 to have Vmax >
0. Otherwise, the MM-like equation dP/dt =
−kcE0 (v11/v21)S/ [(v31/v21)S 0 + S ] would predict
that the product is being removed from the reacting
system, which is a contradiction. Extensive numerical
computations show that v11 = −v21, such that v11 =

−v21 and Vmax reduces to the classical expression
Vmax = kcE0. However, we were unable to give
rigorous proof for the equality v11 = −v21. One
concludes that the behavior of the rate of product
generation for long times can be reduced to a MM
equation as long as a sufficient separation (i.e.,
sufficiently small values of the perturbation parameter
ε) of the scaling factors σ1 and σ2 is exhibited.

The reduction of the MM kinetics model to the
MM equation was obtained from the boundary-layer
system (29), resulting in the slow manifold given by
Eq. (30) or equivalently Eq. (31). The slow manifold
approximation could be heuristically obtained by
considering that the quantity u11x + u21y does not
change on the time scale over which the product is
formed. Such assumption would mean that

v12x+ v22xy+ v32y ≈ 0 (35)

An interpretation of the above approximation can be
given as follows. In the original analysis, Michaelis
and Menten (1913) assumed that the substrate is in

instantaneous chemical equilibrium with the complex.
In terms of the expression (15.a), the SEA assumption
implies that −k1E0x + k1E0xy + k−1

(E0
S 0

)
y ≈ 0. On

the other hand, Briggs and Haldane (1925) took an
alternative route by assuming that the concentration
of the intermediate complex does not change on the
timescale of product formation. In terms of Eq. (15.b),
The Briggs and Haldane’s QSSA implies that k1S 0x−
k1S 0xy − (k−1 + kc)y ≈ 0. The condition (34) derived
from the SVD analysis can be seen as a general
form of the SEA and the complex QSSA. In this
regard, one can consider the boundary-layer system
(29) as a generalized QSSA for the MM kinetics. That
is, rather than applying the QSSA for the substrate
or the complex species, Eq. (33) indicates that the
generalized QSSA applies for a linear, non-necessarily
convex combination of the individual QSSA.

It should be noted that the classical QSSA derived
by Briggs and Haldane (1925) depends only on
the initial enzyme concentration E0 (see Eq. (8)).
In contrast, the QSSA assumption derived from the
SVD analysis depends also on the initial substrate
concentration S 0 (see Eq. (33)). In this way, Eq. (29)
defines a bundle of slow manifolds that depend on the
initial substrate concentration. That is, for a given set
of numerical values of the kinetics constants, the slow
manifold is also dependent on the initial condition S 0.
In this way, a trajectory starting at S 0 would converge
to a fiber of the slow manifold bundle.

2.1 Validity sufficient conditions

A key question is to establish sufficient conditions on
the kinetics constant to have a large separation of the
scaling factors. The singular values of the matrix M
(see Eq. (15)) are computed from the eigenvalues of
the matrix MMT given by

MMT =

 2k2
1E2

0 + k2
−1

(E0
S 0

)2

−2k2
1S 0E0 − k−1(k−1 + kc)

(E0
S 0

)
−2k2

1S 0E0 − k−1(k−1 + kc)
(E0

S 0

)2

2k2
1S 2

0 + (k−1 + kc)2

 (36)

The singular values of M are the squared root of
the eigenvalues of the above matrix. The trace and
determinant of MMT are given by

tr = 2k2
1(E2

0 + S 2
0)+ k2

−1

(
E0

S 0

)2

+ (k−1 + kc)2 (37a)

det = 2k2
1E2

0(k−1 + kc)2 + 2k2
1k2
−1E2

0

− 4k2
1k−1(k−1 + kc)E2

0 − k2
−1(k−1 + kc)2

(
E0

S 0

)2

(37b)
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Introduce the following dimensionless parameters:

α =
k1E0

kc
(38a)

β = 1+
S 2

0

E2
0

(38b)

γ =
k−1

kc
(38c)

Then, eqs. (37.a) and (37.b) become

tr = k2
cφ1(α,β,γ) (39a)

det = k4
cφ2(α,β,γ) (39b)

where

φ1(α,β,γ) =2α2β+

(
γ

β− 1

)2

+ (γ+ 1)2 (40a)

φ2(α,β,γ) =2α2(γ+ 1)2 + 2α2γ2 − 4α2γ(γ+ 1)

−

(
γ2

β− 1

)
(γ+ 1)2 (40b)

The eigenvalues of the matrix MMT are given as the
roots of the polynomial λ2− trλ+det = 0, such that the
singularity parameter is given by

ε2 =
φ1(α,β,γ)−

√
φ1(α,β,γ)2 − 4φ2(α,β,γ)

φ1(α,β,γ)+
√
φ1(α,β,γ)2 − 4φ2(α,β,γ)

(41)

Then, a general condition for the validity of the MM-
like equation (33) is

φ1(α,β,γ)−
√
φ1(α,β,γ)2 − 4φ2(α,β,γ)

φ1(α,β,γ)+
√
φ1(α,β,γ)2 − 4φ2(α,β,γ)

≪ 1 (42)

The above inequality is quite complex and involves
the three dimensionless parameters α, β and γ. Two
limiting cases can be obtained as follows:

a) Assume that γ ≪ 1 and α ≫ 1. The first
assumption implies that the complex formation
reaction is weakly reversible. Then, φ1(α,β,γ) =
O(2α2β) and φ2(α,β,γ) = O(2α2), such that

ε2 ≈
αβ−

√
α2β2 − 2

αβ+
√
α2β2 − 2

(43)

One has that ε ≪ 1 for α ≫ 1. That is, α ≫ 1
is a sufficient condition for the validity of the
MM-like equation (31). From Eq. (38.a), such a
condition can be expressed as

E0

KVS C
≫ 1 (44)

where KVS C is the Van Slyke-Culen constant.
In the context of the reversible QSSA (rQSSA),
the above inequality was derived by Segel and
Slemrod (1989) by other analysis routes based
on singular perturbation analysis.

b) Assume that γ ≪ 1 and β≫ 1. As in the above
item, φ1(α,β,γ) = O(2α2β) and φ2(α,β,γ) =
O(2α2), such that the magnitude order of the
singularity parameter is given by Eq. (41).
Similarly, ε2 ≪ 1 for β ≫ 1, which in terms of

Eq. (38.b), 1+
S 2

0
E2

0
≫ 1, equivalently,

S 0

E0
≫ 1 (45)

That is, the MM-like equation (31) is valid when
the initial substrate concentration is sufficiently
high relative to the initial enzyme concentration.
This validity condition was derived by Laidler
(1955) in the framework of the standard QSSA
(sQSSA).

The above analysis showed that the SVD
recasts some validity conditions already reported in
the literature. However, such conditions are only
particular cases of the general validity condition given
by Eq. (42).

2.2 Numerical illustrations

Let us illustrate the above findings with some
numerical computations. Figure 1 illustrates the
behavior of the SVD perturbation parameter ε =
σ2/σ1 with respect to the dimensionless parameters
α and γ (see Eq. (38)). The results were obtained by
fixing S 0 = 1.0 and kc = 1.0, and for four different
values of the dimensionless parameter: (a) β = 1.25,
(b) β = 1.5, (c) β = 2.0, and (d) β = 3.0. Values
of ε that are of the order of 0.01 were obtained for
α > 10 and γ > 10, suggesting that the MM equation
is valid for large values of the parameters α and γ.
Besides, the region of validity would decrease when
the parameter β is increased (i.e., when the ratio E0/S 0
was increased). That is, the high concentration of
enzyme relative to the substrate concentration limits
the validity of the MM equation. For instance, it has
been reported that the concentration of the enzyme
trisophosphate isomerase is about 2.5-fold higher than
the concentration of its substrate dihydroxyacetone-
phosphate in rabbit muscle (Albe et al., 1990). Tzafriri
and Edelman (2007) proposed the tQSSA framework
to study the validity of the MM equation under enzyme
excess concentration relative to the Michaelis constant
and derived stringent sufficient conditions. Yun and
Han (2020) used extensive numerical simulations to
claim that the MM equation is valid only when E0 <
0.01KM , and that for higher enzyme concentrations
the approximate MM kinetics follows a non-MM
equation. Figure 1 suggests that the MM equation
is still valid as long as the parameters α and γ are
sufficiently large.
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Figure 1. Behavior of the SVD perturbation parameter ε = σ2/σ1 with respect to the dimensionless parameters α
and γ. The results were obtained by fixing S 0 = 1.0 and kc = 1.0. (a) β = 1.25, (b) β = 1.5, (c) β = 2.0, and (d)
β = 3.0.
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Figure 2. Comparison between (a) the small parameter
ε = σ2/σ1 obtained with SVD analysis and (b) the
Seagel’s ratio E0/(KM+S 0). The results were obtained
for S 0 = 1.0, kc = 1.0 and β = 1.5. The MM equation
is valid for small values (cold regions) of the SVD and
Seagel’s parameters.

Figure 2 compares the small parameter ε = σ2/σ1
obtained with SVD analysis with the Segel’s ratio
E0/(KM+S 0) (see Eq. (11)). The results were obtained
for S 0 = 1.0, kc = 1.0 and β = 1.5. The MM
equation is valid for small values (cold regions) of the
SVD and Segel’s parameters. Figure 2 shows that, at
least for such parameter values, the SVD condition
predicts a wider range for the validity of the MM
equation. For instance, the Segel’s condition would
predict that the MM equation is not valid for large
values of the parameter α, whereas the SVD condition
predicts the validity of the MM equation. Overall, the
results in Figure 1 illustrate that the MM equation
approximation can be used for a more general set
of rate constants and initial conditions than those
predicted by the standard Segel’s condition (11).

One question is how the Michaelis constant (9)
compares with the affinity constant predicted by the
SVD analysis (see Eq. (34.b)). Figure 3 presents
the comparison between Eq. (9) and Eq. (34.b) for
different combinations of the kinetics and initial
condition parameters. Except for the variation of the
ratio E0/S 0 where the Michaelis constant does not
change with E0/S 0, Eq. (9) and Eq. (34.b) yield quite
similar values, suggesting that the MM equation may
be applicable for a wider range of kinetics parameters
than those predicted by the Segel’s condition given by
Eq. (11).
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Figure 3. Behavior of the affinity constant with respect to the different kinetics parameters for the prediction made
with the SVD analysis and the Michaelis constant. (a) k−1 = 0.25, kc = 1.0, S 0 = 1.0 and E0 = 0.25. (b) k1 = 1.0,
kc = 1.0, S 0 = 1.0 and E0 = 0.25. (c) k1 = 1.0, k−1 = 0.25, S 0 = 1.0 and E0 = 0.25. (d) k1 = 1.0, k−1 = 0.25, kc = 1.0
and S 0 = 1.0.

The SVD analysis showed that the substrate-
complex phase-plane trajectory follows the slow
manifold φ f ast(x,y) (Eq. (28)) for small times, and
the fast manifold φslow(x,y) (Eq. (30)) for large times.
To illustrate the above feature, consider the parameter
values k1 = 1.0, k−1 = 0.25, kc = 1.0, E0 = 0.25 and
S 0 = 1.0. In this case, the SVD perturbation parameter
is ε = 0.0966, the affinity constant is Ka f f = 1.2106
(Eq. (34.b)) and the Michaelis constant is KM =

1.25. Figure 4.a presents the behavior of the exact
trajectory computed with the differential equations
(4). For small times, the trajectory is tangential to
the slow manifold, while for large time (approaching
the equilibrium point) the trajectory approaches the
slow manifold. The slow manifold was computed
as C = −E0 (v11/v21)S/[(v31/v21)S 0 + S ] (Eq. (33))
and for comparison, the slow manifold obtained with
the classical QSSA assumption was computed as

8 www.rmiq.org
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Figure 4. (a) Behavior of the substrate-complex trajectories respect to the SVD estimated 535 
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Figure 4. (a) Behavior of the substrate-complex
trajectories respect to the SVD estimated slow
invariant (dotted lines) manifold given by Eq. (26).
(a) k1 = 1.0, k−1 = 0.25, kc = 1.0, S 0 = 1.0 and
E0 = 0.25. (b) k1 = 1.0, k−1 = 1.0, kc = 1.0, S 0 = 1.0
and E0 = 1.0.

C = −E0S/(KM + S ). The difference between the
SVD analysis and the QSSA predictions is very small,
particularly for large times. It can be noted that the
system trajectory is tangent to the slow manifold for
large times (i.e., when the trajectory approaches the
equilibrium point), which illustrates the fact that the
slow manifold function corresponds to a family of
σ-isoclines (Calder and Siegel, 2008) depending on
the initial substrate condition S 0 via the computations
of the SVD of the matrix M (see Eq. (17)). For
mild times, the trajectory evolves in a band close
to the fast manifold, such that the MM equation
can be considered as an acceptable approximation
for the MM kinetics. Now, let us consider the same
parameters, but with E0 = 1.0. In this case, the
initial substrate and enzyme concentrations are of the
same order, a situation that has been considered as
not following the MM equation approximation (Yun
and Han, 2020). The corresponding SVD perturbation
parameter is ε = 0.2672, which cannot be considered
as sufficiently small to have a sufficient separation of
time scales. The affinity constant is Ka f f = 0.829 and
the Michaelis constant is kM = 1.25, which exhibits
a marked difference, which is reflected in the graph
of the corresponding slow manifold (Figure 4.b). The
system trajectory is tangential to the fast manifold for

small times and to the slow manifold predicted by the
SVD analysis for large times. However, the trajectory
is not tangential to the slow manifold predicted by
the QSSA, which suggests that the classical MM
equation is not an acceptable approximation for the
MM kinetics for large values of the initial enzyme-
to-substrate concentration ratio. Finally, the numerical
results depicted in Figure 4 are in line with the SVD
analysis, which concluded that the system trajectory
approaches asymptotically (i.e., for very long time)
the slow manifold. However, for mild times the slow
manifold is not an exact approximation for the system
trajectory, but rather only an approximation reflected
in the MM equation.

3 Autocatalytic MM kinetics

The analysis described in the above section showed
that, under suitable conditions, there exists a sufficient
separation of the scaling factors, which can be
exploited to reduce the dimensionality of the
differential equations describing the MM kinetics. In
turn, for a large time the generation of product can
be approximated by a MM equation. An interesting
question is whether the SVD analysis can be extended
to more general forms of the MM kinetics scheme.

Consider the following autocatalytic MM kinetics:

E+S
k1
−−−→ C (46a)

C
k−1
−−−→ E+S (46b)

C
kc
−−−→ 2E+P (46c)

The difference with the classical MM kinetics is in the
third step where the enzyme is both regenerated and
produced by the decomposition of the intermediate
complex to give products. Kinases that activate
themselves are examples of reactions that meet the
kinetics scheme (45) (Bishop and Quian, 2010). The
application of the law of mass action to the kinetics
scheme (46) gives the following set of differential
equations:

dS
dt
= −k1ES + k−1C, S (0) = S 0 (47a)

dE
dt
= −k1ES + (k−1 + 2kc)C, E(0) = E0 (47b)

dC
dt
= k1ES − (k−1 + kc)C, C(0) = 0 (47c)

dP
dt
= kcC, P(0) = 0 (47d)

This system admits the following conservation law:

S + E + 2C = S 0 + E0 (48)

such that the dimensionless equations for the substrate

www.rmiq.org 9



Ochoa-Tapia et al./ Revista Mexicana de Ingeniería Química Vol. 22, No. 3(2023) Bio2366

and the complex can be written as follows:

dx
dt
= −k1(S 0 + E0)x+ k1S 0x2 + 2k1E0xy+ k−1

(
E0

S 0

)
y,

x(0) = 1 (49a)

dy
dt
= k1

(S 0 + E0)S 0

E0
x− k1

S 2
0

E0

 x2 − 2k1S 0xy

− (k−1 + kc)y,
y(0) = 0 (49b)

In this case, the vector of rate functions F(x,y) is

F(x,y) =


x
x2

xy
y

 (50)

and the matrix M is given by

M =

−k1(S 0 + E0) k1S 0 2k1E0 k−1
(E0

S 0

)
k1

(S 0+E0)S 0
E0

−k1

(
S 2

0
E0

)
−2k1S 0 −(k−1 + kc)


(51)

Following the SVD decomposition of the matrix M,
and assuming sufficient separation of the singular
values, one obtains the following expression for the
slow invariant manifold:

φslow(S ,C) = v11x+ v21x2 + v31xy+ v41y (52)

Then, the dimensionless complex concentration in the
slow invariant manifold can be expressed as

y = −
x(v11 + v21x)

v41 + v31x
(53)

Since dP/dt = kcC, and after using the normalization
relationships given by Eq. (13), one obtains the
following expression:

dP
dt
= −

kcE0S
v41
v31

S 0 + S
(v11S 0 + v21S )

v31S 0
(54)

This equation has the structure of the MM equation
corrected by the factor (v11S 0 + v21S )/(v31S 0). In
this way, the approximate rate of product generation
can be described by a second-order MM equation
where the factor (v11S 0 + v21S )/(v31S 0) arises
because of the autocatalytic kinetics. In contrast
to the MM equation, the approximate autocatalytic
equation (54) approaches a first-order kinetics rate
rather than a zero-order kinetics rate when the
substrate concentration is very high. Figure 5
illustrates the behavior of the substrate-complex
trajectories for two substrate initial conditions with
E0 = 0.25, k1 = 1, k−1 = 0.02 and kcat = 5,
such that the decomposition of the intermediate
complex to form products is the faster reaction
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Figure 5. Phase-portrait of the substrate-complex
trajectories for the autocatalytic MM kinetics for k1 =

1.0, k−1 = 0.25, kc = 5.0, E0 = 0.02.

step. For long times, the trajectories converged to the
slow invariant manifold defined by Eq. (52).

Conclusions

The SVD offered a suitable framework for the
multiscale analysis of the MM kinetics. It was shown
that the dynamics of the MM kinetics can be reduced
to a MM equation for a sufficient separation of the
singular values of the rate constant matrix. Using
results from singularly perturbed systems, the QSSA
was applied to a linear, non-convex combination of the
substrate and intermediate complex rates, rather than
to a single species. Hence, one obtains a generalization
of the classical QSSA commonly used for the MM
kinetics. The methodology exhibited certain flexibility
for application to a general MM kinetics, such as
the autocatalytic case where the resulting effective
equation for the substrate generation is a second
order equation. Overall, the analysis presented in
this work should be seen as a first step towards
the development of general QSSA for the reduction
of complex kinetics. The SVD approach used in
the present work is rather general, although non-
necessarily affordable for analytical and algebraical
handling. For instance, the analysis can be used for
the similar case of the Monod equation (Meraz et al.,
2022).

Although our study provided valuable insights on
the validity of the MM equation, it has the main
limitation that the validity conditions described in
Subsection 2.1 depend only on the kinetics parameters
and the initial conditions. Such criteria apply for
conditions close to the equilibrium points. If the task is
to obtain a MM equation valid along a trajectory, our
sufficient conditions are not valid and other analysis
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strategies should be pursued (Patsatzis and Goussis,
2019, 2023).
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